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Quantitation of DNA adducts in human tissues has been achieved with highly sensitive
techniques based on adduct radiolabeling, antisera specific for DNA adducts or modified DNA,
and/or adduct structural characterization using chemical instrumentation. Combinations of these
approaches now promise to elucidate specific adduct structures and provide detection limits in
the range of 1 adduct/109 nucleotides. Documentation of human exposure and biologically
effective dose (i.e., chemical bound to DNA) has been achieved for a wide variety of chemical
carcinogens, including polycyclic aromatic hydrocarbons (PAHs), aromatic amines, heterocyclic
amines, aflatoxins, nitrosamines, cancer chemotherapeutic agents, styrene, and malondialdehyde.
Due to difficulties in exposure documentation, dosimetry has not been precise with most
environmental and occupational exposures, even though increases in human blood cell DNA
adduct levels may correlate approximately with dose. Perhaps more significant are observations
that lowering exposure results in decreasing DNA adduct levels. DNA adduct dosimetry for
environmental agents has been achieved with dietary contaminants. For example, blood cell
polycyclic aromatic hydrocarbon-DNA adduct levels were shown to correlate with frequency of
charbroiled meat consumption in California firefighters. In addition, in China urinary excretion of
the aflatoxin B1-N7-guanine (AFB,-N7-G) adduct was shown to increase linearly with the aflatoxin
content of ingested food. Assessment of DNA adduct formation as an indicator of human cancer

risk requires a prospective nested case-control study design. This has been achieved in one

investigation of hepatocellular carcinoma and urinary aflatoxin adducts using subjects followed by
a Shanghai liver cancer registry. Individuals who excreted the AFB1-N7-G adduct had a 9.1-fold
adjusted increased relative risk of hepatocellular carcinoma compared to individuals with no

adducts. Future advances in this field will be dependent on chemical characterization of specific
DNA adducts formed in human tissues, more precise molecular dosimetry, efforts to correlate
DNA adducts with cancer risk, and elucidation of opportunities to reduce human DNA adduct
levels. Environ Health Perspect 1 05(Suppl 4):907-912 (1997)
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Introduction
Many compounds classified as human
carcinogens are known to form DNA
adducts in vivo (1). Impetus to apply
DNA adduct formation as a biomarker of
human cancer risk comes from extensive
studies in animal models in which DNA
adduct formation has been shown to be
necessary but not sufficient for tumorigen-
esis. Estimation of biologically effective
dose of chemical exposures in humans and

projection of DNA adduct-based cancer
risk are dependent on sensitive and specific
methods for carcinogen-DNA adduct
detection (2,3). The observed adduct lev-
els presumably reflect variables that com-
prise extent and frequency of chemical
exposure, xenobiotic metabolism (a bal-
ance between carcinogen activation and
detoxication), rate of covalent binding of
ultimate metabolites to DNA, and rate of
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DNA adduct repair (4,5). Currently, the
presence of a DNA adduct in human tis-
sue indicates that exposure has occurred,
although the amount of that exposure and
the individual's cancer risk remain
unknown. This presentation will discuss
major methodological advances in human
DNA adduct quantitation, give examples
of exposure monitoring and molecular
dosimetry, and describe one study in
which human DNA adduct formation has
been shown to correlate with incidence of
a human cancer. The examples chosen will
also provide an opportunity to focus on
relevant issues related to monitoring of
human DNA adducts induced by exposure
to environmental carcinogens.

Methodological Approaches
to Human DNA Adduct
Monitoring
Single methods currently in use for
carcinogen-DNA adduct detection include
immunoassays (6), immunohistochemistry
(7,8), 32P-postlabeling (9,10), fluorescence
and phosphorescence spectroscopy (11),
gas chromatography-mass spectrometry
(GC-MS) (12), atomic absorbance spec-
trometry (13,14), and electrochemical
conductance (ECC) (15). These methods,
applied individually, are typically not able
to chemically characterize specific adducts.
Therefore, an important aspect of more
recent approaches to human biomonitor-
ing is the development of preparative
strategies for sample purification that can
be applied prior to the ultimate adduct
quantitation (16). Recent advances com-
bining preparative chromatography with
immunoassays, 32P-postlabeling, synchro-
nous fluorescence spectrometry (SFS), and
GC-MS have allowed identification and
quantitation of specific DNA adducts in
human tissues, thereby strengthening
human exposure documentation.

