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Abstract: Let K be a compact, connected Lie group alid its complexification. |
consider the Hilbert spadeL? (K¢, v;) of holomorphic functions introduced in [H1],
where the parameteris to be interpreted as Planck’s constant. In light of [L-S], the
complex group<c may be identified canonically with the cotangent bundl&ofJsing

this identification | associate to eadh € HL?(Kc,v;) a “phase space probability
density.” The main result of this paper is Theorem 1, which provides an upper bound on
this density which holds uniformly over alf and all points in phase space. Specifically,
the phase space probability density is at mgg@=t)™", wheren = dim K anda; is

a constant which tends to one exponentially fast@nds to zero. At least for smaill

this bound cannot be significantly improved.

With ¢ regarded as Planck’s constant, the quar{@ty) " is precisely what is ex-
pected on physical grounds. Theorem 1 should be interpreted as a form of the Heisenberg
uncertainty principle fol<, that is, a limit on the concentration of states in phase space.
The theorem supports the interpretation of the Hilbert spaté (K¢, v;) as the phase
space representation of guantum mechanics for a particle with configuration/Space

The phase space bound is deduced from very sharp pointwise bounds on functions
in HL? (Kc,v;) (Theorem 2). The proofs rely on precise calculations involving the heat
kernel onK and the heat kernel oR ¢/ K.
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1. Introduction

The classical Segal-Bargmann space [B, Sel-3] is the space of holomorphic functions
F onC" satisfying

1FIE= [ 1PEPnE d <o,

where ,
ve () = (wt) /2 e (Mt

Heret is a positive parameter. (This is the “invariant” form of the Segal-Bargmann space
in which the measure is constant in the real directions. See the appendix in [H1] for its
relationship to other forms.) We will denote this spatg? (C", v,), whereH indicates
holomorphic.

| wish to interpretHL? (C", ;) as the “phase space Hilbert space” for quantum
mechanics of a particle moving R™. In this caset is to be interpreted as Planck’s
constantf). There is a natural unitary map, called the Segal-Bargmann transform, which
connects this phase space Hilbert space to the customary “configuration space Hilbert
space’L? (R", dz). However, the transform is not directly relevant to the present paper.
A phase space Hilbert space is a natural and useful setting for semiclassical analysis [V,
P-U, G-P, T-W, C].

If we normalizeF’ € HL?(C", ;) so that| F'||, = 1, then

/ |F () v (2) dz = 1.
(Cn

The quantity\F(z)|2yt (2) is to be interpreted as a sort of “phase space probability
density.” Although other definitions of the phase density are possible, this one is nat-
ural in many respects. (See [H3].) The results of Bargmann [B, (1.7)], adapted to our
normalization, show that

IF () v (2) < (1) ™" 1)

for all F € HL?(C",v;) with |[F||, = 1 and for allz € C". The quantity(2rt)" =
(2rh)™ is the volume of a semiclassical cell in phase space. Thus (1) tells us fat if
a region of phase space whose volumg gnes the volume of a cell, then the particle
has probability at most of being in E. This is a form of the Heisenberg uncertainty
principle. The fact that the right side of (1) is independent oéflects the fact that the
group of translations of” acts in a projective unitary fashion 6aL? (C", v;). (See
[B, (3.5)].)

The purpose of this paperisto prove a similar result for a particle whose configuration
space is an arbitrary connected compact Lie graupn [H1] | construct an analog on
K of the Segal-Bargmann transform. (See also [H2, D, D-G, G-M, A, Hil-2].) Let
K¢ denote the complexification df (Sect. 2). The range of the generalized Segal-
Bargmann transform i&(L? (K¢, v,), that is, the space of holomorphic functioAson
K¢ for which

IFI2= [ 1F@F @ ds < .
Kc
Heredg is Haar measure o ¢ andv; is (Sect. 2) the heat kernel dti: / K, viewed as a

K-invariant function onK¢. (More precisely, this space is the image of fgnvariant
form C, of the generalized Segal-Bargmann transform [H1, Thm. 2].) | wish to interpret
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HL?(Kc, v;) as the phase space Hilbert space for a quantum particle with configuration
spacek.

The usual phase space for a particle with configuration spaéethe cotangent
bundle of K, T*(K). In Sect. 3, we will discover a canonical diffeomorphigrhetween
T*(K) and the complex groufc, obtained by means of the results of Lempert and
Szke [L-S, Sz1-2] or the largely equivalent results of Guillemin and Stenzel [G-S1-2].
For eachF € ‘HL?(Kc,v;) with ||[F||, = 1, the associated phase space probability
density is

IF(9) i (9) 0 (9),

whereo is the “Jacobian” ofp. Letn = dim K. The main result of this paper (Theorem
1) is that for anyF" in HL? (K¢, v;) with || F'||, = 1, the phase space probability density
satisfies

IF(9) v (9) 0 (9) < ar 2mt) ™, )

whereq, is a constant that tends to one exponentially fagtasds to zero. In particular,

for each fixedt there is a bound on the phase space probability density that holds
uniformly over all F and all points in phase space. | prove that, at least for smthlé
bound (2) cannot be substantially improved.

