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Abstract

Traditionally, researchers have used either off-the-shelf models such as COCOMO, or

developed local models using statistical techniques such as stepwise regression, to obtain

software effort estimates. More recently, attention has turned to a variety of machine

learning methods such as artificial neural networks (ANNs), case-based reasoning (CBR)

and rule induction (RI). This paper outlines some comparative research into the use of

these three machine learning methods to build software effort prediction systems.  We

briefly describe each method and then apply the techniques to a dataset of 81 software

projects derived from a Canadian software house in the late 1980s. We compare the
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prediction systems in terms of three factors: accuracy, explanatory value and

configurability. We show that ANN methods have superior accuracy and that RI methods

are least accurate. However, this view is somewhat counteracted by problems with

explanatory value and configurability. For example, we found that considerable effort was

required to configure the ANN and that this compared very unfavourably with the other

techniques, particularly CBR and LSR. We suggest that further work be carried out, both

to further explore interaction between the end-user and the prediction system, and also to

facilitate configuration, particularly of ANNs.

KEYWORDS: machine learning, neural nets, case-based reasoning, rule induction,

software cost models, software effort estimation, prediction systems.

1. Background to Research

Every day, businesses need to decide how to allocate valuable resources based on

predictions. Unfortunately whilst most practitioners recognise the importance of accurate

predictions of development effort for tendering bids, monitoring progress, scheduling

resources and evaluating risk factors, current estimation techniques are often highly

inaccurate. Traditionally, researchers have estimated software effort by means of off-the-

shelf algorithmic models such as COCOMO (Boehm, 1981) where effort is expressed as a

function of anticipated size; or have developed local models using statistical techniques

such as stepwise regression (Kok et al., 1990). As algorithmic approaches are often

unable to adequately model the complex set of relationships that are evident in many

software development environments, the results are frequently inaccurate. For example,

(Kemerer, 1987) and (Conte et al., 1986) frequently found errors of 100% or greater even
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after model calibration. More recently, attention has turned to a variety of machine

learning (ML) methods to predict software development effort. Artificial neural nets

(ANNs), case based reasoning (CBR) and rule induction (RI) are examples of such

methods (see Karunanithi et al., 1992; Gray and MacDonell, 1997; and Jorgensen, 1995).

This paper outlines some comparative research into the use of ML methods to build

software cost prediction systems.

2. Machine Learning (ML)

ML techniques embody some of the facets of the human mind that allow us to solve

hugely complex problems at speeds which outperform even the fastest computers

(Schank, 1982). ML techniques have been used successfully in solving many difficult

problems such as speech recognition from text (Sejnowski and Rosenberg, 1987), adaptive

control (Narendra and Parthasarathy, 1987; Hegazy and Moselhi, 1994) and markup

estimation in the construction industry (Hegazy and Moselhi, 1994). Recently ML

approaches have been proposed as an alternative way of predicting software effort.

This section describes three ML techniques that could be used in effort estimation:

artificial neural networks (ANNs), case-based reasoning (CBR) and rule induction (RI).

These techniques have been selected on the grounds that there exists adequate software

tool support and because of their contrasting vantage points.
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2.1 Artificial Neural Networks (ANNs)

ANNs are massively parallel systems inspired by the architecture of biological neural

networks, comprising simple interconnected units (artificial neurons). The neuron

computes a weighted sum of its inputs and generates an output if the sum exceeds a

certain threshold. This output then becomes an excitatory (positive) or inhibitory

(negative) input to other neurons in the network. The process continues until one or more

outputs are generated.

Fig. 1 A McCulloch and Pitts Neuron

Figure 1 shows an artificial neuron that computes the weighted sum of its n inputs, and

generates an output of 1 if this sum is above a certain threshold u. Otherwise, an output

of 0 results. Note that for back propagation algorithms a differentiable function, usually a

sink, is used instead. Feed-forward multi-layer perceptrons are the most commonly used

form of ANN, although many more sophisticated neural networks have been proposed.

