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Abstract

A simple conceptual formulation to compute seabed shear stress due to asymmetric
and skewed waves is presented. This formulation generalizes the sinusoidal wave
case and uses a variable friction factor to describe the physics of the boundary layer
and to parameterize the effects of wave shape. Predictions of bed shear stresses
agree with numerical computations using a standard boundary layer model with
a k − ε turbulence closure. The bed shear stress formulation is combined with a
Meyer-Peter and Müller-type formula to predict sheet flow bedload transport under
asymmetric and skewed waves for a horizontal or sloping bed. The predictions agree
with oscillatory water tunnel measurements from the literature.
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1 Introduction

Onshore sediment transport under waves remains largely unexplained. While
undertow and bottom slope effects are the principal agents for offshore trans-
port, several physical mechanisms for onshore transport have been identified
(see discussion by Henderson et al., 2004). Among these mechanisms, the ef-
fect of fluid accelerations associated with the shape of nearshore waves seems
to play a key role (e.g., Nielsen, 1992; Drake and Calantoni, 2001; Hoefel and
Elgar, 2003; Hsu and Hanes, 2004; Calantoni and Puleo, 2006).
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Nearshore waves are asymmetric and skewed. A wave with positive asymmetry
has a forward-leaning shape, with a steep frontal face and a gentle rear face. A
wave with positive skewness has a peaked, narrow crest and a flat, wide trough.
Nearshore waves have both positive asymmetry and skewness. As waves shoal,
they first become skewed. Once waves approach breaking and enter the surf
zone, they become strongly asymmetric.

Based on experimental observations of asymmetric waves by King (1991),
Nielsen (1992, Section 2.4.4) identified the importance of fluid acceleration in
asymmetric waves. For a forward-leaning wave, the onshore velocity increases
in magnitude faster than the offshore velocity, and the associated boundary
layer has a shorter time to develop. Thus, the onshore velocity generates a
thinner boundary layer and therefore a larger bed shear stress. To account
for this effect, Nielsen (1992) proposed an empirical formula that sets the
Shields parameter to be a sum of two terms. One term is a function of the
near-bed (free-stream) velocity and the other is a function of the near-bed
acceleration. The weighting of each term is determined by an adjustable model
parameter. Sediment transport is calculated using Meyer-Peter and Müller’s
(1948) bedload formula. Modifications of the Shields parameter formula were
later introduced by Nielsen (2002), to account for the turbulent behavior of
the boundary layer, and by Nielsen and Callaghan (2003), to account for
boundary layer streaming. In a recent contribution, Nielsen (2006) calibrates
the model parameter so that his sediment transport predictions agree with
the asymmetric laboratory wave data by Watanabe and Sato (2004).

Drake and Calantoni (2001) carried out computationally intensive discrete par-
ticle simulations of sheet flow transport in oscillatory flows, which supported a
different interpretation of the fluid acceleration effects. According to their in-
terpretation, differences in acceleration between the front and the back of an
asymmetric wave yield horizontal pressure gradients in the boundary layer,
which act on the near-bed fluid and sediment. To describe this effect, they
suggested the use of an acceleration skewness parameter, aspike = 〈a3〉/〈a2〉,
where a is the time series of the near-bed fluid acceleration and the angle
brackets denote a time average. Using this acceleration descriptor, Hoefel and
Elgar (2003) modified Bailard’s (1981) sediment transport model to include a
term that accounts for fluid accelerations and used this model to successfully
predict an episode of onshore bar migration. However, to achieve agreement
with observations, Hoefel and Elgar adjusted the acceleration parameters by
a factor of 5 relative to the values originally suggested by the discrete particle
model of Drake and Calantoni (2001).

Several studies of nearshore sediment transport rely on intensive numerical
simulations, such as discrete particle models (e.g., Drake and Calantoni, 2001;
Calantoni and Puleo, 2006), k − ε turbulence boundary layer models (e.g.,
Henderson et al., 2004; Holmedal and Myrhaug, 2006), and two-phase models
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(e.g., Hsu and Hanes, 2004; Liu and Sato, 2006). While these detailed models
provide valuable understanding of the nearshore transport processes, they are
too computationally demanding for most practical applications.

This paper presents a simple conceptual model to compute bed shear stress
under asymmetric and skewed waves. The model is physically based, free of ad-
justable parameters, and computationally efficient. The model is described in
Section 2 and validated against a computationally intensive standard bound-
ary layer model with a k−ε turbulence closure in Section 3. As Hsu and Hanes
(2004) concluded, sediment transport of coarse grains (which is bedload dom-
inated) can be accurately parameterized in terms of the seabed shear stress.
Therefore, accurate prediction of the bed shear stress suffices to compute bed-
load. In Section 4, predictions of bedload under asymmetric and skewed waves
based on our conceptual model are compared with laboratory measurements
in the sheet flow regime. In Section 5, we discuss the potential contribution of
suspended transport to the total transport.

2 Conceptual model of the seabed shear stress

The maximum bed shear stress under sinusoidal waves, τbm, can be written as
(Jonsson, 1966)

τbm =
1

2
ρfwsu

2
bm, (1)

where ρ is the water density, fws is the wave friction factor for sinusoidal waves,
and ubm is the maximum near-bed wave orbital velocity. For symmetric and
non-skewed waves, fws is assumed a constant determined by wave and sed-
iment characteristics. Based on the linearized boundary layer equations and
assuming a time-invariant, linearly varying eddy viscosity, Madsen (1994) ob-
tained an implicit equation for fws. According to Madsen (1994), the solution
of this equation can be approximated by the following explicit formulas:

fws =





exp (7.0X−0.078 − 8.8) for 0.2 < X < 102

exp (5.6X−0.109 − 7.3) for 102 < X < 104
(2)

with X = ubm/(kNω), where kN is the equivalent Nikuradse sand-grain rough-
ness of the bed, and ω is the wave radian frequency. The phase shift between
the bed shear stress and the near-bed wave orbital velocity, φτ (in radians),
can be approximated by (Madsen, 1994)

φτ =
π

60
(11− 2.0 log10 X) for 0.2 < X < 103. (3)
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Often, (1) is generalized to describe the instantaneous bed shear stress, τb(t),
as a function of the instantaneous near-bed wave orbital velocity, ub(t) (e.g.,
Madsen and Grant, 1976; Ribberink, 1998; Hsu et al., 2006):

τb(t) =
1

2
ρfwsub(t + lτ )|ub(t + lτ )|, (4)

where lτ = φτ/ω is the time lag between the bed shear stress and the near-bed
velocity.