The optimal bound for the left side of (2) is a hon-constant functiap given in (6)
below. This non-constancy reflects the fact thatK) is less symmetric tha@i™. Unless
K is commutative there is no obvious transitive group of canonical transformations of
T*(K); in particular, the symplectic structure diic obtained via®d is neither left-
nor right-invariant. Nevertheless, the right side of (6hé&arly constant. According to
Theorem 1, it is bounded above by a constant fot alid bounded below by a constant
for smallt, and the ratio of the upper and lower bounds tends to one exponentially fast
ast tends to zero.

Theorem 1 supports the view thBtL? (K¢, v¢) is the “right” phase space Hilbert
space for a quantum particle with configuration spacé his view is also supported by
the inversion formula in [H2], which says (roughly) that the configuration space wave
function can be obtained from the phase space wave function by integrating over the
momentum variables.

As explained in Sect. 4, the phase space density is bounded by the product of three
guantities—the function,, the “Jacobian” of the mag, and a certain analytic continu-
ation of the heat kernel oA". Gangolli [G] gives an exact formula fo;, the Jacobian
of @ can be computed exactly, and the analytic continuation of the heat kerr€l on
can be estimated by analyzing the Poisson summation formula of Urakawa [U]. When
we multiply a miracle occurs: everything cancels except for the physically expected
quantity(27t) ™", times a function which tends to one uniformlysends to zero. The
miraculous nature of these cancellations suggests that some more general principle is at
work.

The results of [H1] and [L-S] carry over to the case of compact symmetric spaces.
(See[H1, Sect. 11]and[Sz1, Thm. 2.5].) However, the present paper relies on heat kernel
formulas which hold only in the group case. | conjecture that some analog of Theorem
1 holds for general compact symmetric spaces.

| thank Ping Feng for helping me to understand the nagnd Chris Herald for
inspiring me to use the Fourier transform in the proof of Proposition 3.
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2. Preliminaries

The setup is as follows. We It be an arbitrary compact connected Lie group with
Lie algebrat. We fix an inner product, ) on ¢ which is invariant under the adjoint
action of K. This inner product determines a bi-invariant Riemannian metrik owe
will let dx denote Haar measure éfnormalized to coincide with Riemannian volume
measure. With this normalization the volumeFfeed not equal one.
Let A denote the Laplace-Beltrami operator associated with this Riemannian metric.
The heat kerneb, at the identity onkK is defined by the conditions that satisfy the
heat equation
dp 1
- = 7A
a 27"
and that
im, [ (@) (@) o = £ 2
t—0 K

for all continuous functiong on K. For eacht > 0, the heat kernel is @, strictly
positive function onk which satisfies(,. p; (x) dx = 1.

Let K¢ be the complexification oK. (See [H1, Sect. 3] for the definition.) Théf:
ista connected complex Lie group whose Lie algéhriz the complexification of, and
which containsK as a subgroup. For example,Af = SU (n), then K¢ = SL (n; C).
The inner product ol extends to a real-valued inner producttersatisfying

(X1 +1iY7, Xo +iY2) = (X1, Xo) + (Y1, Y2)

for X, Y, € & This inner product determines a left-invariant Riemannian metric on
Kc. We will let dg denote Haar measure &ft- normalized to coincide with Riemannian
volume measure.

As proved in [H1, Sect. 4], the heat kerpehas a unique analytic continuation from
K to Kc¢. The “reproducing kernel” described in Sect. 4 is expressed in terms of the
analytic continuation op;.

The quotient spac&c/K is a manifold with a transitive left action d&¢. The
tangent space ¢/ K at the identity coset can be thought ofias- €. There exists a
uniqueK¢-invariant Riemannian structure dtic /K which at the identity agrees with
our inner product ont C ¢c. We will let v; be the solution to the equation

dv 1
P

subject to the condition that

im [ f ) m) dm = £ (<)
t—0 K([;/K
for all continuous functiong of compact support. Herén denotes Riemannian volume
measure and\ the Laplace-Beltrami operator dkic /K. The functiony, is positive
andC* and satisfie§ v; (m) dm = 1.

We will think of v, as a righti -invariant function onK¢, one which turns out to
be left-K -invariant as well. The normalization of as a function ork¢ is

/ v (9) dg = Vol (K).
Ke

C
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This is proved in Lemma 6 in Sect. 4. This normalization guaranteesttaat defined
in this paper coincides with; as defined in [H1, Thm. 2], since the functippin [H1]
integrates to one. An explicit formula fof (¢), due to Gangolli, is given in (11) below.

The spacé{L? (K¢, v;) will denote the space of holomorphic functioA'son K¢
satisfying

| 1P@F o) dg <.
The norm in this space will be denotdld”’||,. An explicit formula for the measure
v¢ (9) dg in natural coordinates is given in Lemma 5.