The ANN is initialised with random weights. The network then ‘learns’ the relationships

implicit in a set of data by adjusting the weightings when presented with a combination of

inputs and outputs that are known as the training set. There are several training
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algorithms that can be used to train the network each having particular areas of speciality.

Back propagation is the most common learning algorithm that has been used by software

metrics researchers.

 Most studies concerned with the use of ANNs to predict software development effort

have focused on comparative accuracy with algorithmic models rather than on the

suitability of the approach for building software effort prediction systems. An example is

the investigation by Wittig and Finnie (1997). They explore the use of a back propagation

neural network on the Desharnais and ASMA (Australian Software Metrics Association)

data sets. For the Desharnais data set they randomly split the projects three times

between 10 test and 71 training (a procedure we largely follow in our analysis). The

results from three validation sets are aggregated and yield a high level of accuracy

(Desharnais MMRE=27% and ASMA MMRE=17%) although some outlier values are

excluded. We note, however, that other factors such as explanatory value and

configurability are equally important and also need investigation.

 

2.2 Case-based reasoning (CBR)

 CBR, originating in analogical reasoning, and dynamic memory and the role of previous

situations in learning and problem solving (Schank,. 1982), has received much attention

recently. Cases are abstractions of events (solved or unsolved problems), limited in time

and space. Aarmodt and Plaza  (1994) describe CBR as being cyclic and composed of four

stages :
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 i) retrieval of similar cases

 ii) reuse of the retrieved cases to find a solution to the problem

 iii) revision of the proposed solution if necessary

iv) retention of the solution to form a new case

 When a new problem arises, a possible solution can be found by retrieving similar cases

from the case repository. The solution may be revised based upon experience of reusing

previous cases and the outcome retained to supplement the case repository.

Consequently, issues concerning case characterisation (Rich and Knight, 1995), similarity

(Aha, 1991; Watson and Marir, 1994; Koldoner (1993), and solution revision (Leake

1996) must be addressed prior to CBR system deployment.

 

 Examples of successful CBR tools for software project estimation include: Estor, a CBR

system dedicated to the selection of similar software projects for the purpose of

estimating effort, and more recently, FACE and ANGEL. A brief description follows.

 

 Estor produced and adapted its own effort estimates using an analogy searching approach

and rules inferred from the estimator’s own protocols. The performance of the estimates

produced were comparable, in terms of R-squared values, to the expert’s own and far

superior to those obtained using the regression based techniques, Function Points and

COCOMO (see Vicinanza et al., 1990).
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 Bisio and Malabocchia (1995) developed FACE (Finding Analogies for Cost Estimation),

and assessed it using the COCOMO data set. In FACE all candidate analogies from the

case repository were given a normalised score  between 0 and 100 (100 being a perfect

match) relating their similarity to the target case. The user could indicate the threshold

(typically  = 70) over which cases can be used to form an estimate. If no cases were

found (i.e. no cases have scores above the  threshold score), then reliable estimation was

not deemed possible. FACE appears to perform very favourably against algorithmic

techniques.

 

 ANGEL (Shepperd and Schofield, 1997) is another estimation tool based upon analogical

reasoning. Here projects, or cases, are plotted in n-dimensional feature space and a

modified nearest neighbour algorithm employed to identify the best analogies. Again they

report results — derived from a number of datasets — of superior performance to LSR

models.

 

 Research shows that CBR systems can successfully be adapted to address the effort

estimation problem. CBR approaches appear to have some advantages over other

techniques, for example, effective functioning with small numbers of observations and in

problem domains which are not well understood, and overt reasoning processes.

 

2.3 Rule induction (RI)
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RI is a particular aspect of inductive learning in which algorithms produce rules as a result

of modelling. RI is based on:

 “... algorithms for induction which given a training set of examples, each of

which is described by the values of an attribute and the outcome, will

automatically build decision trees that will correctly classify not only all the

examples in the training set, but unknown examples from the wider universe of

examples of which the training set is presumed to provide a representative

sample.” (Kennedy et al. , 1997, p.147).

Inductive learning is then the process of acquiring general concepts from specific

examples. By analysing many examples, it may be possible to derive a general concept

that defines the production conditions.