In this paper, we extend this formulation to asymmetric and skewed waves.
The profile of the corresponding near-bed orbital velocity, ub(t), is character-
ized by the parameters uc, ut, Tc, Tt, Tcp, and Ttn, as illustrated in Figure
1.

t
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D
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Fig. 1. Near-bed wave orbital velocity of an asymmetric and skewed wave. Positive
velocity is directed onshore.

To extend (4) to asymmetric and skewed waves, the friction factor must vary
with time. Otherwise, a purely asymmetric wave with zero skewness would
lead to a non-skewed bed shear stress and yield zero net bedload transport,
which contradicts observations (e.g., Watanabe and Sato, 2004). The use of
a variable friction factor over the wave period is justified by examining the
physics of the boundary layer.

Consider the near-bed orbital velocity of an asymmetric and skewed wave,
ub(t), represented in Figure 1. When the near-bed orbital velocity turns on-
shore (point B), a wave boundary layer starts to develop. To be precise, this
development starts slightly before B, due to the time lag between τb(t) and
ub(t). By neglecting the velocity history before the zero velocity at B, the
development of the boundary layer from B to C can be assumed similar to
that induced by a quarter period of a sinusoidal wave of velocity amplitude uc
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and period Tcp. Therefore, the maximum shear stress near the wave crest can
be approximated by

τb,max =
1

2
ρfws,cu

2
c , (5)

where fws,c is the friction factor corresponding to a sinusoidal wave of pe-
riod Tcp and velocity amplitude uc. This friction factor is given by (2) with
X = (ucTcp)/(2πkN). Similarly, the phase shift at the crest, φτ,c, can be ap-
proximated using (3). The corresponding time lag is lτ,c = φτ,cTcp/(2π).

When the near-bed orbital velocity changes direction again (point D) the
boundary layer associated with the onshore velocity disappears. However,
shortly before this happens, a new boundary layer associated with the nega-
tive near-bed orbital velocity starts to develop. Analogous to (5), the minimum
shear stress near the wave trough can be approximated by

τb,min = −1

2
ρfws,tu

2
t , (6)

where fws,t is the friction factor corresponding to a sinusoidal wave of period
Ttn and velocity amplitude ut. The friction factor, fws,t, and the phase shift,
φτ,t, are given by (2) and (3), respectively, with X = (utTtn)/(2πkN). The
time lag is lτ,t = φτ,tTtn/(2π).

The bed shear stress over the wave cycle is then approximated by

τb(t) =
1

2
ρfw(t)ub(t + lτ (t))|ub(t + lτ (t))|, (7)

where the time-varying friction factor, fw(t), and the time-varying lag, lτ (t),
are assumed to be the linear interpolation in time between the values calcu-
lated at the wave crest (fws,c and lτ,c) and trough (fws,t and lτ,t).

The application of this simple conceptual model to predict bed shear stresses
of real waves relies on our ability to estimate the shape of ub(t). In particular, it
is necessary to estimate the parameters uc, ut, Tc, Tcp, and Ttn, represented in
Figure 1. From the results of numerical simulations using a Boussinesq model,
Tajima and Madsen (2002) developed a set of relationships that predict four of
these five parameters as a function of the local water depth, bottom slope, wave
height, and period. The only parameter not provided by Tajima and Madsen’s
relationships is Ttn, but this parameter can be estimated by assuming a shape
of the near-bed orbital velocity constrained by the four known parameters
plus the zero net flux condition. Recently, Elfrink et al. (2006) derived a set
of empirical formulas that yield all five parameters as a function of the same
local characteristics as Tajima and Madsen’s (2002) relationships.
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3 Numerical model of the boundary layer

To assess the accuracy of the conceptual model presented in Section 2, we
compare its bed shear stress predictions with those of a numerical model of
the boundary layer with a k−ε turbulence closure. The numerical model, here
applied to the simple case of periodic waves with no mean current, is similar
to Holmedal et al.’s (2003) model.

3.1 Governing equations

To the leading order of approximation, the momentum equation in the turbu-
lent wave boundary layer reads

∂u

∂t
=

∂ub

∂t
+

∂

∂z

(
τzx

ρ

)
, (8)

where u(z, t) is the horizontal velocity, ub(t) is the near-bed (free-stream) wave
orbital velocity, and z is the vertical coordinate measured positively upward.
The shear stress, τzx(z, t), is related to the velocity through

τzx = ρνt
∂u

∂z
, (9)

where νt is the eddy viscosity. To make the problem solvable, the eddy viscosity
must be in turn related to the other variables through a closure model.