We will use the standard machinery for compact Lie groups. (See [B-D].J Limt
a maximal torus ik, andt its Lie algebra. Using the inner product éirestricted to
t) we will identify t* with t. Let R C t be the real roots, that is, the non-zeran t for
which there exists a non-zero ¢ £c with

[H,X]=i(a,H)X

forall H € t. Let R* be a set of positive roots and |ebe half the sum of the positive
roots. LetWW be the Weyl group. Lel” C t be the kernel of the exponential mapping
for t. Let w denote the polynomial ohgiven by

m(H) = H (o, Hy .

a€R*

In light of [B, V.(4.10)], 7 is alternating with respect to the action of the Wey! group.
We will use the polar decomposition féfc, which states that every € K¢ can
be written uniquely in the forng = 2ze?, with 2 € K andY < ¢. In fact, the map
& K xt — K¢ given by® (z,Y) = ze? is a diffeomorphism. (See the proof of
Lemma 12 in [H1, Sect. 11].) Since eveYy € £ can be moved inte by the adjoint
action of i, everyg € K¢ can be written ag = ze'fy, with 2,y € K andH € t.
While this decomposition is not uniqu#, is unigue up to the action of the Weyl group.

3. The Complex Structure on Phase Space

A phase space probability density should be a positive function on phase space (that
is on the cotangent bundlg*(K)) which integrates to one with respect to the natural
phase volume measure. In Sect. 4 we will associate such a probability density to each
F € HL?(Kc,v:) with ||[F||, = 1. The probability density depends on an identification

of K¢ with T*(K). In this section we will discover the “right” such identification.

We may identify the cotangent bundlg*(K) with K x £ by means of left-
translation, and then witR" x ¢ by means of the inner product én(Under this identifi-
cation, the phase volume measure is simply Haar measuketiones Lebesgue measure
ont. See Lemma 4.) We then use the diffeomorph&mi x ¢ — K¢ of Sect. 2 given
by

O(z,Y)=xeY, 2eK,Y €t
Physically,z represents position and momentum. Since we are identifyirig*(K)
with K x ¢, we will regard® as a map from™(K) to Kc.

The map@ is natural in several respects. First, it takes the obvious copy of
T*(K) tothe obvious copy oK in K¢, anditintertwines the action df x K onT*(K)
with the action ofK’ x K on K¢. Second, if you usé to transfer the complex structure
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of K¢ back toT*(K), this complex structure fits together with the symplectic structure
of T*(K) to give you a Kahler manifold. (More on this below.) These two conditions
already severely constrain whatan be. Third, there is a canonical “adapted” complex
structureJ on T*(K), and, as explained below, is the unique biholomorphism of
(T*(K), J) with K¢ which restricts to the identity map & c 7*(K) onto K C Kc.
Last, the Jacobian d@f comes out in precisely the right way to give the physically natural
bounds on the phase space probability density.

The map® is a diffeomorphism of the symplectic manifdldr (K) with the com-
plex manifold K¢. We may useb to transfer the complex structure &t to a complex
structureJ on T*(K). The resulting complex symplectic manifold is in fact atder
manifold. This means that (J X, JY) = w (X, Y) and thatv (X, JX) > O for all tan-
gent vectorsX andY’, wherew is the canonical 2-form oi* (K). While the Kahlerness
of (T*(K), J,w) can be proved directly by differentiatigas in Sect. 4, the result also
follows from the results of Lempert-8ke and Guillemin-Stenzel [L-S, Sz1-2, G-S1-2]
which | now recap briefly.

Let M be areal-analytic Riemannian manifold di¢/) its tangent bundle. Since
M is Riemannian, the tangent and cotangent bundles are identified. A complex structure
onT (M) is said to beadaptedf for each geodesig in M the map

T +io — (y(1),02(7))

is a holomorphic mapping @ into 7" (M). If an adapted complex structure exists, then it
is unigue. Moreover, in this case if we identifyf (M) andT (M) using the Riemannian
structure, then the symplectic structurelgf(A1) and the adapted complex structure of
T (M) fit together to give a Bhler manifold. In general, an adapted complex structure
may not exist on all of" (M). If M is compact, then an adapted complex structure exists
at least on a tube of some radiusMfis a compact Lie group with a bi-invariant metric,
then an adapted complex structure exists on all oi/).

Now, the geodesics ikl (with a bi-invariant metric) are precisely the curves of
the form~ (1) = ze™, forz € K, Y < ¢ If we identify T (K) with K x ¢ via
left-translation, theify (7) , 0. (7)) = (ze™ ,0Y’). Thus

D (v (1), 00 (7)) = ze™Y 7Y = gV

This last expression clearly depends holomorphically enr +io. Thus the complex
structure orl" (K) induced by the mag is adapted. Equivalently, if is the unique
adapted complex structure @i (K), then® is a holomorphism of7*(K), J) with
K¢. So the fact tha® makesK into a Kahler manifold follows from, say, Cor. 5.5 and
Thm. 5.6 of [L-S]. (See also [Sz2, Sect. 4].)

4. Phase Space Bounds

| would like to interpretF’ € HL?(Kc,v;) as the phase space wave function for a
guantum particle with configuration spaEe Such an interpretation would be impossible
if £ were an arbitrary element df? (K¢, 1), for then F' could be supported in an
arbitrarily small region of phase space, violating the uncertainty principle. Fortunately,
Fisrequired to be holomorphic, which, as we shall see, imposes very precise conditions
on how concentrated' can be in phase space.

The natural “reference measure” &ir is not Haar measure but rather the Liouville
phase volume measure, which can be thought of as a measuk& doy means of
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the diffeomorphism® betweenT*(K) and K¢. In terms of the position-momentum
coordinategz, Y), phase volume measure is simply dY’, that is, Haar measure in
times Lebesgue measurelin(Lemma 4). Letr (¢9) denote the density of Haar measure
with respect to phase volume measure (Lemma 5). Thed ' farith | F||, = 1, the
guantity

\F (9)Pvi (9) o (9) 3)

is the phase space probability density and integrates to one with respect to phase volume
measure.