In order to produce a set of rules, induction works on a randomly, or algorithmically

selected sub-set of the examples often referred to as the training set. These rules can be

tested on the remainder of the examples (the validation or test set) to assess how well

they represent the data. RI can be used for a range of problems where there exists a set of

suitable examples. Rules can be seen as decision trees where the leaf node contains the

predicted value or range of values. Numeric decision trees are generated by calculating the

average outcome for the set of cases being considered at each node.  An example fragment

of rules generated from the Desharnais dataset is depicted below.
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If AdjFPs >=266 and

If ExpPM <3 and

Transactions <165

Then effort =3542

One advantage of inductive learning over neural network learning is that the rules are

transparent and therefore can be read and understood.  In the above example we see that

adjusted function points is the first factor that is assessed followed by project manager

experience, the number of transactions processed and the year of completion.  Proponents

of RI argue that this helps the estimator understand the prediction and any underlying

assumptions upon which it is based. Moreover, the rules may be rephrased and provided

to offer a clearer explanation as to how a prediction has been made.

3. Method

In order to explore and compare the potential of the three machine learning techniques for

building effort prediction models we selected an existing project effort dataset. The

dataset comprised 81 software projects derived from a Canadian software house in the

late 1980s (Desharnais, 1989).  One reason for this choice was that this is one of the

larger publicly available datasets.  Our approach was to partition the dataset into training

sets and validation sets.  Clearly this is easier with a greater number of datapoints.
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Feature Explanation
Project name numeric identifier
Effort measured in hours
ExpEquip team experience in years
ExpProjMan project manager’s experience in years
Trans number of transactions processed
Entities number of entities
RawFPs unadjusted function points
AdjFPs adjusted function points
DevEnv development environment
YearFin year of completion.

Table 1: Summary of the Desharnais Dataset

The dataset comprised 10 (one dependent and nine independent) features as summarised

by Table 1. Four of the 81 projects contained missing values so were excluded from

further investigation. The procedure adopted was to randomly partition the dataset into a

training set of 67 projects and validation sets of 10 projects.  This was performed three

times yielding validation sets 1, 2 and 3 so as to help assess the stability of any

prediction systems generated.  In addition to ML techniques, we used a least squares

regression (LSR) procedure to provide a benchmark comparison, again model fitting on

the same training sets and testing on the remaining 10 projects.  Accuracy was determined

by mean magnitude of relative error MMRE statistic which provides an indication of the

spread of estimation error.  MMRE is also widely used in the literature so affords some

comparability with other prediction systems.

The ANN work was based on a simple multi-layer perceptron with a back propagation

learning algorithm using the software tool NeuFrame. In configuring the network we had
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to make design decisions concerning the topology, learning rate and momentum.  Each

configuration was also tested three times to assess the impact of different initial random

weights for the nodes.

The CBR prediction system utilised the estimation by analogy tool ANGEL. In the past

we have reported accuracy levels based upon a jackknifing procedure (Shepperd and

Schofield, 1997), however, again for reasons of comparability, we used the training set to

derive a regression model and the validation set to assess accuracy.  We also utilised the

facility within ANGEL to prune the feature set prior to using the validation set.  Given

that we only had nine features to contend with an exhaustive search was possible.

Finally, for the RI we used the data mining software package Clementine. Again we used

the same three training and associated validation sets for this analysis. In addition, we

carried out a preliminary investigation of feature set pruning but without automated

support.

4. Results

Method Validation
Set

MMRE

ANN 1 66%
ANN 2 21%
ANN 3 53%
CBR 1 43%
CBR 2 49%
CBR 3 80%
RI (with pruning) 1 41%
RI (with pruning) 2 141%
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RI (with pruning) 3 89%
RI 1 86%
RI 2 140%
RI 3 87%

LSR - 1 1 47%
LSR - 2 2 38%
LSR - 3 3 100%

Table 2: Comparative Accuracy of Machine Learning and LSR Techniques

Table 2 shows the accuracy levels (reported as MMRE) achieved for each technique using

the three validation and associated training sets.  It indicates considerable variation

between the three validation sets.  For example, RI ranges from MMRE=86% to

MMRE=140%.  Likewise the LSR ranges from 38% to 100%.  This is disappointing and

indicates all approaches are sensitive to changes in the training set and may not cope well

with heterogeneity.  The dataset contained a number of outlier values that contributed

significantly to this problem.