Following recent studies (Holmedal et al., 2003; Henderson et al., 2004), we
adopt the k − ε model (e.g., Pope, 2000, pp. 373–382) as the closure. The
transport equation for the turbulent kinetic energy, k, is

∂k

∂t
=

∂

∂z

(
νt

σk

∂k

∂z

)
+ P − ε, (10)

where P = νt(∂u/∂z)2 is the production of kinetic energy, and ε, the dissipa-
tion of kinetic energy, is governed by the transport equation

∂ε

∂t
=

∂

∂z

(
νt

σε

∂ε

∂z

)
+ cε1

Pε

k
− cε2

ε2

k
. (11)
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The eddy viscosity, νt, is calculated as

νt = cµ
k2

ε
. (12)

The standard values of the model constants are cµ = 0.09, cε1 = 1.44, cε2 =
1.92, σk = 1.00, and σε = 1.30. These values were recommended by Launder
and Spalding (1974) for plane jets, mixing layers, and unidirectional steady
flows near walls. Using these standard values, the k − ε model has been
successfully applied to describe sinusoidal oscillatory flows over rough beds
(e.g., Justesen, 1988) and, more recently, periodic flows due to skewed waves
(Holmedal and Myrhaug, 2006). In both cases, hydrodynamical predictions
agree with experimental data. Therefore, it is expected that the use of the
standard k − ε model will lead to satisfactory predictions of asymmetric and
skewed oscillatory flows.

3.2 Boundary conditions

Since the seabed is irregular, the definition of the bed elevation, z = z0, is
arbitrary. We adopt the conventional definition z0 = kN/30, where kN is the
equivalent Nikuradse sand-grain roughness of the bed.

At the bed, the no-slip condition requires the velocity to vanish, i.e.,

u = 0 at z = z0. (13)

The bed boundary conditions for k and ε are usually determined by assuming
a logarithmic velocity profile and imposing equilibrium between production
and dissipation of turbulent kinetic energy (e.g., Holmedal et al., 2003), which
yields

k =
νt

∣∣∣∂u
∂z

∣∣∣
√

cµ

(14)

and

ε = (cµ)3/4 k3/2

κz0

(15)

at z = z0. Note that, under the assumption of a logarithmic velocity profile,
(14) and (15) imply

νt = κu∗z (16)
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at z = z0, where κ is the Von Kármán constant (≈ 0.4), u∗ =
√
|τb(t)|/ρ is

the shear velocity, and τb(t) = τzx(z = z0, t) is the bed shear stress. Therefore,
the standard bed boundary condition of the k − ε turbulence model relies on
the same linear eddy viscosity hypothesis as Trowbridge and Madsen’s (1984)
model.

The top boundary conditions should be applied at a height equal to the thick-
ness of the boundary layer, δ. The thickness of the boundary layer varies
over the wave period, making its definition somewhat arbitrary. However, we
note that the vertical scale of the potential flow above the boundary layer
is much larger than the boundary layer thickness. Therefore, when modeling
the boundary layer, the potential flow can be considered constant in z. The
model will thus perform correctly by imposing the top boundary conditions
at z = z1, where z1 > δ but of the same order of magnitude. This guarantees
that the boundary layer effects have vanished at the top of the domain.

An estimate of the maximum value of δ is given by the time-invariant thickness
suggested by Madsen and Salles (1998):

δMS = A
κu∗m

ω
, (17)

where

A = exp



2.96

(
Ub/2

kNω

)−0.071

− 1.45



 , (18)

u∗m =

√
τbm

ρ
, (19)

Ub is the near-bed orbital velocity height, and τbm = 1/2ρfws(Ub/2)2, with fws

as defined in (2). In the numerical model, we adopt

z = z1 = 10 δMS (20)

as the top boundary for the simulation.

The boundary conditions at z = z1 are given as follows. The velocity is equal
to the known near-bed wave orbital velocity, i.e.,

u = ub at z = z1. (21)

Following Holmedal et al. (2003), we impose a zero flux condition for k and ε,
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i.e.,

∂k

∂z
= 0 at z = z1 (22)

and

∂ε

∂z
= 0 at z = z1. (23)

3.3 Numerical implementation

The boundary layer flow is governed by (8), (10), and (11), with the eddy
viscosity defined by (12), the boundary conditions specified in Section 3.2, and
a prescribed near-bed wave orbital velocity. The numerical implementation is
carried out using finite difference.

For computational reasons, it is convenient to stretch the vertical coordinate,
so that there are more grid nodes close to the bed, where the velocity varies
rapidly with height. We apply the following log-linear stretching, suggested by
Davies et al. (1988):

ζ =
1

χ

{
ln

(
z

z0

)
+

(
z − z0

z∗

)}
, (24)

where

χ = ln
(

z1

z0

)
+

(
z1 − z0

z∗

)
, (25)

and we adopt z∗ = (z0+z1)/2. With ζ taking on equally spaced values between
0 and 1, the previous transformation provides a conveniently distributed set
of values of the elevation, z. As a consequence of this stretching, ∆z is not
constant in the finite difference grid. The nodes of the spatial discretization
are referred to by the index i = 1, 2, 3, ..., N .

Note that the system of differential equations (8, 10, and 11) is nonlinear. The
discretization of the nonlinear system of differential equations using a Crank-
Nicholson finite difference scheme (e.g., Evans et al., 2000, pp. 54–57) yields
a nonlinear system of algebraic equations. This system relates the unknown
values of u, k, and ε for each node of the spatial grid at time (j + 1)∆t
to the known values of the variables at time j∆t. To linearize the system,
we apply Newton-Raphson’s method (e.g., Press et al., 1992, pp. 372–375).
In this method, the values of u, k, and ε at time (j + 1)∆t are determined
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through iteration, n = 1, 2, 3, . . .. The velocity at the spatial node i and time
(j + 1)∆t, ui,j+1, is determined iteratively from

un+1
i,j+1 = un

i,j+1 + δun
i,j+1, (26)

where δun
i,j+1 is an unknown small quantity (¿ un

i,j+1). The initial value for
this iterative relationship is u1

i,j+1 = ui,j. With (26) and similar expressions for
k and ε, and neglecting products of δ-increments, we obtain a linear system
of equations in the increments, which is solved for each iteration.

The initial conditions are defined at the near-bed velocity crest by assuming
a log-profile steady velocity and corresponding values of k and ε. Since these
initial conditions are approximate, the results for small time must be ignored.
However, the code rapidly converges towards periodic conditions and yields
meaningful results from the second wave period onwards.