As on any reasonable?-space of holomorphic functions, the pointwise evaluation
mapsF — F (g) are bounded linear functionals ¢tL? (K¢, ;). Estimates on the
norms of these functionals will give us bounds on the density (3). Now, as a consequence
of [H1, Thm. 6], “evaluation ay” may be computed as

F@:/pﬂw%%mth @)

Here p,, refers to the analytic continuation pf; from K to K¢, and the mag — ¢*
is the unique antiholomorphic antiautomorphisnfaf with the property thag* = g1
for g € K. (In the notation of [H1, Sect. 3 = g~1.) The functionp,; (hg*) is called
the reproducing kernel or Bergman kernel.
For eachy, po; (hg*) is [H1, Thm. 6] holomorphic and square-integrable with respect
to h. So (4) tells us that the norm of “evaluationyéis equal to thel.? norm of p; (hg*).
But by (4),
" (hg*)p2: (hg™) vi (h) dh = pa; (99")
C
because,; (hg*) is holomorphic and square-integrable with respeét.t8o we obtain
the bound , ,
IF(9)]* < pat (997) IF ;- ()
This bound is sharp in the sense that for eatere is a non-zeré' for which equality
holds. We will obtain explicit upper bounds (for &Jland lower bounds (for smal) on
the functionpy: (gg*).
The pointwise bounds (5) lead immediately to sharp bounds on the phase space
probability density (3):

IF(9)]? v (9) 0 (9) < par (997) v (9) 0 (9) (6)

for all g and allF" with || F'||, = 1. The bound in Theorem 1 follows from the estimates
for p2: (gg*) in Theorem 2 together with explicit formulas for ando.

Theorem 1. Letn = dim K. For eacht > 0, there exists a constant such that for all
F € HL?(Kc,v:) with ||[F'||, = 1 the phase space probability density satisfies

IF (9) v (9) 0 (9) < ar (2mt) ™™

forall g € K¢.
For all sufficiently smalt > 0, there exists a positive constadntsuch that for each
g € Kc there isF' € HL? (K¢, v;) with || F||, = 1 such that

IF (9)*ve (9) o () > b, (2mt) ™.
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The optimal constants, andb; satisfy
lima; =limb, =1,
t—0 4 t—0 t
and the convergence is exponentially fast.

Theorem 2. Letn = dim K. For eachg € K¢, write g in the formg = ze!fy, with
x,y € K and H € t. Then for eaclt > 0 there exists a constanat such that for all
F € HL?(Kc,v) with | F||, = 1

H)
F 2< *) < |p|?t 4 —n/2 |H?/t L
[F ()" < pat (997) < arel? (4nt) ™% e 11 sinh(a, H)

aER*

Here R* is the set of positive roots, ands half the sum of the positive roots.
For all sufficiently smalt > 0, there exists a positive constantsuch that for each
g € Kc there isF € HL? (K¢, v;) with || F||, = 1 such that

2 . o2t —nJ2 |H|?/t _{a H)
= > :
[F(9)|” = pa: (997) = be e (4nt) ™"/ 11 sinh(a, H)

acR*
The optimal constants, andb; satisfy
lima; =limb, =1,
t—0 4 t—0 t
and the convergence is exponentially fast.

Remarksl) If K is commutative or ifX = SU (2), then the constart; in the
preceding theorems exists not just for small times, but for all timésvill point out
how this is proved after the end of the proof of Theorem 2. It is reasonable to conjecture
that this holds for allx.

2) The proof of Theorem 1 relies on a strong similarity between the formula (8)
for p2: (gg*) and the formula (11) for; (¢). This similarity is not coincidental. As a
consequence of [H2, Thm. B}, (9¢*), viewed as a function ok¢ /K, satisfies the
inverseheat equation. In fact it is possible to show that each term in (8) satisfies the
inverse heat equation. Thg = 0 term is (up to a constant) the solution to the inverse
heat equation obtained by formally replacinigy —¢ in the formula (11) for,.

3) The “averaging lemma” [H1, Lem. 11], together with Theorem 2, gives pointwise
bounds on functions in the spagé.? (K¢, ;) of [H1]. The bounds are the same as in
Theorem 2, except that andb; do not tend to one astends to zero. These bounds for
HL?(Kc, ;) are stronger than the bounds of Driver and Gross [D-G, Cor. 3.10], both be-
causeH| < |g|, and because of the exponentially decaying fagters?) / sinh{«, H)
in Theorem 2. On the other hand, the bounds of Driver and Gross hold in much greater
generality.

Proof of Theorem 2We will use an extension of Urakawa’s [U] Poisson summation
formula for the restriction of the heat kerngl to the maximal torug’. Recall thatl”
denotes the kernel of the exponential mappingfét* denotes the set of positive roots,
andp denotes half the sum of the positive roots. Foe I, lete (v) = expi (p, ), SO
thate (y) = £1. Then

pu (') = (2mt) /2 ele1/2 ( 11 1) S et m(H —)e 2

inl
wepr 2sin3 (o, H) o
(@)
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forall H € t for which e is regular. Herey = dim K andw (H) =[], c z+ (o, H).

