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Nonlinear Elastic Registration of Brain Images with
Tumor Pathology Using a Biomechanical Model

Stelios K. Kyriacou,* Christos Davatzikos, S. James Zinreich, and R. Nick Bryan

Abstract—A biomechanical model of the brain is presented,
using a finite-element formulation. Emphasis is given to the
modeling of the soft-tissue deformations induced by the growth
of tumors and its application to the registration of anatomical
atlases, with images from patients presenting such pathologies.
First, an estimate of the anatomy prior to the tumor growth is
obtained through a simulated biomechanical contraction of the
tumor region. Then a normal-to-normal atlas registration to this
estimated pre-tumor anatomy is applied. Finally, the deformation
from the tumor-growth model is applied to the resultant regis-
tered atlas, producing an atlas that has been deformed to fully
register to the patient images. The process of tumor growth is
simulated in a nonlinear optimization framework, which is driven
by anatomical features such as boundaries of brain structures.
The deformation of the surrounding tissue is estimated using
a nonlinear elastic model of soft tissue under the boundary
conditions imposed by the skull, ventricles, and the falx and
tentorium. A preliminary two-dimensional (2-D) implementation
is presented in this paper, and tested on both simulated and
patient data. One of the long-term goals of this work is to use
anatomical brain atlases to estimate the locations of important
brain structures in the brain and to use these estimates in pre-
surgical and radiosurgical planning systems.

Index Terms—Brain atlas, biomechanics, finite elements, in-
verse methods, registration, surgical planning.

I. INTRODUCTION

M UCH attention has been given by the medical imaging
community to the modeling of normal brain anatomy.

Among others, applications of anatomical modeling include
computational neuroanatomy [1]–[3], surgical-path planning
[4], and virtual medical environments [5]. However, little
attention has been given to modeling anatomical abnormalities.
In this work we describe steps toward the development of a
system which simulates soft-tissue deformation in the brain,
caused by the growth of tumors. The main application of our
work is currently in the nonrigid matching of brain atlases
to brains with pathologies, for the purposes of pre-operative
planning. In particular, brain atlases can provide a wealth of
information on the structural and functional organization of
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the brain and, ultimately, on the response of different brain
regions to therapeutic procedures, such as radiotherapy. Since
they are derived from normal brains, however, brain atlases
must be adapted to the pathology of each individual brain. This
necessitates the development of a realistic model for tissue
deformation due to the growth of a tumor.

Besides the problem of atlas matching, modeling tissue
deformation finds application in other areas, including the
prediction of intra-operative shift of brain tissue caused by
surgical instruments. In particular, the craniotomy and the
manipulation of brain tissue with a surgical instrument changes
the structure of the brain, often substantially [6]–[8]. Conse-
quently, the pre-operatively-acquired images no longer corre-
spond to reality. This is currently a very important limitation
in using preoperative images to navigate through the patient’s
anatomy. Finally, modeling soft-tissue deformation is a key
issue in real-time simulation of neurosurgical manipulations
[9]. For example, craniotomy could result in bulging of the
cerebral tissue out of the skull opening due to gravity or due
to high intracranial pressures. These simulations may be used
for both pre-operative planning as well as training.

Most of the brain mechanics literature starts in the late
1960’s, when a large study was initiated by the National
Institute of Neurological Disorders and Stroke. Mechanical
properties of the different brain structures were experimentally
investigated and brain mechanics simulations of various com-
plexities were performed. The primary objective for most of
that work was the investigation of traumatic brain injury (often
due to automobile accidents). Accordingly, most investigators
used dynamics rather than statics in their models. In addition,
the elastic and failure properties of the tissue were examined.
Notable is the work by Metzet al. [10], in which experiments
were performed on monkey brain tissue under live, fresh, and
fixed conditions. Their experiment consisted of inflating a bal-
loon inserted into the brain tissue and monitoring the volume
increase in the balloon versus the balloon pressure. They then
calculated the Young’s modulus of the brain tissue, assuming
both linear strain as well as linear elastic material behavior.
They found that the Young’s modulus ranged between 10 and
35 kPa (1.0E5 - 3.5E5 dyn/cm

Atluri et al. [11] looked at the functional and mechan-
ical failure properties of the brain tissue. They performed
experiments on 15 Rhesus monkeys with blunt indentation
of the pia-arachnoid. Correlation with a finite-element model
showed darkened neurons (stained with Verhoeff Van Giesen)
when normal strain was approximately 0.2–0.4. It is un-
fortunate that their work was not followed up with further
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experimentation/simulations, as this study is one of the few to
combine experiment and computations to predict tissue failure.

More recently, a 1994 symposium in Washington, DC,
primarily organized by the National Highway Traffic Safety
Administration (NHTSA), was instrumental in keeping the
subject of brain biomechanics, and, in particular, traumatic
brain injury at the forefront of research. In this sympo-
sium, many investigators presented, among other topics, two-
dimensional (2-D) and three-dimensional (3-D) finite-element
models of brain dynamics (see for example, Bandaket al. [12]
and other references in the same issue).