3.4 Verification of the conceptual model

To quantify the shape of asymmetric and skewed waves, we define the asym-
metry and skewness parameters as

As = 1− Tc/T (27)

and

Sk = 2 uc/Ub − 1, (28)

where Tc, T , uc, and Ub are defined in Figure 1. With this definition, a sym-
metric and non-skewed wave has As = 0 and Sk = 0, while a forward-leaning
and positively skewed wave has 0 < As < 1 and 0 < Sk < 1.

We compare the predictions of the bed shear stress obtained from the nu-
merical and conceptual models for 18 test cases. All test waves are periodic,
with near-bed orbital velocity height Ub = 2.5 m/s and wave period T = 8 s.
Each test case is characterized by a specific value of the asymmetry parameter
(0 ≤ As ≤ 2/3), the skewness parameter (0 ≤ Sk ≤ 1/2), and the Nikuradse
sand-grain roughness of the bed (0.2 mm ≤ kN ≤ 1 mm). These ranges of
As and Sk are representative of the nearshore field data compiled by Elfrink
et al. (2006).

Figure 1 illustrates the near-bed velocity profile for one of the test waves
(As = 1/3, Sk = 1/3). The profile of each test wave, ub(t), is described by a
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set of two 2nd-order polynomials (between A and B and between D and A) and
two 3rd-order polynomials (between B and C and between C and D). These
polynomials meet the following constraints: (i) zero derivative at A and C,
(ii) continuous derivative at B and D, (iii) zero average velocity over the wave
period (no mean current), and (iv) Tcp = min(Tc, Ttp). In the last constraint,
Tcp/Tc = 1 is a characteristic value for periodic waves in the nearshore region,
determined from examination of laboratory measurements of breaking periodic
waves propagating over a plane sloping beach (case 6N reported by Hamilton
and Ebersole, 2001). The formulas by Tajima and Madsen (2002) and Elfrink
et al. (2006) yield Tcp/Tc ≈ 0.8 − 1 and thus support our choice. To avoid
a backward-leaning velocity profile in cases with large skewness and small
asymmetry, we also require Tcp ≤ Ttp.
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Fig. 2. Bed shear stresses predicted by the conceptual model (thick line) and the
numerical model (thin line) for non-skewed waves (Sk = 0). The ratio between max-
imum shear stresses predicted by the conceptual and numerical models is indicated.
The tick mark on the time axis indicates the time when ub is maximum.

Predictions of bed shear stresses under sinusoidal waves (As = 0, Sk = 0) by
the conceptual model overpredict the numerical results by about 10− 15% for
bed roughnesses of kN = 0.2−1 mm. This slight disagreement in the sinusoidal
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Fig. 3. Bed shear stresses predicted by the conceptual model (thick line) and the
numerical model (thin line) for moderately skewed waves (Sk = 1/3). See also
caption to Figure 2.

case is immaterial to the analysis presented here, whose purpose is to deter-
mine the ability of the conceptual model to capture the effects of asymmetry
and skewness on the bed shear stress. For this reason, the numerical model
is run using equivalent numerical roughnesses, k′N = 0.33 and 1.6 mm, corre-
sponding to the physical roughnesses used for the conceptual model, kN = 0.20
and 1.0 mm. The numerical roughnesses were chosen so that both models yield
the same maximum shear stresses in the sinusoidal wave cases. Note that the
difference of about 60% between kN and k′N is of the same order of magnitude
as the variability between different physical roughness estimates proposed in
the literature, such as kN = D65 (Einstein, 1950), kN = 2D65 (Engelund and
Hansen, 1967), and kN = 2.5D50 (Nielsen, 1992).

Figures 2, 3, and 4 compare the bed shear stresses predicted by the conceptual
model (thick lines) with the predictions of the numerical model (thin lines) for
Sk = 0, 1/3, and 1/2, respectively. Each figure shows six plots corresponding
to three different values of As each for two different roughnesses. The ratio
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Fig. 4. Bed shear stresses predicted by the conceptual model (thick line) and the
numerical model (thin line) for strongly skewed waves (Sk = 1/2). See also caption
to Figure 2.

between the maximum shear stress predictions is indicated on each plot. The
conceptual model captures the shape of the bed shear stresses for asymmetric
and skewed waves, yielding good estimates of the maximum shear stress (er-
rors smaller than 15% in all cases). The minimum shear stress is accurately
predicted (errors smaller than 3%) for the non-skewed waves (Figure 2), while
it is underpredicted by as much as 30% for the strongly skewed waves (Figure
4). However, in the strongly skewed cases, the minimum shear stress has a
much smaller magnitude than the maximum, and the net sediment transport
is onshore dominated. Thus, the error in the negative stresses does not under-
mine the model’s ability to predict net sediment transport. The two models’
predictions of the lag between the maximum near-bed velocity (indicated in
the figures by a tick mark on the time axis) and the maximum bed shear stress
differ by less than T/50.

Figures 3 and 4 show disagreement between the shear stress predictions of
the numerical and conceptual models in the neighborhood of the zero down-
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crossing flow velocity. The case where the disagreement is most pronounced
(As = 0.25, Sk = 0.50, and kN = 1 mm in Figure 4) is enlarged in Figure 5.
This disagreement is due to the sudden increase of flow acceleration at point
P (see Figure 5). Physically, the dynamics of the boundary layer before P are
governed by the quasi-sinusoidal velocity profile between C and P and are not
affected by the acceleration increase at P , as the numerical model reproduces.
In contrast, the conceptual model calculates the shear stress shortly before P
based on the near-bed velocity shortly after P , due to the phase lag between
shear stress and velocity. Thus, the shear stress is underpredicted. To obtain
an accurate prediction of the shear stress before P , (7) should not be applied
based on the real velocity between P and E, but on a fictitious velocity that
extends the quasi-sinusoidal profile between C and P , as represented by the
dotted line between P and E ′. However, as noted above, this inaccuracy in the
negative shear stress computations has a negligible influence on net sediment
transport predictions.
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Fig. 5. Top: near-bed wave orbital velocity for the As = 0.25, Sk = 0.50, and
kN = 1 mm case in Figure 4. Bottom: disagreement between shear stress predictions
from the conceptual (thick line) and numerical (thin line) models.