If K is simply connected then(y) = 1 and (7) reduces essentially to the formula
in [U]. (There is a question about the overall constant, which will be addressed below.)
The general result can be reduced to the simply connected case as folld@ss If
commutative themR* is empty, s = 0,¢(y) = 1, andr (H) = 1; thus (7) reduces to
the usual Poisson summation formula for the heat kernel on a torus. A general compact
connected Lie group is of the fordid = (K3 x S) /N, whereK] is simply connected,
S'is atorus, andV is a finite subgroup of the center &f; x S. The Lie algebras oK
and.S are automatically orthogonal with respect to any invariant inner product, and so
the heat kernel o, x S factors, establishing (7) oR; x S. To get the heat kernel on
K one simply periodizes over the action®t But it is not hard to see thatifis in the
kernel of the exponential mapping féf then

H Siﬂ%(a,H—q/}:e(’y) H Sih%(mH).

acR* acR*

From this it is straightforward to see that periodization aVeyields (7) for K.

The formula in [U] contains an overall constant which is not computed explicitly.
However, because we are normalizing Haar measu#€ tmcoincide with Riemannian
volume measure, we are able to pin down this constant. To see that the constant in
(7) is correct, note that by Minakshisundaram’s expansion [U, (1.2), (1.7)] and my
normalization of the heat equatign, must satisfy

Vol (K) py (€) = (2rt) ™2 [Vol (K) + O (1)] .

Sop, (e) ~ (2rt)~™/?. But as proved in detail belows, (¢) is well approximated for
smallt by the limit asH — 0 of just they = 0 term in (7), which goes &@xt) /2.
(Let H — 0in (8) using Prop. 3.)

We wish to estimatg,; (gg*). As in Sect. 2, we writg = ze'y, withz, y € K and
H € t. Thengg* = ze'fyy=tetx=1 = 2e?H 1, Since the analytically continued
heat kernel is a class function, this means fatgg*) = p2 (¢*7). It is not hard to
show that (7) can be analytically continued term by term, so that we may simply replace
H by 2iH (andt by 2¢). The analytic continuation dff — 7|2 =(H—-~,H—7)Is
accomplished by taking a complex bilinear extensiof 0§, giving

“(2iH — ~,2iH —~)" = —4(H,H) — 4 (H,~) + (7,7) .

Now, everyy € I' is contained in the orbit unddi” of a uniquey, in the closed
fundamental Weyl chambet'. Letting W - v denote the orbit ofyy and doing the
algebra gives

pzt(ezm) - €|p|2t(47rt)—n/26|Hz/t<H (o, H) >

o sinh{a, H)

H— Lo) ittt
Z —Jol?/4¢ D oWy T ( 2i 7

®)

'yoel“m@

We have used the easily verified fact théi - o) = € (7o) for all w € W, and we have
multiplied and divided each term by(H) = [, .- (o, H).
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Strictly speaking this formula is valid only on the complement of the hyperplanes
(o, H) = 0. However, the complement of the hyperplanes is dense, so bounds that apply
there continue to hold for alt. We will show directly that the right side of (8) extends
to a smooth function on all df

We now need to estimate the sum

7 (H — L~) eilHM/t
S (o) e ol Enewa ™ H — 57) ©)

yelNC T (H)
in (8). We will show that (9) is a bounded function Affor all ¢, and that this function
tends to one uniformly irif ast tends to zero. Note that thg = 0 term is identically
equal to one and that all of the other terms are small for s8b it is easy to see that
(9) tends to one for each fixel not in any hyperplane. But because of the factor of
m (H) in the denominator, we will have to work much harder to get uniform estimates.

Proposition 3. There exists a polynomi&l, whose degree is equal to twice the number
of positive roots, such that

5 g7 (H — &) e
™ (H)

for all H andvp in tand allt > 0.

This proposition is the key technical result in the proof of Theorem 2. Its proof is
deferred to an appendix.

Using Proposition 3 we see easily that the sum (9) is a bounded functidfosfeach
t. If a; is the supremum ovell of this sum, then (8) gives us the first part of Theorem
2. Furthermore, thgg = 0 term in (9) is one and all the other terms are uniformly small

for smallt because of Proposition 3 and the factor éxpho\z /4t). It is easy to see,

then, that (9) tends to one uniformly fi ast — 0. Thus the infimund, over H will be
positive for all sufficiently smalt, giving the second part of Theorem 2. The constants
a; andb, tend to one ag tends to zero, and it is not hard to see that the convergence

is exponentially fast, essentially because éxp|yo|2 /4t> tends to zero exponentially
fast for each non-zergy. This gives the last part of the theorem. O

If K is commutative the®* is empty,r (H) = 1,e(y) = 1,and'nC =I'. Thus
the sum (9) is periodic. Buyty; (¢%') must be strictly positive, since it is the norm
squared of the “evaluation at functional, which is non-zero (e.g., with' = 1). So
the sum (9) is a strictly positive continuous periodic function, which must therefore be
bounded away from zero.