In the area of quasistatic (i.e., slow enough deformations so
that acceleration terms in the equilibrium equations are neg-
ligible) brain mechanics, Nagashima and coworkers [13]–[17]
used a 2-D finite-element analysis combined with poroelastic
theory to model the movement of fluids through the brain.
They included the hydraulic conductivity, metabolic water
production, hydrostatic pressure, cerebrospinal fluid (CSF)
absorption, and mechanical deformation to account for edema
and CSF circulation. They used a linear material and linear
strains for the elastic deformations. According to the authors,
the predicted edema and brain midline shift seemed to correlate
well with experiments they performed.

Neff and coworkers [18] used similar 2-D analyses to
investigate hydrocephalus, using a commercial finite-element
platform. Although they used a linear elastic material model,
they did allow for nonlinear strain (large deformation). Ac-
cording to the authors, the essential features of ventricular
expansion were well reproduced qualitatively.

Takizawaet al. [19] performed 2-D finite-element analysis
of an intracranial hematoma. They based their finite-element
domain on part of a representative brain slice that contained
a single cerebral hemisphere with white and gray matter
delineated. Five types of lenticular nucleus (putaminal) hem-
orrhages were modeled and the tissue stress was correlated
with the extent of tissue destruction. They used linear elastic
theory, with a nearly incompressible tissue (Poisson’s ratio of
0.47) and Young’s modulus of approximately 8, 4, and 100 kPa
for gray matter, white matter and falx, respectively. However,
the authors did not discuss the limitations of using a linear
theory in a rather highly nonlinear problem, or the problems
that might arise with excessive element distortion due to the
very large displacements next to the hemorrhage region.

Wassermanet al. [20] applied the finite-element method
in a 2-D setting to predict the growth of the tumor under
anatomical constraints (e.g., the falx). The authors used a linear
material but included nonlinearities, due to the large tissue
displacements (nonlinear geometry). According to the authors,
their simulations produced visually consistent tumors.

Our work differs from that of other researchers in the
following two respects: 1) we use nonlinear elastic material
properties as well as nonlinear geometry and 2) we apply
the resulting tissue deformation, due to tumor growth, to the
registration of MR or CT images to brain atlases. Here, we
develop a method for simulating quasistatic brain mechanics,
specifically investigating the growth of a brain tumor and the
resulting brain deformations. Our goal is to manipulate brain
atlases, which are based on normal subjects, by accounting for

structural changes occurring with tumor growth, in order to
use them as tools in pre-surgical planning or in radiosurgical-
plan optimization. The organization of the paper is as follows.
Section II contains the techniques used for the finite-element
mesh creation, as well as the specifics of the material model
used. In addition, our method for the normalization of the
tumor image is described in detail. Section III contains various
experimental results, as well as some performance tests for our
method. Finally, the validity of various assumptions and plans
for future work are discussed in Section IV.

II. M ETHODS

We use the finite-element method [21] to accommodate
the complexity of the brain anatomy and its inhomogeneous
material properties. There is no doubt that the problem we
address herein is by nature 3-D and must be treated as
such. However, in this paper we present the principles of
our approach in 2-D, by considering individual cross-sectional
images, primarily because it substantially reduces the com-
putational requirements. The concepts of our work can be
extended to 3-D. However, several implementation difficulties
need to be overcome in such extension, which are related to
excessive computational requirements, mesh generation, and
visualization.

In order to develop our 2-D model we have relied on certain
approximations. In particular, we use plain stress, i.e., we
assume that there is zero stress in the direction normal to
our section and use linear triangular elements. In effect, plain
stress requires that the material is free to expand along the
third direction.

Our model incorporates the parenchyma, the dura and
falx membranes, and the ventricles. Some knowledge of the
mechanics of the brain is needed before the finite-element
method can be used, in particular, the constitutive models [22]
and parameters, i.e., the equations that link stresses with strains
and the geometry and boundary conditions.

A. Constitutive Models and Parameters

An accurate simulation of the behavior of the brain tissue
is, in general, quite difficult due to inter-individual variability
and the variation of tissue properties throughout the brain. For
simplicity, in this paper we assume that the white matter, the
gray matter, and the tumor tissue are nonlinear elastic solids
obeying the equations of an incompressible nonlinearly elastic
neo-Hookean model. It is customary in tissue mechanics to
assume incompressibility since tissues can be easily distorted,
but sustain high pressures without significant change of vol-
ume. A neo-Hookean material model is often used in the
rubber mechanics and may be considered as a very simple form
of nonlinear material, since it has only one material constant.
A simple extension of the neo-Hookean material, the so-called
Mooney–Rivlin material (plus a viscous component), having
two constants instead of one, has recently been used by Mendis
et al. [23] and others.

One way to characterize the mechanical behavior of a
material is through the strain energy functionwhich gives
the amount of strain energy per unit of undeformed volume
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of material. The strain energy is a function of the deformation
field applied. For example, the neo-Hookean materialis

(1)

where is the material constant and is

(2)

where is the right Cauchy–Green strain tensor [24]. Note
that under a coordinate system that is based on the principal
directions, may be written as

(3)

where are the three principle stretches, i.e., the
ratio of final length over the original length

(4)

Thus,

(5)

We will also be using the term strainto denote the amount
of expansion or contraction we apply to the tumor area. This
strain is the classical strain, i.e., the ratio of the change in
length over the original length and, by definition, it is equal
to the stretch minus one

(6)

To illustrate the physical interpretation of, consider uniax-
ial extension in a standard tensile test where a homogeneous
isotropic cylindrical specimen is pulled at its two ends and
the deformed length, as well as the change in the diameter, is
recorded. In that case, the principal directions for the strain are
along the axis of the tensile force and any two axes normal to
it. The principal stretch along the first axis will be the ratio
of the deformed length of the specimen to the undeformed
length. The other two principal stretches, and , will be
equal and their value will be the ratio of the deformed diameter
divided by the undeformed one.