The two most frequently employed
DNA adduct methodologies, immunoas-
says and 32P-postlabeling, will be discussed
briefly. Antisera elicited against DNA
adducts and carcinogen-modified DNA
samples (17-19) have been widely utilized
to quantify and localize xenobiotic-induced
DNA damage (20-23) and to measure
DNA adduct formation in human tissues
(24,25). Competitive radioimmunoassays
(RIAs) and enzyme-linked immunosorbent
assays (ELISAs) are able to detect human
DNA damage with sensitivity in the range
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of 1 adduct in 108 unmodified nucleotides.
Immunoassays are reliable and inexpensive,
and they allow for the analysis of many
samples in one day. Disadvantages include
the requirement for relatively large
amounts of DNA (200 pg) and a lack of
absolute specificity because of antibody
cross-reactivity. Cross-reactivity with
unmodified nucleotides or carcinogen
alone occurs very rarely (26), but there
may be recognition of other adducts of the
same carcinogen or adducts of other chem-
ically related compounds (27), resulting in
detection of multiple, chemically similar
DNA adducts. 32P-postlabeling is based on
DNA digestion to 3'-phosphates, 5'-radiola-
beling of adducts with high specific activity
32p from y32P-ATP by T4 polynucleotide
kinase, and separation of the bis-phosphates
on thin layer chromatography (TLC). The
method, widely used for human DNA
adduct detection (10,22,25), has the
advantage of high sensitivity (often 1
adduct in 109 nucleotides) and application
to small quantities of DNA (2-10 pg).
However, identification of the detected
adducts has very rarely been achieved,
and the assay has the additional disadvan-
tage that unknown adducts may become
5'-phosphorylated with varying efficiencies,
resulting in underestimation of adduct
concentrations in a human samples.

For investigation of human DNA
samples, the immunoassays and 32P-post-
labeling, discussed above, provide
indications of exposure but lack chemical
specificity. Methodological combinations
devised to improve the specificity of DNA
adduct detection typically involve either
conventional chromatographic separation
by high- pressure liquid chromatography
(HPLC) or immunoaffinity chromatgraphy
as a first step. When a human DNA sample
is digested and subjected to HPLC, even
though the adduct levels are too low to be
detectable by conventional monitoring, the
fractions that should contain specific
adducts (identified by appropriate stan-
dards) can be subjected to SFS, 32p-post-
labeling, or GC-MS. Thus, the sensitivity
and specificity of ELISAs have been
enhanced by combination with prior
HPLC. The approach has been applied to
human gastric mucosa samples (28) and
human liver samples (29) using antisera
specific for alkyl-modified nucleosides.
Chromatographic separation by HPLC has
also been combined with 32P-postlabeling,
and a recent review (30) covers the general
subject. One line of experimentation has
combined two chromatographic steps with

32P-postlabeling for the detection of specific
o6- and N7-alkyl-deoxyguanosine adducts in
human lung and lymphocytes (31-33). The
development of this method has facilitated
the use of internal and co-chromatography
standards. In an additional approach (34),
two chromatographic steps were used prior
to the GC-MS determination of 3-methyl-
adenine and 7-methyl-guanine adducts in
the urine of smokers. Finally, HPLC has
been used as the first step in a procedure
combining 32P-postlabeling with immuno-
precipitation for the detection of o6- and
04-alkyl-deoxyguanosine adducts in human
liver and leukocyte DNA samples (35).
Human Exposure Monitoring
and Molecular Dosimetry
Xenobiotic exposures that have been
examined by immunoassay in DNA sam-
ples from human subjects include aflatox-
ins (36-38), 4-aminobiphenyl (39,40),
N-nitrosamines (28,29,41), and polycyclic
aromatic hydrocarbons (PAHs) (42-44).
In addition, adducts have been determined
in DNA of patients receiving medicinal
exposures, including cisplatin (45),
procarbazine (46), dacarbazine (47), coal
tar (48), and 8-methoxypsoralen (49).
Oxidative damage (50) and ultraviolet
light photoproducts (51) have been mea-
sured in DNA by immunoassay. 32P-post-
labeling has been applied to DNA from
multiple human tissues (43,52-55), with
indications that aromatic adducts increased
in individuals with documented high occu-
pational or tobacco exposures (10,56-64).
This technique has also been used to
examine DNA from individuals given coal
tar (65) and mitomycin C (66) for medic-
inal purposes. For mitomycin C and
styrene (67) it is the only method available
for detection of human DNA adducts.
Luminescence spectroscopy has been highly
successful in documenting DNA adducts of
aflatoxins (68,69), benzo[a]pyrene (B[a]P)
(70,71) and PAHs (72,73), while GC-MS
is routinely applied for 4-aminobiphenyl