Technique Count MMRE
Mean Median Min Max

ANN 3 47 53 21 66
CBR 3 57 49 43 80
LSR 3 62 47 38 100
RI 3 104 87 86 140
RI (with
pruning)

3 90 89 41 141

Table 3: Summary Statistics of Prediction Techniques

In order to make comparisons between techniques, however, we provide the summary

data in Table 3. We observe a ranking that would suggest that ANNs seem to be the most

accurate technique and there is little to choose between CBR and LSR although there
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would seem to be greater variability with the latter which is clearly influenced by the

outlier value for validation set 3. By comparison RI is consistently the least accurate

technique.

Another observation is that there was a marked improvement — from 86% to 41% — for

the RI method when applied to validation set 1 achieved by starting to explore pruning

the feature set. It would seem that the algorithm does not deal effectively with the

categorical features indicating the type of development environment. When DevEnv is

removed there is striking improvement in the accuracy of RI prediction system.

Interestingly there is no similar improvement for validation sets 2 and 3 since the feature

was only used deep in the tree and so only had to deal with a very small number of cases.

As a consequence its removal had little impact upon the accuracy for the other validation

sets. Nevertheless, this highlights an issue that RI based prediction systems also need to

be configured prior to use.

Whilst on the surface it may appear that RI is the least accurate prediction technique it

must be appreciated that the comparison is somewhat inexact. We have already noted that

feature set pruning is a significant factor in achieving better levels of accuracy. ANGEL

performs this search automatically reducing the feature set to {AdjFPs, DevEnv} for

validation sets 1 and 2 and {Exp.Equip., AdjFPs, DevEnv} for validation set 3.

Parenthetically, we note that using the entire feature set has a significant impact reducing

average MMRE from 57% to 111% for the CBR technique. This suggests pruning is
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potentially an important aspect of configuring a prediction system. The comparison, may

be somewhat biased since very limited pruning was carried out for RI.

5. Discussion

This study has evaluated three machine learning techniques used to make software project

effort predictions.  These have been compared with LSR as a form of benchmark. We

believe that in order to assess the practical utility of these techniques it is necessary to

consider them within the context of their interaction with an end-user, for example project

managers. Software effort prediction has a number of distinct characteristics compared to

many other ML applications. First, training sets are comparatively small. Second, the

predictions generally have a high degree of significance to the estimator. This has the

consequence that interaction, or collaboration, between the prediction system and the

estimator is of great importance. The value of this interaction has been shown for

software effort prediction through empirical research that has indicated that end-users

coupled with prediction systems can outperform either prediction systems or end-users

alone (Stensrud and Myrtveit, 1998).

Allowing the end-user to participate in the prediction process may lead to two beneficial

effects. First, as noted above, it may enhance accuracy. It may be that users provide some

kind of sanity check on the systems, whilst the system allows them to manipulate far

more characteristics than would be possible manually. Second, it may increase confidence
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in the prediction. This consideration is also important in order to avoid the situation

where end-users reject a prediction system. Whatever mechanisms are being utilised, it is

clear that although accuracy is an important consideration, it is not sufficient to consider

the accuracy of prediction systems in isolation. Hence, in assessing the utility of these

techniques, we have considered three factors: accuracy, explanatory value and

configurability.

(i) Accuracy

In order to compare the accuracy of our predictive systems the same dataset has been

used throughout. In each case, the data was partitioned into a training set of 67 projects,

and a validation set of 10 projects.

When considering accuracy a number of indicators could be used, for example, the sum of

squares of the residuals, the percentage error, and the mean magnitude of relative error

(MMRE). In choosing to focus on the MMRE, we have decided that the potential spread

of error is of most significance to software projects. Examination of the results shows that

the ANN technique appears to perform best followed by CBR and LSR and lastly RI.