Choosing an appropriate value for is an important, but
difficult issue. Following the experiments by Metzet al. [10],
which were discussed in Section I, we use a Young’s modulus
equal to 18 kPa for the white matter that corresponds to

kPa for relatively small values of strain [23]. Since the
gray matter has been reported to be approximately ten times
stiffer than the white matter [17], we use 30 kPa for the gray
matter . Tumor tissue is also given the properties of gray
matter. An exception is the example of Fig. 8, where we use
the same value for the gray matter and tumoras the one for
the white matter, since one cannot reliably distinguish gray
from white matter in a CT image.

Fig. 1. A simple schematic of the tumor region. The inner circle represents
the tumor. All nodes inside and on the boundary of the tumor are given the
expansion strain. In effect, the inner mesh buffer (area between the first and
second circles) elements that have common nodes with the tumor receive
some expansion as well so, by design, this circular region is small. The outer
mesh buffer is a rather large one and is used with a low-mesh-density factor
to allow for radially long and narrow elements that would better absorb the
high distortion of the expansion phase.

B. Tumor-Growth Mechanics

The mechanics of the tumor growth are complicated and by
no means well understood (see [20], and references therein).
As a first approximation, we have assumed that the tumor
has the tendency to grow uniformly. Fig. 3(b) shows such an
example. We have implemented this uniform growth model by
defining a stress free configuration for the tumor seed to be the
one which has a uniform strain [compare to (6)] applied to
the seed. For a circular seed of diameter, the grown tumor
diameter would tend to be . Thus,
may be considered to be a growth factor. For example, if
is zero, then there is no growth of the tumor seed, but if
is one, the grown tumor would have a diameter twice that of
the seed if it was free to expand. Since the tumor is elastically
constrained by the stresses exerted by the surrounding brain
tissue, it will tend to expand to a diameter less than and
the resulting growth of the tumor will tend to be nonuniform.
The equilibrium equations in the form of the virtual work
principle (7) govern the grown tumor size and shape. Note
that if negative values of are applied to a tumor, it will
contract, as described in Section II-E1.

C. Geometry, Boundary Conditions, and Mesh Generation

An MR/CT slice that contains the tumor is extracted from
the volumetric brain image. The boundaries of the brain
parenchyma and of the ventricles are then defined as sequences
of points (see Fig. 2), either manually or via an active contour
algorithm [25]. These boundary representations are then used
by the quadratic mesh generator (QMG), a geometric modeler
and automatic mesh generator developed by Vavasis [26].
QMG results in a triangular mesh, like the one shown in
Fig. 5(b).

The tumor is meshed in the same way. As we described
in Section II-B, a uniform strain is applied within the tumor,
resulting in its growth. Since in the ABAQUS FEM platform
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Fig. 2. Extraction of data from an MR slice. Data are manually digitized.
Crosses represent points on the ventricles and circles represent points on the
dura and falx. The dashed piecewise linear boundary represents the dura and
is currently restrained from moving. The same holds for the two dotted lines
that represent the falx. The ventricles are depicted with solid lines and are
separated by the septum. They are assumed to have zero pressure internally.

the strain can be prescribed only on nodes and not on elements,
we use a rim of small triangular elements around the tumor in
order to ensure that no expansion or contraction is applied to
normal brain tissue (see, also, Section II-H).

The dura mater (the tough membrane that encloses the
parenchyma), as well as the falx and tentorium, are assumed
to be rigid and with no relative motion between them and the
parenchyma (brain) at the contact surface. In addition, ven-
tricular pressure is assumed to be zero. The various boundary
conditions are automatically assigned to finite-element nodes
through the use of the geometric modeler features of QMG.
Contact surfaces are also set up at the ventricular boundaries
wherever there seems to be contact from juxtaposed ventricular
boundary regions.

D. Governing Equations

The mechanics of tumor growth are governed by the equilib-
rium equations which give rise to the virtual work principle;
a formulation that is particularly suitable for finite-element
solutions. In our case, since there are no surface forces or
acceleration terms, the virtual work principle can be written
as

(7)

Here, is the change in stain energy[given by (1)] due to
a virtual displacement and is the undeformed volume (see
for example [27], p. 27). By introducing a uniform strain inside
the tumor, the overall strain energy is increased. Subsequently,
the tissue moves to a lower energy position, which is defined
by the above equation. The problem is solved numerically,
through the finite-element method, with the resulting nonlinear

system of equations solved iteratively via some variation of
the Newton–Raphson method. The output is the deformation
of the tissue due to the tumor growth.

E. Estimating the Deformed Atlas

The previous subsections discussed the principles of biome-
chanical modeling of brain tissue. The modeling is needed for
estimating the deformed atlas which is accomplished through
the following steps.