If K =SU(2) thene(y) = 1, I' may be identified with the integer lattice &,
andr is linear. The Weyl group i$1, —1} andC = [0, 00). So if y is a suitable linear
coordinate on, the sum (9) becomes

n=1 n=1

The first term is periodic and is essentially a heat kernel on the circle. It is therefore
strictly positive. The second goes to zerajas> co. Sopz, (€% is a strictly positive
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continuous function which is the sum of a strictly positive continuous periodic function
and a function which goes to zero at infinity. A simple compactness argument then shows
thatpz; (¢%') must be bounded away from zero.

Thus the constarit; in Theorem 2, and so also in Theorem 1, exists fot HIIK is
commutative or ifK = SU (2).
Proof of Theorem 1Recall from Sect. 2 that eaghe K¢ can be written in the form
xefy, with z,y € K andH € t and that, is bi-K-invariant. The formula for; is
the following

(o, H)

sinh{a, H)" (11)

Vg (xeLHy) = e—‘p‘zt (ﬂ-t)_n/z e_lle/t H
a€ER*

(See also Lemma 5.) IK is semisimple, then this is (up to a constant) a formula of
Gangolli [G, Prop. 3.2], where; is g, /4 in Gangolli’s notation. What Gangolli call. |
is 2|p| in our notation; see the expression fo{f) near the top of p.159 in [G].

If K is commutative, thei¢/K is isometric taR"™, and (11) is the usual Gaussian
heat kernel. In generall = (K3 x S) /N with K; semisimpleS a torus, andV a finite
central subgroup. It follows from the polar decomposition tRat/ K is isometric to
(K1c/K1) x (Sc/S). So (11) holds fork..

As in the compact case, there is a question about the overall constant in (11). The
constant can be verified as follows. By Lemma 5 below and our normalizatien of

Vol (K) = /K~ v (g9) dg = Vol (K)/eyt (eiy) oY) dY,

whereo is given explicitly in the lemma. Cancelling VEK) and lettingt — 0, we see
thatv; should satisfy

liLnO/Ez/t () o(Y)dy =1. (12)

The limit may be computed by making the change of varigbte Y//t and moving
the limit inside the integral. Since(0) = 1 and limy o (o, H) / sinh{a, H) = 1, (12)
becomes

w—"/z/e—lz‘z dz =1,
4

which is true. So the constant in (11) must be correct.

In the next three lemmas we will give an explicit formula for phase volume measure,
compute the Jacobian facter and verify that the normalization of, in this paper
is consistent with that in [H1]. This last point is necessary because we are using the
formula from [H1] for the reproducing kernel. Then to prove Theorem 1 we will simply
put everything together.

Lemma 4. Identify T*(K) with K x ¢ via left-translation and the inner product dn
Then the integral of a functiofi with respect to phase volume measure is given by

/K/Ef(x,Y) dz dY,

wheredzx is Haar measure ok’ normalized to coincide with Riemannian volume mea-
sure andlY is Lebesgue measure émormalized by means of the inner product.
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Lemma 5. If f is a continuous function of compact support, then
f@dg= [ [ @) deowyay,
K¢ K Je

whereos is an AdK -invariant function ort which satisfies

e 11435

for H € t.
The measure; (g) dg is given in(x, V') coordinates by

v (g) dg = e 171 ()2 =Y/t (V) da d, (13)

wheren (Y) is the Ad# -invariant function given by

o= T35
aER*

for H € t.

Lemma 6. Normalizing things as in Sect. 2 we have

/ v (9) dg = Vol (K).
Ke

C

Proof of Lemma 4If M is any Riemannian manifold, the phase volumeTon M)

may be computed by integrating over the cotangent spaces with respect to Lebesgue
measure (normalized by the inner product) and then integrating/elvesith respect to
Riemannian volume measure. To see this note that the phase volume measure is given
by integrating the Liouville 2-form

dg* A~ Ndg™ Adpy A -+ A dp,

where they's are local coordinates af and thep’s are the associated coordinates on
the cotangent spaces. But this is equal to

1
(Vgdg* A+ Adg™) A <\/§dp1/\~~/\dpn)

which corresponds to volume measure.®htimes normalized Lebesgue measure on
the cotangent spaces.

If we use the metric to identify™ (M) and7 (M), we get a similar statement on
T (M). The lemma is then just a special case of this general result, in which all the
tangent spaces t& are identified isometrically with. |

Proof of Lemma 5We have to compute the “Jacobian” of the m@ap K x ¢ — K¢
given by® (z,Y) = ze'Y. Now
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d

d . . .
y 3 (mesX7 Y) — xezYe zYesXezY
S

s=0 % s=0
(Lmef’y)* e—iadY (X)
(Lyeiv), (cosad” (X) —isinadr (X)).

Using the formula for the differential of the exponential mapping [He, Thm. 11.1.7]

d 1— efiadY
— D(x,Y +sX) = (L, — (X
ds o ($7 S ) ( Te ")* jadY (7' )
1 - cosadV .sinadY’
= G (g 0+ ().