(74), N-nitrosamines (12,75-78), and
tobacco-specific nitrosamines (79). Atomic
absorbance spectrometry is used for cisplatin
(80,81) and electrochemical detection is
used for oxidative DNA damage (82,83).
DNA adduct dosimetry cannot be

ascertained for most environmental expo-
sures because precise documentation of the
dose received is impossible; however, cer-
tain trends are noted when multiple studies
are examined. For example, in several
reported investigations in which ambient
B[a]P concentrations were compared to
blood cell PAH-DNA adducts, increased
ambient pollution was associated with
higher levels of blood cell PAH-DNA
adducts (44,61,84,85). In addition, mea-
sures taken to reduce the ambient PAH
levels result in lowered DNA adduct levels
(Table 1). For example, in two studies of
Finnish foundry workers, performed sev-
eral years apart, decreasing the B[a]P levels
from 12 to 200 ng/m3 down to <5 to 60
ng/m3 significantly reduced the PAH-DNA
adduct levels (44,48). In addition, the
same workers showed lower PAH-DNA
adduct levels after time spent on vacation
(60). In another study, U.S. Army soldiers
went from a very clean environment in
Kuwait in August 1991 to significantly
higher pollution levels in Germany in
October 1991, and DNA adducts increased
significantly (86). An example of reducing
pollution in the environment and lowering
DNA adduct levels occurred in the Silesian
region of Poland in the summer of 1992,
where it was demonstrated that the air was
about 5-fold cleaner than in the winter and
the adducts in lymphocytes were about
5-fold lower at that time (87). In analyzing
these data a number of confounding fac-
tors must be recognized. The use of ambi-
ent B[a]P measurements provides an
indicator of the pollution levels, but the
actual hydrocarbon components vary and
are not always measured. In addition,
cohorts are grouped according to the high-
est exposure documented, but the range of

Table 1. DNA adduct levels (adducts/108 nucleotides) in human blood cells decrease with a reduction in airborne
B[a]P concentration.

Airborne B[a]P concentration, ng/m3
Cohort < 1 < 5 5-12 12-60 50-50,000 References

Finnish foundry 2.2a - - 8.0 21.0, 50.0 Perera et al. (44)
Finnish foundry - 5.2 6.1 9.6 - Paleologo et al. (48)
Polish coke ovens - - - 8.2 24.5 Hemminki et al. (84)
Polish Silesia region - 1.3, Summerb - 6.4, Winterb - Grzybowska et al. (87)
U.S. Army soldiers 1.6, Kuwait - 4.0, Germany - - Poirier et al. (86)
8Controls: ambient monitoring was typically not conducted for individuals serving as controls. bDNA adduct values
are for lymphocytes only.
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exposures for one job at one worksite can
vary considerably. In some studies DNA
adduct levels correlate with extent of pollu-
tion, but the discrepancies suggest that
B[a]P may not be the compound respon-
sible for producing the majority of
PAH-DNA adducts observed by immuno-
assay and 32P-postlabeling in human blood
cell DNA samples.

Because much of the available human
DNA adduct dosimetry for occupational
and environmental exposures depends
upon ambient biomonitoring, precise
dose-response relationships have not been
possible. However, in some studies with
dietary carcinogen exposure, dosimetry has
been demonstrated. In one study of
California firefighters (88), a blood sample
was taken before the summer firefighting
season began and another after 8 weeks of
firefighting for approximately 12 hr/day.
PAH-DNA adducts were shown not to
correlate with the extent of firefighting.
However, these individuals often ate char-
broiled food cooked over an open flame.
Comparison of dietary habits with DNA
adduct values showed that individuals
(n= 19) consuming charbroiled food one to
two times in the previous week had a mean
PAH-DNA adduct value of 1.6 adducts in
108 nucleotides (Figure 1). However, 23
individuals who reported consumption
three to five times in the previous week and
5 individuals who reported consumption
> 5 times in the previous week had mean
adduct values 3.0 and 6.7 adducts/108
nucleotides, respectively (Figure 1). For
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Figure 1. Frequency of charbroiled (CB) food consump-
tion and level of PAH-DNA adducts determined by
immunoassay in blood cell DNA from California fire-
fighters (88). Dose response (U) is shown for frequency
of CB food consumption during the immediately previ-
ous week (Pearson r hr = 0.24, p hr = 0.06). There is no
dose response when consumption was 7 to 14 days
previously (o), suggesting that adduct removal may be
essentially complete by 7 days.