1) The biomechanical model contracts the tumor in the
patient images to, ideally, an infinitesimal mass, in order
to create a normal brain image. This is a simple estimate
of the anatomy prior to the tumor growth. Details are
given in Section II-E1.

2) This step is not used in our experiments in this paper,
but is included here for completeness. In particular,
the resulting normal image can be corrected, based on
shape statistics of the normal brain collected from a
training set. Statistical shape models, such as the point
distribution method [28], would be applicable here. We
performed a simulated experiment in order to demon-
strate why this step might be useful. As shown in Fig. 3,
we started with an MR image of a normal individual,
as shown in Fig. 3(a), and we simulated the tumor
expansion, as shown in Fig. 3(b). The applied uniform
expansion strain was larger than we used elsewhere. We
then applied the contraction method, which yielded a
rather unrealistic estimate of the normal anatomy, as
shown in Fig. 3(c). Such an estimate could be further
corrected, either using statistical shape estimation meth-
ods or using manual correction, as shown in Fig. 3(d). In
the experiments in this paper, we have not performed this
correction step. However, we are planning to investigate
the importance of this step in our future work.

3) At this stage, a normal brain atlas is matched to this es-
timate of the previous step via a deformable registration
method [29], [30].

4) A nonlinear regression scheme estimates the tumor’s
origin and volumetric expansion that best agrees with
the observed deformed anatomy. In each iteration, the
process of tumor growth estimation is applied to the
atlas, resulting in the displacement of the surrounding
structures and the transfer of the anatomical labels of
the atlas to the patient’s brain. Details are given in
Section II-E2.

1) Simulation of Tumor Contraction:The reduction of the
tumor to an infinitesimal mass is achieved via a uniform
contraction model. We note here that, in practice, we only
apply a partial contraction of the tumor, for two reasons.
First, numerical instabilities, which might arise when extreme
deformations of the finite-element mesh are present, limit the
extent of the tumor contraction. Second, in reality, part of the
tumor is brain tissue that has been invaded and not simply
displaced by the tumor. This paper does not address the very
complicated issue of estimating how much tissue was invaded
and how much of it was displaced. This is one of our future
goals.
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(a) (b) (c) (d)

Fig. 3. A demonstration of the limitations of the relatively simpler contraction method, and corrections to the contraction results. The growth of a tumor
(a) was simulated based on a normal MR image (b). The tumor was then contracted, but the unrealistic deformation of (c) was obtained. This is because the
brain with the tumor is in a strained condition, which is ignored during a simple contraction of the tumor (since, in reality, this strain would be unknown).
(d) The image shows a correction obtained by manually outlining points along the ventricular boundaries and using these outlines in conjunction withthe
elastic warping to correct the image. This corrected image can now be used in a normal-to-normal atlas-matching procedure, followed by the simulation
of the tumor growth via the nonlinear regression scheme, described in the paper.

If the stress distribution within a brain with a tumor (as
well as the growth model) were known, then the process of
tumor growth could be precisely reversed by relaxing the stress
applied by the tumor and letting the normal tissue return to
its undeformed state. However, this is not the case in reality.
Therefore, we have to rely on certain assumptions, which in
our model are the following: 1) zero initial stress throughout
the brain and 2) a free strain within the tumor, which causes
a uniform contraction. By free strain, here we mean that we
would get this strain only if the material was completely free
to contract. In our case, the resulting strain will also depend
on the stiffness of the surrounding environment, as well as the
mechanical properties of the tumor itself. In order to model the
contraction of the tumor, the sign of the strain termis nega-
tive. Typically, we use values of in the range 0.6 to 0.9,
inside the tumor, which tends to reduce its average diameter
to approximately two fifths to one tenth of the original size.

2) Nonlinear Regression:In principle, the transformation
resulting from the contraction of the tumor can be inverted,
yielding the transformation describing the growth of the tumor.
This would provide an approximate solution. However, such
an approach would have certain drawbacks. One drawback
stems from the fact that the brain is assumed to have zero stress
in its tumor-bearing state. Therefore, unrealistic estimates of
the patient’s undeformed anatomy can be obtained during the
tumor contraction process, as shown schematically in Fig. 3.

Thus, we have developed a method for directly modeling the
expansion of the tumor, which we describe in this section. We
are particularly concerned with determining two parameters:
the origin of the tumor and the level of strain,, that is
required for the tumor expansion. We determine these optimal
parameters via a nonlinear regression method. What drives
this nonlinear regression scheme is a number of distinct
anatomical features. In the experiments herein, we have used
points along the boundaries of the tumor and the ventricles.
However, features such as the sulci and the boundaries of
subcortical structures can also be incorporated. The optimal
set of parameters (tumor position and expansion strain) is the
one which results in a deformation of the patient’s brain that

Fig. 4. At each regression step, computational results are compared to
the tumor and ventricles (experimental) shapes in the patient image. The
error between these shapes is minimized through the regression process,
using sample points defined on the boundaries of the tumor, the ventricles,
and the brain parenchyma. The variablesyyy; ppp and xxx are vectors of these
point coordinates in the original patient images, the corresponding pre-tumor
coordinates, and the corresponding (computed in current step) deformed
coordinates, respectively. The vectorqqq holds the parameters to be optimized.

is most similar to the one that has been observed on the set of
points mentioned above. Fig. 4 is a schematic of the regression
process and shows how the difference in the computed versus
experimental shapes of the ventricles and the tumor is used to
drive the minimization process.