Using left-translation o’ we think of the tangent space at each pointFofx ¢ as

£ @ t. Using left-translation ori(¢, we think of the tangent space at each poinfsef
astc =t @ t. Thus the differential of at the point(x, Y) is represented by the block
matrix

1—-cosad”
cosad” T
gb* (J}, Y) = SI% ad/ . (14)
—sinad”
ady”

The cotangent space at each poinkiox ¢ is ¢* & £*, which we identify withe @ ¢
via the inner product. Lefe; } be an orthonormal basis for the first copytaind{ f; }
an orthonormal basis for the second copy.dy Lemma 4, the Liouville form o x ¢
is

erN- - ANepn ANfi A A fo. (15)

The cotangent space at each poink@fis similarly identified witht €, and the 2-form

that gives Haar measure éft is also given by (15). Thus the densitpf Haar measure

with respect to phase volume measure will be given by the determinant of the matrix
in (14), which is evidently a function of" only. Since the blocks of (14) commute,

its determinant as ar2x 2n matrix may be computed by first taking the blockwise
“determinant,” which comes out to be sintathdY’, and then taking the determinant of
the result as an x n matrix. So

U(Y):det(smad/>.

ady”

Itis clear from this expression that(Y") is Ad-K-invariant, so it suffices to compute
oforY = H € t. Now, sind/0 = 1 whené = 0, so only the non-zero eigenvalues of
adH contribute to the determinant. But the non-zero eigenvaluesiéfaré of the form
i (o, HY, with o € R. Since sind/if = sinhd/6 we have

_ sinh{a, H) _ sinh(a, H)\?
con=I1 5= I ("0 )
a€ER a€ER
This is the formula we want.
Meanwhile, to get the formula (13) for theeasure/; (g) dg, we take the formula
for thefunctionw, (¢) and multiply byo (¢). Note that the exponentially growing factor
sinh{a, H) is in the numerator in the formula for the measuréy) dg. O
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Proof of Lemma 6The Riemannian volume measure Big /K is invariant under the
action of K. Haar measure oR ¢ pushed forward under the quotient mapgde/ K is
also invariant under the action &f;. It follows automatically that pushed-forward Haar
measure equals a constant times Riemannian volume measure. To establish the lemma,
we need to show that this constant is VAl).
Now, the quotient map takes the det= expit diffeomorphically ontoK¢ /K ; we
may thus identifyKc /K with P. Lemma 5 works just as well withe?¥ replaced by
ez, and so integration with respect to pushed-forward Haar measure amounts to

Vol (K) /f (™) o (Y) dY.
4

Meanwhile, under the identification dfc/K with P, the mapY — e?Y is the
geometric exponential mapping féfc /K, which is a diffeomorphism in this case. It
follows that integration with respect to Riemannian volume measure is given by

/E ()6 dy,

whereg is a positive density equal to one at the origin. The functipaado must differ
at most by a multiplicative constant; sing€0) = o (0) = 1, the constant is one. [

We are now ready to put everything together. We use formula (11) ftie formula
in Lemma 5 foro, and the pointwise estimates in Theorem 2. In the resulting bounds on

|F(g)\2yt (9) o (9), everything miraculously cancels, except for the constant, a factor

of (4rt)~"/2 from Theorem 2, and a factor ¢ft)~"/? from ;. These combine to give
you a constanta; or b;) times(2xt) ™", which is Theorem 1. [

5. Appendix

Proof of Proposition 3We may writet ast = ¢; @ a, wheret; is semisimple and is
abelian, in which case= t; @ a, wheret; is a maximal abelian subalgebratolf we
identify t* with t, then all the roots lie in;. Furthermore, we may writgy as~y; + 72,
with v; € t; andy, € a. Then the contribution of, to the expression in the proposition
is just a multiplicative factor of absolute value one. Sifgg < ||, there is no harm
in assuming is semisimple.

We will proceed by computing the Fourier transform, in the sense of tempered
distributions, of the fraction in the proposition. The Fourier transform of the numerator
is easily computed as a linear combination of derivativesfoinctions. To compute the
Fourier transform of the fraction we will compute the Fourier transform of the numerator
and then integrate, in a sense to be described below. The key result will be that the Fourier
transform of the fraction has compact support. (See Lemma 9.)

Let acone over R denote a set of the form

{zo+aroq +---+apayla; >0} (16)

with zg € t, whereR* = {ay, - - -, oy } is the set of positive roots. Analogously define
acone over R to be a set of the same form but with) < 0. The set (16) is the
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same agxo + a1 +- -+ + amouy, |a; > 0}, whereay, - - -, oy, are the positive simple
roots, which (since we assuriés semisimple) form a basis fér Every compact set is
contained in a cone ovét* and in a cone oveR~. The intersection of a cone ov&*
and a cone oveR~ is compact.

Definition 7. Supposeg’ € C° (t) and f is supported in some cone ov&f. Then for
a € R* define

Iaf(z)Z/(;oof(:zrtoz) dt.

The condition onf guarantees that the integral exists, since for all sufficiently large
t, z — ta will be outside the cone supporting Note also that ifr is not in the cone
supportingf, then neither is: — ta (¢ > 0). Thusl,, f will again be supported in a cone
overR". Itis easy to verify thaf,, f is C* and thatD, I, f = f, whereD,, denotes the
directional derivative in the direction. Itis also true that, D, f = f, sincel, D, f— f
must be constant along each line of the fdrm- ¢}, and is zero whenis large. Iff is
supported in a cone ov&*, then fora, 3 € R*, I, I3 f andlzl, f both make sense, and
must be equal becaugg and/z are two-sided inverses @1, andDg, which commute.