The agreement between the numerical and conceptual models remains good
when the numerical model is started from rest (with small, consistent initial
values of the variables) and run for half a wave cycle. This justifies the ap-
plication of the conceptual model to predict the bed shear stresses due to a
half wave in Section 4 (experimental conditions of King, 1991, and of Hassan
and Ribberink, 2005, series Q). Figure 6 shows the temporal variation of bed
shear stress predicted by the numerical model for the case with As = 0.33,
Sk = 0.33, and kN = 1 mm. The dashed line is obtained when the model
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is started from rest and run for only one wave period. The solid line is ob-
tained when the model is run until the results exhibit a periodic behavior.
The maximum shear stress predictions differ by 7%, and the predictions of
the time-integral of the onshore bed shear stresses to the 3/2 power (an es-
timate of the onshore bedload) differ by 14%. When suspension effects are
negligible the sediment responds almost instantaneously to the flow (Madsen,
1991) even for sheet flow conditions (O’Donoghue and Wright, 2004, Figure
10). Therefore, the accurate estimation of the instantaneous bed shear stresses
by the conceptual model indicates its applicability to predict bedload trans-
port for both half- and full-cycle (periodic) waves.
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Fig. 6. Bed shear stresses predicted by the first iteration of the numerical model
started from rest (dashed line) and once the results become periodic (solid line).

4 Prediction of bedload transport

To predict sheet flow bedload transport, we use the formula developed by
Madsen (1991; 1993), which is based on a conceptualization of the mechanics
of sediment transport and is similar in form to the empirical Meyer-Peter and
Müller (1948) formula. Madsen (1993) generalized his 1991 bedload formula
to a sloping bed; the derivation is reproduced in Appendix A for the reader’s
convenience. According to Madsen (1993), the instantaneous bedload sediment
transport rate in a two-dimensional flow over a sloping bed is
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qSB(t) =
8

(s− 1)ρg
max [0, |τb(t)| − τcr,β]

(√
|τb(t)|/ρ− αβ

√
τcr,β/ρ

)

cos β (tan φm + tan β)

τb(t)

|τb(t)| , (29)

where qSB(t) is the volume of sediment transported per unit time and width,
β is the bottom slope in the direction of transport, taken positive if sediment
is transported upslope, s = ρs/ρ is the ratio between sediment and water den-
sities, τcr,β and αβ are given by (A.6) and (A.10), respectively, and φs ≈ 50◦

and φm ≈ 30◦ are the values of the angles of static and moving friction rec-
ommended by Madsen (2001). The bed shear stress, τb(t), is calculated using
the conceptual model with kN = D50. This is consistent with the roughness
value used to compute the fluid drag forces in the derivation of (29), presented
in Appendix A. Previous studies have shown that the total hydraulic rough-
ness that parameterizes the sheet flow velocity profile is larger than D50 (e.g.,
Dohmen-Janssen et al., 2001; Hsu et al., 2006). Here, kN = D50 is applied to
calculate the effective bed shear stress that is responsible for sediment trans-
port, which is only a fraction of the total bed shear stress. The use of an
effective bed shear stress based on kN = D50 has previously been shown to
yield good predictions of bedload over both plane and rippled beds for pure
wave motion (Madsen and Grant, 1976). This is also the case for pure wave
sheet flow conditions, provided that the maximum Shields parameter, ψm, is
smaller than about 2 (Ribberink, 1998), as it is for all the bedload-dominated
measurements considered in this paper. The appropriate value of kN to predict
sediment transport for strong oscillatory sheet flow (ψm > 2) remains an open
question, due to the scarcity of oscillatory sheet flow transport data in this
range.

Laboratory studies of sediment transport under sheet flow conditions, the
dominant bed regime in the nearshore region, have focused on skewed, sym-
metric waves (e.g., Ribberink and Al-Salem, 1994; Dohmen-Janssen and Hanes,
2002; Ahmed and Sato, 2003; O’Donoghue and Wright, 2004; Hassan and Rib-
berink, 2005). While waves in the surf zone are strongly asymmetric, only a
few laboratory studies (King, 1991; Watanabe and Sato, 2004) have investi-
gated asymmetric waves. King (1991) measured average sediment transport
rates over half a period (from zero up-crossing to zero down-crossing near-bed
velocity) of sinusoidal and asymmetric waves, whereas all the other studies
measured average sediment transport rates over the whole wave period.

Figure 7 shows a comparison between predictions of average sediment trans-
port rates by our conceptual model and oscillatory wave tunnel measurements
for sinusoidal waves by King (1991). King’s experiments were run for half a
wave cycle and the measured sediment transport rates correspond to onshore
wave velocities only. The average transport predictions are based on the bed
shear stress predicted by the conceptual model using the half-wave near-bed
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Fig. 7. Comparison between measured (King, 1991) and predicted average sediment
transport rates over half a sinusoidal wave period. Vertical bars reflect the range
of reported measurements. The values of u∗m/ws are indicated for those cases with
u∗m/ws > 2.7. The line of perfect agreement is shown.

velocity profiles inferred from the piston motion and kN = D50. Note that, for
sinusoidal waves, the conceptual model for bed shear stress reduces to that
of Madsen (1994). Predictions and measurements agree for the coarse and
medium grain cases (D50 = 1.1 and 0.44 mm), demonstrating the predictive
ability of the bedload formula, (29). The disagreement between predictions
and measurements for some of the fine grain cases (D50 = 0.135 mm) is at-
tributed to suspension effects, which are not accounted for by the bedload
formula.