The nonlinear regression is implemented using ABAQUS
and the Marquardt algorithm [31], [32]. The Marquardt al-
gorithm is used for the least squares estimation of nonlinear
parameters. It performs the estimation by using an optimum
interpolation between the steepest descent (gradient) and the
Taylor-series methods. The interpolation is based upon the
maximum neighborhood in which the truncated Taylor series
gives an adequate representation of the nonlinear model. Thus,
it overcomes the slow convergence of the steepest-descent
method and the divergence of successive iterates of the Taylor-
series method. Our Marquardt implementation is based on a
public domain program by Shrageret al. [33].

Consider a number of points , defined on the
boundaries of the tumor, the ventricles, and the brain
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parenchyma in the patient’s images (deformed anatomy).
Additional points identified on anatomical features, such as
sulci and gyri, can also be included. Let the position of these
points in the estimate of the patient’s undeformed brain be

. These points lie on the patient’s images resulting
from the tumor contraction and whatever further correction is
applied. Let, also, be a parameter vector, i.e., a vector holding
the values of the and coordinates of the tumor origin and
the value of the tumor strain parameter. Finally, let
be the position to which a point in the patient’s undeformed
images is mapped to, via the tumor growth transformation that
depends on the parameter vector. Our objective is to find
the parameter vector that minimizes the following objective
function:

(8)

Our initial estimate for consists of the coordinates of the
center of area of the contracted tumor and of an expansion
strain value , which may be determined from the size of the
tumor. During each iteration, is updated by the Marquardt
method. However, certain limits are placed on the maximum
allowable steps for each of the three parameters in. Currently,
all three parameters are only allowed to have a maximum
relative change of 0.5. This precludes large steps in the
parameter values that might throw off either the automated
meshing for the case of theand centroid coordinates, or the
rather sensitive nonlinear solution for the case of the expansion
strain. When a new value ofis determined, the finite-element
module is called to update the transformation and hence
reevaluate the objective function and the gradient of .
Clearly, this is a very costly procedure. For this reason, in our
current work we have used only three parameters forOur
method, however, can be applied more generally, depending
on the available time frame and computational machinery.

Application of the routine is straightforward with one excep-
tion. The value of the parameter increases that are used by the
regression for finding the numerical Jacobian with a forward
differences method must be large enough to accommodate
the approximate nature of the finite-element solution. This is
especially true in our case where the finite-element mesh may
be different in each iteration, due to some idiosyncrasies of the
meshing software QMG. Merely a change in the finite-element
mesh may produce some change in the deformations, even
though no other parameters have been changed. An increase
equal to the product of an empirical constant 0.01, multiplied
by the value of the parameter, was found sufficient to produce
good results in our work.

F. Reconstruction of the Deformed Image

The solution to the procedure described in the previous
section is a deformation vector field . We then form a
deformed image via an interpolation scheme, as explained
next. First, we scale the finite-element data to the original
image size, to facilitate image creation. For each deformed
finite element, we create a grid with subdivisions no larger
than the pixel resolution of the image. For each grid point, we

use standard finite-element shape functions to calculate both
the undeformed and deformed points that correspond to it. The
final step is to give the intensity of the nearest undeformed
pixel to the corresponding nearest deformed pixel. In this
way, we produce a deformed image that corresponds to the
finite-element deformation, applied to the undeformed image.

G. Finite-Element Convergence Study

The convergence of the finite-element solution is tested as
follows [34]. A rather coarse mesh is first created with approx-
imately 150 nodes. The mesh is then refined by subdividing
each element into four smaller elements. The same procedure
is repeated one more time, to produce a total of three meshes of
increasing density. The nodal values for the displacement solu-
tions, given by the three meshes, are then compared to estimate
model accuracy and convergence. The displacement vector

(written as a long vector
being the number of nodes) from the finest mesh is considered
correct and each of the other two displacement vectors
is compared to it to calculate the error vector :

(9)

The root mean square of this error vector gives a discrete
measure of the error norm for the coarse element mesh

(10)

where is the size of the vector . We then plot the
results in a logarithmic scale to observe the convergence rate.

H. The Tumor Region

For the tumor expansion part we use a higher mesh density
in the tumor region, compared to the rest of the brain tissue,
since we expect large deformations in that region. We also
have to deal with two more problems in that area. First, to
avoid problems with elements next to the tumor being overly
distorted, we force our mesh generator to produce elements
of a radially longer size by creating the outer mesh buffer, an
extra region around the tumor that is assigned a relatively low
mesh density (see Fig. 1). Second, we create the inner mesh
buffer, a region smaller than the outer mesh buffer region, also
enclosing the tumor, which helps avoid having large elements
next to the tumor boundary. For technical reasons, the strain
was applied as a nodal variable rather than an element variable.
Thus, by applying the strain on the nodes on the interior, as
well as on the boundary of the tumor area, we inadvertently
apply the same strain on parts of the elements that surround the
tumor and have common nodes with the boundary. Therefore,
in the case that these elements happen to be large in size, that
would indicate that we have applied the expansion on a larger
area than we had intended. To reduce this problem, we create
a slightly enlarged area with a fixed radius of usually 1.1 times
the radius of the tumor with appropriate mesh size properties,
in order to have small elements in that area.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. A simulated tumor case. (a) The original image with the simulated tumor seed. (b) The finite-element mesh. (C) The deformed mesh due to a uniform
expansion of the tumor seed to approximately three times the original diameter. (D) The deformed image recreated, as explained in Section II-F. (E) The
contracted image (by a uniform strain of�0:66). (F) The image produced by the nonlinear regression results.

