Introduction

The Model-View-Controller (MVC)
Its Past and Present

Trygve Reenskaug, University of Oslo
(trygver@ifi.uio.no)
Abstract.

MVC was conceived in 1978 as the design solution to a particular problem. The top level goal was to support the
user's mental model of the relevant information space and to enable the user to inspect and edit this information.

The first part of the talk describes the original problem and discusses the chosen solution.

The second part elaborates the original ideas and extends the scope to include current day challenges to the original
goal. We examine some ideas related to MVC that are found in the literature and select those that appear to be partic-
ularly relevant to the top level goal.

It is all summarized in a condensed MVC pattern language.
Notice

This presentation is copyright ©2003 Trygve Reenskaug, Oslo, Norway. All rights reserved.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that the copies are not made for profit or commercial advantage and that copies bear this notice and full
citation on the first page.

1. Introduction

This presentation is part of the InfoBOARD project where I explore IT technologies that help create habit-
able information systems. The scope of this project is indicated by its main sources of inspiration:

The InfoBoard Project
Technologies for Habitable Information Systems

Sources of Inspiration:

+ Douglas Engeibart: Computer Augmentation

* Simon Papert: Learning by exploration

« Alan Kay: Dynabook

« Christopher Alexander: The Quality Without a Name

* Lisp: Simple, powerful modeling language

« Smalltalk: An interactive, programmable
information environment

InfoBoard Focus:

* People as participants in enterprise endeavours

Talk focus:

* Man-machine interaction

MVC 2003 @ Trygve Re enskaug 2003 816/2003 3:41:26 PM. Slide 3 of 29

This talk focuses on bridging the gap between man and machine.

2. An MVC Pattern Language
The following is the first draft of a pattern language for a systems architecture based on the MVC ideas.

The patterns may not satisfy the stringent requirements set up by the patterns community. In particular;
» Several patterns represent ideas rather than implemented experience
* References to interesting, public domain patterns are TBD (To Be Done)

© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 1 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fin

The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language
Integrated Domain Services

» The patterns have been written by a single author and have not been discussed in the community

On the other hand, all the patterns are in Alexander’s spirit; every one is motivated by the needs of people

and the desire to create habitable information systems.

The patterns of this draft version of the MVC pattern lan-

guage have been developed together with the presentation.

The patterns are therefore decorated with the correspond-
ing presentation slides.

This first pattern language consists of the following pat-
terns:

* P-1: INTEGRATED DOMAIN SERVICES (page 2)

. P-2: LINE DEPARTMENT OWNS DOMAIN COMPO-
NENTS (page 3)

» P-3: MENTAL OBJECT MODELS (page 4)

* P-4: PERSONAL INFORMATION SYSTEMS (page 7)
* P-5: DOMAIN/USER MATRIX (page 8)

* P-6: MODEL/EDITOR SEPARATION (page 9)

- P-T:
e P-8: TOOLS FOR TASKS (MVC/1979) (page 11)

* P-9: TooL AS A COMPOSITE (MVC/1979) (page 12)
e P-10: SYNCHRONIZE SELECTION (page 13)

* P-11: SYNCHRONIZE MODEL AND VIEW (page 14)

P-1: INTEGRATED DOMAIN SERVICES

Context

‘ 255
Murerically Comtrolfod Flame Clitsr

The Present:
Pattern Summary

@é

: Integrated Domain Services

: Mental Object Models

: Personal Information Systems
: Domain/User Matrix

: Model/Editor Separation

P-8 Tools for Tasks (MVC/1985)

P-9: Tool as a Composite (MVC/1979)

P-10: Synchronize Selection
P-11: Synchronize Model and View

: Line Department Owns Business Objects

: Input/Output Separation(MVC/1980)

MVC 2003

@ Trygye Reenskaug 2003 811912003 3:41:26 P

Slide 26 of 29

INPUT/OUTPUT SEPARATION(MVC/1980) (page 10)

An enterprise handles a number of different business

MVC 2003 © Taygve Reenskaug 2003 912003 3:41:26 FM.