The importance of suspension effects is quantified by the ratio between the
settling time of a suspended particle, δ/ws, and the wave period, T . δ is
a typical entrainment height and ws is the settling velocity, calculated us-
ing Jiménez and Madsen’s (2003) formula. Particle entrainment is governed
by the advection-diffusion equation, in which the time scales as T and the
eddy viscosity scales as κu∗mz, where u∗m is the maximum shear velocity and
z is the vertical distance from the boundary. This implies that δ scales as
κu∗mT (i.e., δ is of the same order as the wave boundary layer thickness).
Suspension effects become important when δ/(wsT ) is larger than about 1
or, equivalently, when u∗m/ws is larger than about 2.5. The conceptual model
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predicts u∗m/ws ≈ 0.2 − 1.2 for King’s coarse and medium grain cases and
u∗m/ws ≈ 1.6 − 4.8 for King’s fine grain cases. These values confirm that
suspension effects are more relevant in the latter. Within the fine grain cases,
those with u∗m/ws < 2.7 are well predicted by the bedload formula, while those
with u∗m/ws > 2.7—for which the values of u∗m/ws are indicated in Figure
7—are underpredicted. Thus, we take u∗m/ws ≈ 2.7 as the threshold above
which sediment suspension effects become important. Note that the deviation
from the 1:1 line of the data points with u∗m/ws > 2.7 systematically increases
as u∗m/ws increases, suggesting that this parameter correctly quantifies the
importance of suspended transport. Since King’s measurements correspond to
onshore wave velocities only, the suspended transport is necessarily directed
onshore, and the measurements with u∗m/ws > 2.7 are underpredicted. In con-
trast, suspended transport under full periodic waves is not necessarily directed
onshore, as will be discussed in Section 5.
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Fig. 8. Comparison between measured (King, 1991) and predicted average sed-
iment transport rates over half a sinusoidal wave period for bedload-dominated
cases (u∗m/ws < 2.7). The bed was horizontal (β = 0), upslope in the direction of
transport (β > 0), or downslope in the direction of transport (β < 0). Vertical bars
reflect the range of reported measurements. The line of perfect agreement is shown.

A similar parameter to account for the importance of suspended sediment
phase lag effects was proposed by Dohmen-Janssen et al. (2002). When their
parameter exceeds a certain threshold, Dohmen-Janssen et al. anticipate phase
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lag effects to become important, which is analogous to our criterion for rejec-
tion of data due to suspension effects. In contrast with our study, Dohmen-
Janssen et al. assume that the entrainment height δ scales as the sheet flow
layer thickness. Nevertheless, out of the 217 experimental conditions consid-
ered in this paper, all 161 cases that our criterion classifies as bedload dom-
inated also correspond to negligible phase lag effects according to Dohmen-
Janssen et al.’s criterion. Of the remaining 56 cases rejected by our criterion,
23 would have also been rejected by Dohmen-Janssen et al.’s.

Figure 8 shows the same comparison as Figure 7, but including measure-
ments with positive and negative bottom slopes. Only measurements with
u∗m/ws < 2.7 are plotted. The bedload formula successfully captures slope
effects, although it tends to overpredict the largest transport rates. The small
negative bias for the largest transport rates may be due to sand being trans-
ported over the trap, as noted by King (1991).
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Fig. 9. Comparison between measured and predicted average sediment transport
rates under skewed, symmetric waves (Sk > 0, As = 0) for bedload-dominated
cases (u∗m/ws < 2.7). The line of perfect agreement is shown.

Figure 9 shows a comparison between predictions of average sediment trans-
port rates by our conceptual model and oscillatory wave tunnel measurements
by Ribberink and Al-Salem (1994, series B, cases 7–16), Ahmed and Sato
(2003, cases U1–U13 and U15), O’Donoghue and Wright (2004, series MA
and CA), and Hassan and Ribberink (2005, series R and Q). In the ex-
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periments, the near-bed orbital velocity is symmetric (As = 0) but skewed
(0.13 < Sk < 0.31). The bed remained flat. All studies measured average
transport rates over the entire wave cycle, with the exception of Hassan and
Ribberink’s (2005) series Q, in which the onshore and offshore transport com-
ponents over half-wave cycles were measured separately. The measured aver-
age (net) transport rates used for series Q by Hassan and Ribberink (2005)
are calculated from the onshore and offshore transport rates reported in their
Table 5, since the net transport rates in the last column of the table are incor-
rect (Ribberink and Hassan, personal communication, 2007). In addition, their
measured onshore transport rates significantly differ from the transport rates
measured by King (1991) under similar conditions. Our model’s predictions are
based on the wave velocities inferred from the movement of the wave piston.
For Ahmed and Sato’s experiments, we use the near-bed velocity time-series
provided by the authors (Ahmed, personal communication, 2006). For all other
cases, the near-bed velocities are modeled as second-order Stokes waves. Only
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Fig. 10. Comparison between measured and predicted average sediment transport
rates under asymmetric, non-skewed waves (|As| > 0, Sk = 0) for bedload-domi-
nated cases (u∗m/ws < 2.7). The average transport rate under King’s forward-lean-
ing half waves (which correspond to onshore velocities) is represented as a positive
value, while the average transport rate under King’s backward-leaning half waves
(which correspond to offshore velocities) is represented as a negative value. Case
numbers for Watanabe and Sato’s (2004) coarse grain data are indicated. The line
of perfect agreement is shown.
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those measurements for which the conceptual model predicts u∗m/ws < 2.7
are shown in Figure 9. The conceptual model yields a good agreement with
these measurements, for which bedload is the dominant transport mechanism.
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Fig. 11. Comparison between measured and predicted average sediment transport
rates under asymmetric, non-skewed waves (King, 1991) for bedload-dominated
cases (u∗m/ws < 2.7). See also caption to Figure 10.