III. RESULTS

In our first experiment we tested our algorithm on simulated
images. In particular, we placed a tumor seed in a normal
MR image [Fig. 5(a)], and we applied our expansion model to
create an MR image with a tumor [Fig. 5(d)]. The size of the
tumor seed (about 1-cm diameter) was such that a reasonably
sized tumor could be simulated by seed expansion, without
the need for finite-element remeshing. The expansion strain
was four. Contact elements were placed in the right lateral
ventricle (left in the image), in order to avoid self intersections.
After the data extraction and mesh creation phase, explained in
Section II-C, a mesh is obtained. We refer the reader to panel
(b) of Fig. 5 [Fig. 5(b)]. By running ABAQUS with the loads,
material properties, and boundary conditions, we obtained the
deformed configuration shown in Fig. 5(c). As explained in
Section II-F, application of the finite-element deformation map
to the original image of Fig 5(a), allowed us to reconstruct the
deformed image depicted in Fig. 5(d). The simulated tumor
of Fig 5(d) was then treated as the starting point for applying
the contraction part described in Section II-E1. Fig. 5e was
produced after we applied a contraction strain of0.66, by
trial and error, so that the resulting contracted tumor had a
size within a 2% relative error of the original tumor seed
of Fig. 5(a). Ideally, the difference between Fig. 5(e) and

(a) should be as small as possible. Fig. 5(f) is created by
application of the results from the nonlinear regression to
the contracted image of Fig. 5(e). There is a good agreement
between Fig. 5(d) and (f), which indicates that our model
behaves as expected.

As we mentioned earlier, the primary reason for first sim-
ulating a tumor growth, rather than using a patient tumor
image, was to actually test our method since we knew the
exact position of the original tumor seed [Fig. 5(b)]. This
testing is shown in Fig. 6, which displays the seed and
tumor configurations for the true, as well as the contraction
and regression, results. Only the area around the tumor and
ventricles is shown for clarity. In particular, the solid lines
represent the true configuration, the dashed lines represent the
contraction results, and the dotted lines represent the regression
results. The smaller circular region on the left is the tumor
seed, while the larger one is the tumor. Note that both the
estimated tumor seed (dotted) as well as the contraction tumor
seed are very near the true tumor seed (solid line).

Table I gives representative results for the simulated regres-
sion case. We observe a very good agreement between the true
and the estimated parameters. The guess for theand coor-
dinates is based on the contraction results, which seem to give
a very good guess as to these parameters. The expansion strain
true value of 2.4 was estimated to be 2.42, with a guess of 0.6.
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Fig. 6. Comparison of normalization results by using the contraction part
alone versus the addition of the regression part. Shown are the tumor seed
and tumor (small and large approximately circular shapes on our left) and the
ventricles (on our right) in their pre-tumor and tumor state. The contraction
results are shown in dashed lines, while the regression results are shown in
dotted lines. The simulated experimental data are in solid lines. Note that, as
explained in Section II-E2, the pre-tumor ventricle state is the same for both
the contracted and regression parts.

TABLE I
REGRESSIONRESULTS FOR THESIMULATION EXAMPLE OF FIG. 5.
THE THREE PARAMETERS ARE THE x AND y COORDINATES OF

THE TUMOR SEED CENTER AND THE EXPANSION FACTOR

In our second experiment, we demonstrated our tumor
growth model on two MR images from a patient who under-
went radiation therapy that almost eliminated the metastatic
tumor, as shown in Fig. 7(a) and (b). Fig. 7(a) is the image
before the irradiation, with the tumor visible in the right
(left in the image, according to the radiology convention)
caudate nucleus. Fig. 7(b) shows images of the same patient
six months after irradiation, with only remnants of the tumor
visible. Note that the volume containing this image was rigidly
registered (through use of the automatic image registration
(AIR) package [35]) to the volume of Fig. 7(a). The image
of Fig. 7(b) was extracted from the same level of the brain
as in Fig. 7(a). Fig. 7(c) is the contracted image of Fig. 7(a),
after applying the uniform tumor contraction. The tumor-
seed estimate is shown as a small outline. In addition to the
tumor contraction, in this experiment we applied a uniform
contraction to the edema that had formed around the tumor.
The edema was determined from the-weighted images of
the same patient. Fig. 7(d) shows the-weighted image, in
which the edema appears relatively brighter. In contracting
the edema, we used a 20% uniform volume contraction. This
value was chosen to be approximately in the middle of the
range from 10 to 40%, since edema is known to result in a
10–40% volumetric expansion.