Of course, by reversing signs we can defing f for f supported on a cone ov&r .
Integration by parts shows that ffis supported on a cone ov&* andg is supported
on a cone oveR~, then

/ I f (@)g (@) do = / J (@) Iag () dr. (17)
t t

The integrals make sense because in both cases the integrand is supported on the inter-
section of a cone oveR* and a cone oveR ™.

Definition 8. LetT be a distribution supported on a cone ovét. Then fora € R*,
define a distribution, T" by

(IT, )= (T, 1-of)
forall f € C° (V).

Note thatl" is supported on a cone ovEt and/_,, f is supported on a cone ovBr .
The expressiofT’, I_, f) really meansT, ¢I_, f), whereg is any C> function of
compact support which is equal to one in a neighborhood of(TQmpsupp(Laf). If f
is supported outside a cone ovet, thensoid_, f. Thus the distributiod,, 7' will again
be supported on a cone ov&t. If T is aC* function, then by (17Y,T defined as a
distribution coincides witli,, 7" defined as a function. The resuitsD T = D, I, T =T
andl,IgT = Igl,T follow from the corresponding results for functions.

Lemma 9. LetT be acompactly supported distribution which is alternating with respect
to the action of the Weyl group. L& = {«;, - - -, o } be the set of positive roots. Then

S=IIn 1o, T

has compact support, and the convex hull of the suppdftisfcontained in the convex
hull of the support of .
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Proof. The distributiori” can be approximated, in the sense of distribution, by alternating
C* functionsT, such that every point in the support’df is within e of a point in the
support ofT". It suffices, then, to prove the lemma under the assumptioriithatan
alternatingC*® function of compact support.

Let I/ denote the convex hull of the supportBfIf f is anyC* function supported
in F, then it is easy to see that f will be supported inF if and only if

/ch(x+ta)dt=0 (18)

for all z. Let e and 3 be distinct elements aR*, and suppos¢, I, f, andls f are all
supported inE. Then

/oo Iof (v +ta) dt /O;/Ooof(x+tasﬂ)dsdt

h /OWAZf(x+ta—sﬂ)dtds
= 0.

Here Fubini applies becauseandg are distinct (hence non-parallel) elementgdf
so thatf (z + ta. — s0) is zero for all sufficiently large andt. Thus we see that, Ig f
also is supported ifv. Applying this argument repeatedly we see that i§ supported
in E, andI,, f is supported irF for eacha € R*, thenl,, - - - I, f is supported in&.

SinceT is alternating,T’ (sox) = —T1 (x), wheres,, is the reflection about the
hyperplane perpendicular ta It follows that for anya € R*, condition (18) holds, so
1, T will be supported inE. But then by the preceding paragraph, - - - 1,7 will be
supported inF. O

Now, sincer is homogeneous, the expression on the left side of Proposition 3 may
be written as
H 1 -/ H
2w ™ (% - Z%) expi <W’ %>
. .
(%)
Thus the supremum ovéf of this expression will be a function ef/+/t. So it suffices
to prove the proposition with= 1.

Sincer is alternating, the inner product is Weyl invariant, andinges over a Weyl
invariant set, we see that the numerator in the proposition,

N (H - 2%) expi ()., (19)

YEW 0

is alternating. Letl’ denote the Fourier transform of (19), in the sense of tempered
distributions. Therf is also alternating.
Now (19) can be expanded as a linear combination of at nfo$¥2 terms of the
form
<ai17 7> T <aizvﬁY> <aiz+1» H> T <aika> 62<H7’Y>7

with coefficients independent of and H. (Herek is the number of positive roots.)
Taking the Fourier transform of this gives an irrelevant constant times
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<O‘7?17’7> T <O‘i17’7> D(MM e Daik.a')”
whered, denotes a-function aty. ThusS = I, --- 1,, 7 is a linear combination of
terms of the form
(g, 7) -+ <O‘i177> Ioéil e Iailé :

Now, I, ---1,, 6 is a positive measure, spis a complex measure. By Lemma
9,5is supported orE whereFE is the convex hull of the support @f—that is, E is
the convex hull ofil” - ~v,. Let C; be the smallest cone ové&" containingE, C; the
smallest cone oveR~ containingFE, andP = C; N C5, so thatP is a parallelepiped.

There exists a constantindependent ofjy, so that dian{P) < ¢ diam(E) < 2¢ |vo|.
It is a straightforward calculation to see that the measure of th& seith respect to

the measurd,, - - Iy, d, is at most diantP)! < (2c |'yo\)l. Taking into account the

factors(a,,v) - - - (o, ) and the fact that < k, we see that the total variation norm
of S will be bounded by

const. (1 + |’yo\2k) . (20)
But if 7 denotes the Fourier transform, then
1
7 (H) F~1(S) = const. F~1(T) = const. Z (H — 57 ) expi (H,) .
yEW -vo L

But bothF—1(S) and.F 1 (T") areC* functions, so

Z'yGW-’YO T (H - 2%’7) expi (H,v)
w (H)

= const. F1(9), (21)

where all the constants are independenjofNhile the left side of (21) is defined only
whenr (H) # 0, we see that it extends ta’&° function on all oft.

The expression (21) together with the bound (20) on the total variatichgifes
the desired estimate. [
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