Slide 4 of 29

functions a.k.a. domains. Examples are design, materials
management, planning, control, and finance.

Problem
The enterprise needs to support such domains with inte-

grated information systems.

Solution

Create separate domain services for each of the different

business domains. Each of these services should be tightly integrated internally, e.g., through a common
data base or through tightly coupled interacting services. Integration between domains will be through
mechanisms that are outside the domain services.

© 2003 Trygve Reenskaug

Draft of August 20, 2003 1:26 pm

Page 2 of 16

D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fin

The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language
Line Department Owns Domain Components

Notice that a domain service may span several business organizations and even several enter-
prises.

Forces

» Large domain services may be unwieldy, hard to design, hard to implement, and hard to modify.

* Small domain services lead to fragmentation of the total system and makes integration across domains
harder.

P1: INTEGRATED DOMAIN SERVICES Known Uses

Autokon CAD/CAM System This is the common approach to systems architecture. A
domain service is often called an application. Integration
between functions is often ad hoc.

See also

P-2: LINE DEPARTMENT OWNS DOMAIN COMPONENTS
(page 3)

VC 2003 @ Tiygvs Reenskaug 2003 8/19/2003 3:41:26 PM. Slide 5 of 29

History
August 2003: First draft of this pattern

P-2: LINE DEPARTMENT OWNS DOMAIN COMPONENTS

P2: Line Dept. Owns Domain ComponenTs Context

Let Departments Control their own Information

Business domains frequently span several responsible
departments in the line organization. A ship construction
domain could, for example, span contract, main design,
/ detailed design, and workshops. The design domain serv-

ice is a whole, but spans many line departments and areas
- of responsibility.

Problem

e st smmonam sige7orzs | Lhe different departments will normally be consulted dur-
ing the specification of a new or modified domain service.
The influence of an individual department tends to be limited because the overall specification is often a
compromise between conflicting interests. It seems desirable to give departments and individuals better
control of their information so as to match their responsibility and authority.

© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 3 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fin

The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language
Mental Object Models

P2: Line Dept. Owns Domain CoMPONENTS Solution

Split Domain Service into Objects

Decompose each domain service into several interacting

Seman | Dopmain Components so that each component has a single
offiee owner in the line organization. This way, each department
piwes | sres | eeowee | controls the part of the total service that is important to it.
Upessn | oesien lscas woer | . .
T The interests of the whole are taken care of through inter-
L e face control, while the internals of each component is con-
f»;eoummsf/omsnme { stores | trolled locally.

ke mareriasfor vateriLs EinvenTory |
. ;

MVC 2003 @ Tiygve Reenskaug 2003 8/19/2003 3:41:26 PM. Slide 8 of 29

Forces
P2: Line Dept. Owns Domain ComPONENTS

Support Distributed Responsibility

' Mary’s AN
Cumptr)‘r’]ents

[

*The decomposition of a business domain service strength-
ens the individual owners while weakening the whole.

*A domain service architecture that is tightly coupled to
the current line organization makes it hard to change the
organization.

Jol
Components
ﬁ

=

*A domain service architecture that is tightly coupled to

m_ personal idiosyncrasies can cause difficulties when people

< > move.
o snwnmon somsiam sidedar2s | *There could be decreased computational efficiency, and

also added security risks.

* A multi-tier solution with central ownership of low tiers and local ownership of upper tiers could be
considered. (Also see P-5 on page 8

Known Uses

There is no known implementation of this pattern.