Interestingly, our results for the ANNs are less good than those reported by Wittig and

Finnie (1997), although this may be, in part, due to the impact of outlier projects in some

of the validation sets. We also note the impact of pruning datasets, and again the potential

for human involvement.
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(ii) Explanatory Value

One of the benefits of rule-induction is that it makes explicit the rules that are being used

by the prediction system. This, it is argued, can lead to insights about the data being used.

However, the partitions or branches can sometimes appear to be rather arbitrary and

reliance upon them as genuinely meaningful indicators may be unwise. In addition, our

experience of rule-induction methods suggests that they can be unstable predictors, and

possibly less accurate than other techniques.

CBR or estimation by analogy also has potential explanatory value, since projects or

ordered in degree of similarity to the target project. Indeed, it is instructive that this

technique demonstrates the effectiveness of user-involvement in performing better when

the user is able to manipulate the data and modify predicted outputs. However, although

this suggests an understanding of the data by the user, it is not clear to what extent this

understanding is enhanced by use of the toolset.

The neural nets used within this study do not allow the user to see the rules being used

by the prediction system. It is difficult to understand an ANN merely by studying the

net topology and individual node weights. If a particular prediction is in some sense

surprising to the end-user, it is harder to establish any rationale for the value generated.

By comparison, both RI and CBR appear to offer an advantage in this respect. However,

we note that it may be possible in principle to extract rules from ANNs, although this

beyond the scope of this paper.
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 (iii) Configurability

The third factor in comparing prediction systems is what we term configurability. In

other words how much effort is required to build the prediction system in order to

generate useful results. Regression analysis is a well established technique with good tool

support. Even allowing for analysis of residuals and so forth, little effort needed to be

expended in building a satisfactory regression model. Likewise the CBR needs relatively

little effort since the tool we utilised, ANGEL, automates feature subset selection. By

contrast, we found it took considerable effort to configure the neural net and it required a

fair degree of expertise. Although various sets of heuristics have been published on this

topic we found the process largely to be one of trial and error. For this reason, it is

difficult to see how ANN techniques could be easily be used within the project estimation

context by end-users. Lastly, whilst we found that whilst RI was not particularly onerous

this was at the expense of feature set pruning and consequently accuracy. An exhaustive

search of all possible subsets would be quite time consuming and with larger feature sets

impossible! Debuse and Rayward-Smith (1997) explore this issue further and discuss the

application of simulated annealing algorithms to the problem of feature set pruning.

Technique Accuracy Explanatory value Configurability

LSR 2= 1= 1=
ANN 1 4 4
CBR 2= 1= 1=
RI 4 1= 3
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Table 4: Comparison of LSR, ANN, CBR and RI Prediction Systems

We summarise the relative merits and demerits of the techniques in Table 4.  The numbers

indicate ranking where 1 is best and 4 worst. The table illustrates that if one adopts a

broader perspective than merely focusing upon accuracy, neural nets no longer become

the obvious choice for building prediction systems.

6. Conclusions

In this paper we have compared three machine learning techniques with a LSR model for

predicting software project effort. These techniques have been compared in terms of

accuracy, explanatory value and configurability. Despite finding that there are differences

in prediction accuracy levels, we argue that it may be other characteristics of these

techniques that will have an equal, if not greater, impact upon their adoption. We note

that the explanatory value of both estimation by analogy (case-based reasoning) and rule

induction, gives them an advantage when considering their interaction with end-users. We

also have found that problems of configuring neural nets tend to rather counteract their

superior performance in terms of accuracy. Clearly there is a need for further

investigation, particularly in finding appropriate configuration heuristics for neural nets.

Whilst some heuristics have been published (e.g. Walczak, and Cerpa, 1999), we

unfortunately did not find them to be of great value for this particular prediction task.
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Nevertheless, we believe that these ML methods warrant further investigation,

particularly to explore under which conditions they are most likely to be effective.
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