Figures 10 and 11 show comparisons between predictions of the average sedi-
ment transport rate by our conceptual model and measurements from exper-
iments with asymmetric and non-skewed (Sk = 0) waves conducted in oscil-
latory water tunnels by King (1991, steep front and steep rear wave series,
As = ±0.56) and Watanabe and Sato (2004, cases 1–33, 0.10 < As < 0.36).
King’s runs are forward- and backward-leaning half waves, consisting of a for-
ward stroke of the wave maker. In contrast, Watanabe and Sato simulated
the complete oscillatory motion and measured the average transport rate over
the entire wave cycle under forward-leaning waves. The numerical values of
Watanabe and Sato’s data are reported by Nielsen (2006, Appendix B). Again,
our model’s predictions are based on the wave velocities inferred from the
movement of the wave piston. Only bedload-dominated cases, for which the
conceptual model predicts u∗m/ws < 2.7, are included in Figures 10 and 11.
The conceptual model predictions agree well with King’s half-wave transport
data (shown in detail in Figure 11), which include forward- and backward-
leaning half waves. In contrast, the model underpredicts most of Watanabe
and Sato’s average transport data (Figure 10). It is noted that Watanabe and
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Sato’s coarse grain data (cases 16–21, numbered in Figure 10) show unex-
pected patterns that make their reliability questionable. Specifically, although
case 19 has a velocity amplitude 50% larger than case 16 (all other parameters
being equal), the measured transport rate in case 19 is 5 times smaller. Sim-
ilarly, the conditions in cases 17 and 18 differ only in the significantly larger
asymmetry of the latter (As = 0.20 and 0.36, respectively), in spite of which
the measured net transport rates are virtually identical. Most of Watanabe
and Sato’s fine grain cases are not presented in Figure 10, since significant
suspended transport is expected (u∗m/ws > 2.7). It is noted that the inconsis-
tency of Watanabe and Sato’s coarse grain data and the strong contribution
of suspended transport in most of the fine grain cases suggest that the calibra-
tion of Nielsen’s (2006) bedload transport model parameter against Watanabe
and Sato’s (2004) dataset may be inappropriate.

In summary, the conceptual model for computing bed shear stress has been
successfully applied to predict bedload under skewed wave conditions and un-
der asymmetric wave conditions. It is noted that the only consistent, bedload-
dominated sediment transport laboratory data available under asymmetric,
periodic waves are, to the authors’ knowledge, the measurements by King
(1991). Therefore, while the predictive ability of the bed shear stress model
and its application to compute bedload under asymmetric waves seems promis-
ing, more experimental data are necessary for further verification of the model.

5 Suspended transport effects

When suspension effects are negligible (i.e., when u∗m/ws < 2.7), the bedload
formula (29) successfully predicts the total transport. When suspension effects
become important (i.e., when u∗m/ws > 2.7), the total transport rate differs
from the bedload transport, which, by analogy with the previous case, is as-
sumed to be given by (29). We investigate the qualitative effects of suspension
under asymmetric and skewed waves by comparing our bedload predictions
with measurements of total transport. Figure 12 shows a comparison between
predicted and measured average transport rates under asymmetric waves (data
of Watanabe and Sato, 2004) and skewed waves (all other data). The figure
only includes those cases with significant sediment suspension, for which the
values of u∗m/ws are indicated. Again, the deviation of the data points from
the 1:1 line systematically increases with the value of u∗m/ws. This is most
clearly evidenced by Ahmed and Sato’s 0.21 mm cases (+), suggesting that
u∗m/ws correctly quantifies the importance of suspended transport. As shown
in the figure, the skewed wave data are overpredicted by the bedload model
and the asymmetric wave data are underpredicted. This suggests that sus-
pended transport reduces the total onshore transport under skewed waves and
increases the total onshore transport under asymmetric waves. In a skewed,

22



symmetric wave, shortly after the large shear stress around the near-bed ve-
locity crest puts sediment in suspension, the near-bed velocity turns negative
and transports the sediment offshore. This effect has been discussed by Hassan
and Ribberink (2005) for skewed waves, and previously by Dohmen-Janssen
et al. (2002) in the context of sinusoidal waves superimposed on a current.
Since our sediment transport formula does not account for sediment in sus-
pension, it overpredicts the net transport rates for the skewed wave cases where
suspended transport is significant. In contrast, suspended sediment transport
under asymmetric, non-skewed waves appears to increase the total transport.
In an asymmetric, non-skewed wave, the near-bed velocity is directed onshore
for a relatively long time after the crest. Thus, the sediment suspended by
the large shear stress near the crest stays in suspension while the velocity is
directed onshore. This phenomenon was observed experimentally by Watan-
abe and Sato (2004), as shown in their Figure 5. Note that, in an asymmetric,
non-skewed wave, the shear stress at the trough has a smaller magnitude than
the shear stress at the crest. Consequently, the suspended transport yields a
net onshore contribution, which is not accounted for by the bedload formula,
(29), and leads to underprediction of Watanabe and Sato’s 0.20 mm cases in
Figure 12.
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Fig. 12. Comparison between measured and predicted average sediment transport
rates under skewed waves and asymmetric waves for cases where a significant con-
tribution of suspended transport is expected. Values of u∗m/ws > 2.7 are indicated.
The line of perfect agreement is shown.
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6 Conclusion