See also

http://www.c2.com/cgi/wiki?DistributionOfComponents.
P-4: PERSONAL INFORMATION SYSTEMS (page 7)
P-5: DOMAIN/USER MATRIX (page 8)

History
1973: Ideas first presented at the ICCAS Conference in Tokyo, Japan. [Ree-73]
August 2003: First draft of this pattern

P-3: MENTAL OBJECT MODELS

Context

Most products are developed in incremental steps of product releases. There is no explicit overall model,
many products even lack a reference manual encompassing all product features. Many developers find it
hard to create a model up front. The system structure evolves as it is being shaped directly in code. This

supports the notion of systems development as an excursion into uncharted territory. Many versions of a

© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 4 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fin

http://www.c2.com/cgi/wiki?DistributionOfComponents

The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language
Mental Object Models

system have probably been released before the developers feel they understand the requirements. And this
understanding is a moving target anyway, since the user’s understanding and requirements deepen and
evolve.

There are three approaches to making information systems manageable for the user:

1) Provide a wizard for each task the user could possibly want to perform. The problems with this
approach is that novices may not understand the vocabulary: “Enter your fuzzywog ID now”. More experi-
enced users often have tasks never contemplated by the system designers. And experts find wizards
cumbersome and slow to use.

2) Provide a help system. We find the same vocabulary difficulties. In addition, it is usually not feasible to
provide help for every detail. Many help systems even lack an entry for every menu item and dialogue
box element.

Neither of these solutions is satisfactory.

[Norman-90] ¢1aims the only way to make artifacts manageable is to help the user build a mental model of the

system. But this is impossible if the mental model hasen’t been designed into the artifact from the begin-
ning. As an afterthought, it is doomed to be a failure.

Some standards are generally accepted in our business. UMLIYML2-01 g 3 standard modelling language for
systems architecture and design. But I do not know of a modelling language specifically aimed at building
and implementing users’ mental models.

Problem
P3: MenTAL OBJECT MODELS
The Next Competitive Frontier The problem is to empower the user to build a workable
DEJ'GN] mental model. For information systems, this implies that
EV%I}YDA .II\DII?rYtIadIeIV?oggIOd the user must internalize some modelling language that
THINGS can be shared between the user and the system designer.
SN * Make Things Visible

o There are two issues. First, what is the nature of this mod-
elling language. Second, how can we design a system so

that the user sees a reflection of his mental model in the

* The Principle of Mapping
* The Principle of Feedback
* Make sure that the user:

- can figure out what to do, system without any of the details that happen to be of no
««- can tell what Is going on. interest to him. We will deal with the first here, and rele-
e oTom R wiammsnzen Slide 10 of 28 gate the second to other patterns (More at “See also”
below)

A mental model can only be buildt from elements existing in the person’s mind. Apple’s desktop metaphor
is an example of tying a well-known environment. This is insufficient for the complex information systems
of today. A large number of people are now users of information systems, but their mental models are frag-
mented and frequently inaccurate. The challenge is to establish a modelling language as “knowledge in the
world” that system architects can use when designing the systems and the users can use for building pow-
erful and accurate mental models.

© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 5 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fin

The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language
Mental Object Models

P3: MenTAL OBJECT MODELS Solution

Planning as an Object Interaction Game

Object representing ||
/ the Shipyard I

Object representing a Object representing

Let the user’s modelling language be based on the concepts
of interacting objects. (Note: The UML Component is a subclass of
the UML Class, so objects can be instances of components as well as
classes. This means that objects can be composite; encapsulating other
objects).

ship’s schedule the shipyard resources
Object representing Object representing
a construction activity || As an example, consider an activity planning and control
system. Resources, products and activities can be repre-
et sented as objects in the computer. The planning and other
e smmmaaman swmconam SheeHof28 | processes can be realized by interactions between these
objects.

The language used for building the user’s mental model must be within the user’s passive vocabulary, i.e.,
“self-evident”. The sophistication of this language could be increased if a sophisticated language became

“knowledge in the world”. Such a generally known language could be a UMLIYML 201 profile or, if neces-
sary, a new language.