dosimetry of aflatoxin exposure, 42 indi-
viduals in the Guanxi region of China (89)
were studied. A portion of the actual food
consumed was assayed for aflatoxin content
and urinary output was assayed for excre-
tion of aflatoxin B1-N7-guanine by both
males and females (37,90). The dosimetry
data showed an excellent correlation
between dietary aflatoxin intake and uri-
nary adduct excretion (91). Dose-response
relationships for DNA adducts have also
been demonstrated for cancer chemothera-
peutic agents (47,92-94) but will not be
discussed here because the exposures are
medicinal, rather than environmental.

DNA Adduct-based
Risk Assessment
A major goal of studies in this field is the
use ofDNA adduct values to predict human
cancer risk. If formation of a specific DNA
adduct in exposed individuals parallels risk
for cancer induction and comparison is
made with appropriate controls, it may be
possible to identify at-risk groups of individ-
uals. This has been accomplished in one
large study linking dietary aflatoxin expo-
sure and hepatitis seropositivity with liver
cancer in China, using a prospective and
nested case-control study design (95,96).
Samples of urine and blood were banked
from more than 18,000 men in Shanghai,
China. Within several years 50 cases of liver
cancer were reported and matched for age,
sex, and neighborhood with 267 controls.
At that time the blood was assayed for evi-
dence of hepatitis seropositivity and the
urine was assayed for aflatoxin DNA
adducts. Individuals with evidence of DNA
adduct formation had a 9.1-fold increased
relative risk ofdeveloping hepatocellular car-
cinoma, and individuals who showed evi-
dence ofboth hepatitis and urinary aflatoxin
adducts had a 60-fold increased relative risk
as compared to controls. This important
investigation was the first to show an associ-
ation between DNA adduct formation and
cancer risk.

Conclusions and
Future Directions
To date, DNA adduct measurements are
routinely performed on a wide variety of
human tissues from individuals experienc-
ing a broad spectrum of environmental and
other exposures. The most frequently used
approaches to DNA adduct quantitation
do not identify or chemically characterize
specific adducts. However, methodologi-
cal advances that involve preparative
chromatography steps are becoming widely

applied and permit determination of spe-
cific adducts in a human tissue sample. The
ability to characterize adducts in a human
tissue will facilitate molecular dosimetry,
although some highly specific end points,
such as GC-MS, may not be adaptable to
routine screening efforts.

Future directions for this field will focus
on the implementation of epidemiologically
sound study designs to assess the association
between DNA adduct formation and
human cancer risk. Whereas this association
is strongly supported by animal studies, it
remains to be seen whether adducts are also
a necessary component of tumorigenesis in
humans. In the one study of liver cancer
and urinary aflatoxin-DNA adducts in
China, an association appears to be present.
However, background levels of DNA
adduction are essentially universal and it is
not dear to what extent low levels of geno-
toxic damage contribute to human cancer
risk. To address this issue the prospective
nested case-control study design is essen-
tial. However, pitfalls in such endeavors
include the costly demands of prospective
studies and the necessity to choose a cancer
that has a short latency to generate suffi-
cient study subjects within a reasonable
time frame.

In the field ofhuman biomonitoring the
potential correlation of DNA adducts with
markers of susceptibility, exposure, and
effect (97) may substantially alter conven-
tional approaches to risk assessment. Many
studies are now being designed to correlate
metabolic polymorphisms, urinary metabo-
lites, mutagenesis, chromosomal aberra-
tions, protein adducts, and other markers
with DNA adduct levels. The usefulness of
these correlations is still being determined,
but it is possible that future approaches to
cancer risk assessment will eventually reflect
the results of a battery of biomarker tests,
induding DNA adduct analyses.
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