We developed a simple model for the bed shear stress that extends the classic
sinusoidal wave theory to asymmetric and skewed waves. Our model uses a
time-variable friction factor that accounts for the variability in wave shape.
The near-bed velocity profile between the zero up-crossing and the crest is
approximated by a quarter of a sinusoid, which provides an estimate of the
friction factor at the crest. The friction factor at the trough is estimated anal-
ogously. Then, a linear friction factor variation between the crest and trough
values is assumed. The computations of bed shear stress by the conceptual
model compare favorably with the results of a numerical boundary layer model
with a k− ε turbulence closure. The bed shear stress model is readily applica-
ble to predict bedload sediment transport. In contrast with the approaches of
Hoefel and Elgar (2003) and Nielsen (2006) to compute sediment transport,
we do not parameterize the effect of fluid acceleration or the horizontal pres-
sure gradients acting on the sediment particles. Rather, we calculate sediment
transport from the bed shear stress, obtained as a function of the near-bed
wave velocity, as was previously done by Henderson et al. (2004) to predict
nearshore sandbar migration. Unlike Hoefel and Elgar’s (2003) and Nielsen’s
(2006) formulations, our methodology for computing bedload under asymmet-
ric and skewed waves relies on physically based mechanistic arguments, and
it is free of adjustable parameters. Bedload predictions agree with laboratory
measurements of sheet flow under asymmetric waves and skewed waves in
those cases where bedload is the dominant transport mechanism. However,
the number of studies of sheet flow bedload under asymmetric waves avail-
able to date is insufficient for definitive verification of our model. Based on
the comparison with the numerical model, it is expected that our conceptual
model will also be able to predict bedload transport under waves that are both
asymmetric and skewed, for which no experimental data appear available.

When sediment suspension becomes relevant, phase lags between concentra-
tion of suspended sediment and near-bed orbital velocity become important.
As shown in experiments, the effect of sediment suspension on net transport
depends on wave shape. In asymmetric waves, after the steep wave front causes
the largest sediment suspension, the velocity remains directed onshore for a
rather long time, and the suspended transport is directed onshore. In skewed
waves, due to the narrower wave crest, the velocity turns offshore shortly af-
ter the largest sediment suspension occurs, and the suspended transport may
potentially be directed offshore. Since the bed shear stress model presented
here successfully predicts the phase lag between bed shear stress and near-bed
velocity, we anticipate its applicability to the prediction of total (bedload and
suspended) net sediment transport under asymmetric and skewed waves.

24



Acknowledgments

The support of the Office of Naval Research, Coastal Geosciences Program un-
der Grant Number N00014-6-1-0318 is gratefully acknowledged. The authors
wish to thank Drs. Ahmed Ahmed, Wael Hassan, David King, Jan Ribberink,
Shinji Sato, and Akira Watanabe for providing unpublished details of their
experimental data.

A Bedload transport on a sloping bed (Madsen, 1993)

Consider a plane bed inclined at an angle β to horizontal in the direction
of transport, where β is taken positive if sloping upward in the direction of
transport. At the point of incipient sediment motion, the force balance between
drag, gravity, and frictional resistance against movement yields

1

2
ρCD

(
π

4
d2

)
u2

cr,β − (ρs − ρ) g
(

π

6
d3

)
sin β =

(ρs − ρ) g
(

π

6
d3

)
cos β tan φs, (A.1)

where CD and φs are the drag coefficient and friction angle, respectively, for a
stationary superficial grain, which is assumed spherical in shape, of diameter
d and density ρs. ucr,β is a representative critical velocity for initiation of
motion used in the evaluation of the drag force, and ρ is the water density.
Rearranging (A.1) yields

u2
cr,β

(s− 1)gd
=
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tan φs

[
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)]
. (A.2)

For a sediment grain rolling or sliding along the inclined bed, the balance of
fluid drag, gravity, and frictional forces yields

1

2
ρCD

(
π

4
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)
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2− (ρs − ρ) g
(

π
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π

6
d3

)
cos β tan φm, (A.3)

where uf is a characteristic fluid velocity, us is the velocity of the sediment
grain, and φm is the angle of moving friction. Rearranging (A.3) yields

(uf − us)
2

(s− 1)gd
=

4

3CD

tan φm

[
cos β

(
1 +

tan β

tan φm

)]
. (A.4)
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Combining (A.2) and (A.4) results in the following expression for the sediment
grain velocity

us = uf − ucr,β

√
tan φm + tan β

tan φs + tan β
(A.5)

when the drag coefficients are assumed equal.

The immobile sediment grains on the bottom can support the critical shear
stress for initiation of motion,

τcr,β = τcr,0

[
cos β

(
1 +

tan β

tan φs

)]
, (A.6)

where τcr,0 is determined using the Shields diagram (e.g., Madsen, 2001). Since
sediment is moving, the excess skin friction shear stress, |τb| − τcr,β > 0, must
be carried by moving grains. The fluid drag force on a moving grain, FD,m, is
given by the first term in (A.3). Denoting the number of grains in motion per
unit area by N , this argument leads to

|τb| − τcr,β = NFD,m

=
{
N

π

6
d3

}
(s− 1)ρg cos β tan φm

(
1 +

tan β

tan φm

)
. (A.7)

The term in {} represents the sediment volume in motion per unit area. With
the velocity of the sediment in motion given by (A.5), the bedload transport
rate, qSB, is

qSB = N
(

π

6
d3

)
us

=
(|τb| − τcr,β)

(s− 1)ρg cos β (tan φm + tan β)

(
uf − ucr,β

√
tan φm + tan β

tan φs + tan β

)
(A.8)

if |τb| > τcr,β and 0 otherwise. Following Madsen (1991), the reference fluid
velocities, uf and ucr,β, used in calculating fluid drag forces are based on
kN = D50 and evaluated from the log-profile at z = 0.8D50. Introducing these
reference velocities into (A.8) yields

qSB(t) =
8

(s− 1)ρg
max [0, |τb(t)| − τcr,β]

(√
|τb(t)|/ρ− αβ

√
τcr,β/ρ

)

cos β (tan φm + tan β)

τb(t)

|τb(t)| , (A.9)
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where

αβ =

√
tan φm + tan β

tan φs + tan β
. (A.10)
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