As mentioned in the Context paragraph above, it is notoriously hard to design a new system up front since
the requirements evolve over time. A solution could be to let the modelling language be the programming
language. UML is very close to becoming a programming language. This modelling/programming lan-
guage could be used in all phases of product life from the first experiments, through the evolution of

requirements and numerous release cycles. OMG develops MDA (Model Driven Architecture)[MDA]. This
initiative is promising and could be the beginning of a generally known language and method for evolving
user mental models and programs in parallel.

Finally, if a sufficiently powerful language became sufficiently well known, the road would be open for
users reading and even writing the top tiers of their programs themselves.

Forces

Users tend to be sophisticated within their field of expertise. Real requirements are, therefore, usually quite
complex. This puts a heavy strain on the models and the modelling language.

People use their whole being to master a subject. Formal modelling languages are strongly left brain. This
makes it hard to model right brain phenomena. This mismatch should be carefully considered during the
development of a universal modelling/programming language.

Known Uses

There are two known indications that an object based modelling language is acceptable to people. One was
an experiment at Xerox PARC in 1978 where we developed a planning system for a new semiconductor
production facility The facility manager was thinking in terms of silicon wafers, processes and equipment
while the Smalltalk developer was thinking in terms of interacting Smalltalk objects. The communication
between manager and developer went very smoothly and confirmed our belief that an object model can
give users effective control over their information systems.

Another indication is that our company, Taskon, did several process modelling projects in banks during the
nineties. We invariably found that object models felt natural to the user community and empowered them
to think precisely about their processes.

© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 6 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fin

The Model-View-Controller (MVC) Its Past and Present

An MVC Pattern Language
Personal Information Systems

See also

P-4: PERSONAL INFORMATION SYSTEMS (page 7)

History

1977: Ideas first presented at the IFIP Conference in Toronto, Canada. [Re¢-77]

August 2003: First draft of this pattern

P-4: PERSONAL INFORMATION SYSTEMS

P4: Personal Information System
Designer has Widely Varying Tasks

Standards
7 Deadlines

Design Project Data

Drawings

Weights __ <+— Speci-

fications
Project 4 .
¥ Design
Plan Methaods
Materials Factor
Factory Equipment Methods

WIVC 2003 © Taygve Reenskaug 2003 eroooz341:26PM. Slide 12 of 29

Context

An enterprise has a line organization that defines the roles
played by people and machines. To each role there is an
associated set of responsibilities, authorities and capabili-
ties. Examples of roles are designers, accountants,
machine operators.

Problem

An individual performs tasks, where each task often
involves several domains. A designer, for example, needs
full access to the part of the design domain he is responsi-
ble for, but also to other parts of the design domain for

reference purposes. He may also check materials availability in the Material Management service, fill in
time sheets in the Accounting service, report progress to the Planning and Control service, etc. The indi-
vidual needs task oriented tools that supports him in his various tasks.

Solution

Give the individual fools that support his various tasks.
Let these tools be embedded in a personal computer that

supports the user in all his or her tasks.[K-77] Let each
tool access one or more domain services as required.

Forces

» Tasks tend to change frequently, and emergencies that
may need special tools are known to occur.

* “The only stable feature of our company is that it

changes”.

P4: Personal Information System
Dynabook Vision
0¥ 3 " vy ""‘.

+ Information as tangible objects
+ Personal Information Space

- With ample storage facilities
+ Communication
* Object modelling

- as "Knowledge in the worid"
4+« Programs important part of
v personal information
192003 341:26PM. Slide 13 of 29

MVGC 2003 © Tiygve Reenskang 2003

Both forces call for rapid and cheap tool development. This can be realized through simplicity or through

(semi-)automatic tool generation.

© 2003 Trygve Reenskaug

Draft of August 20, 2003 1:26 pm

Page 7 of 16

D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fin

The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language
Domain/User Matrix

People’s tasks are frequently complex. This calls for pow-
erful tools.