In order to compare our estimate of the patient’s brain
after the contraction of the tumor, as shown in Fig. 7(a), with
the truth, as shown in Fig. 7(b), we selected eight landmark
points, located at the center of the crosses. We defined these
landmarks in Fig. 7(a)–(c), and we then measured the Eu-
clidean distance between corresponding pairs of landmarks.
The sizes of the crosses are proportional to the distance
between the corresponding landmarks in each location. For
reference, we have added a cross at the bottom right of the
images, which represents a distance of 4 mm. A comparison
between Fig. 7(a) and (c) reveals a considerable reduction in
the landmarks’ distance, as expected. The actual values of the
distances recorded on these landmarks for Fig. 7(a) and (c) are
shown in Table II. Note that, in addition to landmarks situated
near the tumor, we selected two landmarks that are far away,
in order to demonstrate that part of the landmark distances
observed is due to the rigid registration between these images
and to human error in defining these landmarks.

Figs. 8 and 9 represent results of applying the contraction
and subsequent regression to an actual patient tumor-bearing
CT image and to the related atlas images. Fig. 8 gives the
contraction results. Fig. 8(a) shows the patient image with a
white outline denoting the tumor. Fig. 8(b) is the correspond-
ing finite-element mesh. Fig. 8(c) is the pre-tumor mesh after
the application of a contraction strain of0.60, which reduces
the size (area) of the tumor by approximately four times.
Fig. 8(d) is the superposition of the deformation mapping on
the original image.

Fig. 9 displays the atlas-matching results for the same
patient. Fig 9(a) is the original atlas, obtained from [36] after
digitization performed in our laboratory. Fig. 9(b) presents the
warped atlas using the method described in [30] and [29], by
using the overall size of the brain and ventricles. Fig. 9(c)
presents the image of Fig. 9(b), deformed by the simulated
tumor growth (from regression) to obtain an atlas that has the
characteristics of our patient tumor image. The vertical white
lines in both Fig. 9(a) and (b) have been added to illustrate
the deformations. Finally, Fig. 9(d) is the patient image with
a few of the structures of the atlas in Fig. 9(c) superimposed.
In particular, most of the thalamic structures, the putamen, the
claustrum, the cortex, and the ventricles have been included.

As explained in the Methods section, to test the convergence
of our finite-element simulations we plotted the error norm
against the number of nodes on a logarithmic scale (Fig. 10).
The problem on which we tested the convergence is the
expansion part of the Fig. 5 case. The results show a slope
of 0.9, which appears to be a reasonable convergence rate.
From the figure we see that for about 600 nodes, the error
is about 0.01, which means that for a 1-cm movement, an
average error of 0.01 cm would be observed. Since in most
of our simulations the number of nodes was more than 600,
we conclude that the finite-element accuracy is appropriate
for our purposes.

IV. DISCUSSION

We presented a framework for modeling the deforma-
tions applied to brain tissue by a growing tumor. The main
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(a) (b)

(c) (d)

Fig. 7. Verification using time series data. (a) Axial MR image with tumor intact. (b) Same patient image at a later time after tumor radiosurgery has
shrunk the tumor. (c) Our regression pre-tumor image. The crosses in (a) and (c) represent the distance in eight landmark registration between (a) and(b)
and (c) and (b). The error includes registration error and human error. Note that, overall, most crosses in (c) are smaller, which indicates that our regression
results improve the registration process. Crosses in the lower right corners represent an error of 4 mm. An initial 20%(�0:2) strain uniform reduction of
the edema was applied to the edematous region seen in theT2 weighted image of (d) (dark outline).

TABLE II
DISTANCES (mm) IN THE EIGHT LANDMARKS BETWEEN PANEL B [FIG. 7(b)]

AND PANELS A [FIG. 7(a)] AND C [FIG. 7(c)]. MEAN DISTANCES ARE

2.1 mmFOR PANEL A AND 1.4 mmFOR PANEL C, AN INDICATION

THAT THE NORMALIZATION PROCESSIMPROVES REGISTRATION

application is in the deformable registration of anatomical
atlases with images from patients with tumors, which facil-
itates the surgical or radiosurgical planning. At this stage of
our work, we have focused primarily on the modeling of the
nonlinearity in the elastic behavior of soft tissue, as well as
its inhomogeneity; on constraints imposed by the skull, the

tentorium, and the falx; and on the ventricular deformations
caused by tumors. Tumor growth has been based on a uniform
volumetric expansion, restrained by the surrounding anatomy.

Our framework for adapting a normal atlas to a brain with
a tumor can be thought of as a four-step procedure. First,
a rough estimate of the brain in its original, undeformed
state is obtained by contracting the tumor to (ideally) an
infinitesimal mass. In the second step, which is included here
for completeness but not yet used, a correction will be applied
to the results from the first step. In the third step, a normal-
to-normal deformable registration method is used. Finally, in
the fourth step, a regression scheme is employed to model the
tumor growth on the labeled patient image, which results in
the deformation of the atlas-labeled anatomy and, therefore, to
a labeling of the patient’s deformed anatomy.
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(a) (b)

(c) (d)

Fig. 8. Contraction results for an actual tumor: CT image from a patient (a) with the tumor highlighted. (b) and (c) show the undeformed and deformed
finite-element meshes. (d) The image created by deforming the image in panel A based on the finite-element mapping. Note that the slight mismatch between
the tumor and its outline in (a) was needed to combat imperfections in our automatic mesh generation scheme, due to the ventricle being very near the tumor.

The contraction of the tumor in the first step of this
procedure is described by a transformation. In principle, one
could apply the inverse transformation in order to obtain the
tumor expansion. However, there are certain limitations in
that approach, which were outlined in Section II-E2. Most
importantly, the lack of knowledge of the residual stresses
caused by the tumor growth often results in poor estimates of
the patient’s anatomy prior to the growth of the tumor. The
nonlinear regression scheme provides a way of remedying this
limitation in the future, by incorporating into the estimation
procedure and, in particular, in the vector, shape parameters
in addition to the tumor position and growth parameters which
we currently use. Therefore, it is a much richer method,
although it comes at the cost of increased computational
requirements.

Our model for tumor growth has two limitations. The
first stems from the fact that the tendency of the tumor to
grow might actually be influenced by the surrounding stresses
exerted by brain tissue. We note that in our current scheme,
there is a tendency for a uniform tumor growth. However,
the final tumor shape is not spherical, due to the surrounding
constraining stresses. However, it could be the case that the
tumor cells have the tendency to grow along minimal stress
directions. Currently, there is insufficient knowledge of exactly
how the tumor growth is affected by surrounding stresses.
However, when such knowledge becomes available, it could
be incorporated into our model. The second limitation stems
from the fact that we have not accounted for tumor infiltration.
An infiltrating tumor does not push away the brain tissue,
which is one of our fundamental assumptions in modeling the
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(a) (b)

(c) (d)

Fig. 9. Regression results for an actual tumor—atlas manipulations. (a) The original atlas slice. (b) The atlas slice warped in overall registrationwith the
patient’s image. (c) The deformation of the atlas in (b), based on the regression results of the experiment in Fig. 8. The white outline represents the position
of the tumor in the patient’s image. (d) Here we have superimposed some of the atlas structures from the deformed atlas of (c) on the image of Fig. 8(a).
(b) and (c) have been enhanced with the addition of a vertical white line to better visualize the midline shift changes.

deformation imposed by the tumor growth. In our future work
we plan to use the assumption that the tumor is comprised of
two parts, one which infiltrates and one that pushes away brain
tissue. Under simplifying assumptions, these regions could be
estimated within the regression framework.

In our demonstration experiment, which was based on tumor
recession after radiotherapy, we modeled the expansion due to
edema based only on rough estimates of volumetric expansion
taken from the literature. A more accurate modeling could be
achieved by including the degree of volumetric expansion of
the edematous region as an additional parameter of the vector
, to be estimated in the nonlinear regression scheme. More

sophisticated modeling of edema using poroelastic [18], [13]
material behavior may be of some advantage. However, at this

point it is unclear if that is the case for our particular appli-
cation, especially in view of the much higher computational
requirements of such models.

One of the limitations in the practical implementation of the
algorithm is that the tumor growth cannot exceed certain limits.
This is due to numerical instabilities of the finite-element
model arising when the elements become very distorted (espe-
cially around the tumor). In future work we plan to introduce
remeshing techniques, which will recreate the finite-element
mesh after a certain level of distortion.

Extension of these methods to 3-D will better model the
brain tissue deformation caused by a growing tumor, since
it will account for out-of-plane deformations, which cannot
be handled by our current 2-D model. There are several
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Fig. 10. Convergence study of our finite-element mesh. Plot of the discrete
L2 error norm against the number of nodes for successively finer meshes.
The slope of the log/log plot is approximately 0.9 (negative) which is in a
reasonable range, indicating good convergence of our solutions.

major challenges in 3-D. Most importantly, the computational
requirements rise exponentially, more sophisticated meshing
algorithms are needed, and the visualization of the results
becomes difficult.

The inclusion of different material properties for the gray
and white matter was done automatically by assigning each
finite element a stiffness, calculated from the value of the pixel
at the element centroid, as a first approximation. This assumes
that intensities for gray and white matter are easily differenti-
ated, which is the case for MRI. In addition, the tumor tissue
is often considerably harder than the rest of the brain tissue.
Unfortunately, we are not aware of any quantitative studies of
the elastic properties of tumor tissue, and we have resorted to
arbitrarily using the material properties of gray matter.

We have run all our computations on an SGI Onyx, us-
ing one of its R10000 processors and 1 Gb of RAM. The
contraction case runs in about 30 s to 2–3 min, depending
mostly on the number of nodes. In contrast, the regression
case is very computationally intensive since it requires the
repeated finite-element solution that, depending on the guess,
may range from about 15 finite-element analysis calls (around
15 min if 1 min per call) to more than 100 (100 min). The
CPU requirements are expected to become much higher for the
3-D implementation. In our 2-D examples the improvement in
estimation from the regression part was very small compared
to the estimation from the contraction part. If the same effect is
observed in our 3-D models, we might have to accept the less
sophisticated contraction in favor of its lower computational
demands.

In summary, we have shown the utility of a biomechanical
FEM model as a means of modeling soft tissue deformation,
and its application to the problem of deformable atlas regis-
tration. The technique has the potential to be used in several
forms of pre-operative planning.
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