P4: Personal Information System
Where Many Business Domains Meet

Effective, Enjoyable, Instructi
Information Environ

Pople’s tasks often involve several domains. The tool is,

therefore, a point of integration across domains. (Also see
[pattern links]

FourLayerArchitecture , where the four layers are called
View, Application Model, Domain Model, andInfrastructure.) Organization

Known Uses ﬁ fi

Exi Information fragmented in Domain Services
The Norwegian Exie®*] product offers rapid implemen- Information integrated In personal system

tation of flexible administrative solutions where personal- [~ Do | wemenn Skdeldor®
ized and automatically generated tools connect the users
to background information systems for tasks, resources and production.

See also

P-5: DOMAIN/USER MATRIX (page 8)

History

June 1999: TOOLS Europe ’99 Keynote: “T. Reenskaug: Component-Based Development - the True Object Orientation.
August 2003: First draft of this pattern

P-5: DOMAIN/USER MATRIX

Context

P-2: LINE DEPARTMENT OWNS DOMAIN COMPONENTS (page 3) told us to decompose each domain service
into a number of domain components. P-3: MENTAL OBJECT MODELS (page 4) and P-4: PERSONAL INFOR-
MATION SYSTEMS (page 7) suggest that the user’s mental model should be an object model that is accessi-
ble through the user interface and that may or may not correspond to the actual nature of the domain
services.

Problem
P5: Domain/User MATRIX
Connects Domain Service and Department The domain services are implemented for efficiency and
Department Department information integrity while the optimal mental models
A B

depend on the user and his tasks. There is no guarantee
that the domain services correspond to the mental models
of the different users. If they do, there is no problem. If
they do not, we need to bridge the gap.

Domain i
Xﬂi:t omponent
Domain Domain SOlutZOn
mponent

Component

Domain-1

Domain-2

Extract common information and behaviour from the

MYC 2003 @ Trygve Reenskang 2003 a1920033:41:26P0. Slide 15 of 29 . . :
domain components. Implement common information
and behaviour in centrally controlled background domain

services.
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 8 of 16

D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fin

The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language
Model/Editor Separation

Create a new layer of Business Objects above the domain service components as illustrated in the slide. Let
each business object create the illusion that the system implements the user’s mental models, using the
domain services as required.

(The term “Business object” is used in an OMG initiative. The use of the term here may not coincide with the OMG usage.)

Forces

There may be a tendency to move common domain logic and information into the business object and
under the control of the line organization.

There may be a tendency to move local logic and information into the domain services to simplify mainte-
nance and retain central control.

See also

P-6: MODEL/EDITOR SEPARATION (page 9)
P-7: INPUT/OUTPUT SEPARATION(MVC/1980) (page 10)

History

August 1973: The above figure first published in [[CCAS]
August 2003: First pattern version.

P-6: MODEL/EDITOR SEPARATION

Context

A person wants to study and interact with a business object (P-5 on page 8).

Problem

The user may want to inspect and edit information that exists in a business object.
e These objects may not be directly accessible from the node holding the user interface
* The objects may be too complex to be viewed directly

» Different tasks may require different presentations and operations on the same information; each ver-
sion highlighting some aspect and suppressing something else.

P6: MopeL/EDITOR SEPARATION Solution
(Administrative Control, 1973) We split each Business Object into two parts; one close to
the user and another close to the domain services. We call
',\",.f,’;‘:ﬂ Editor ~--..,,....,__..A.._(Poss,.'){',;’gg;ga i these objects Editor and Model respectively.
F > .
i = [ﬁﬂ_:’f The Model holds the user’s object model with its informa-
55 > = é/ tion and behaviour, reflecting the user’s mental model.
The Editor is responsible for presentation and user opera-
User Business Object ti
(with Tasks) 101S.
e Ty | owemeen Sidetso™ | The Model can be implemented as a Facade as defined in
[GOF]
© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 9 of 16

D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fin

The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language
Input/Output Separation(MVC/1980)

The Editor can e.g., be hand coded as a Java Swing component, it can be a Java Bean, or it can be automat-
ically generated from a GUI painter or through reflection on the model code.

Forces

* A powerful, yet understandable modelling language promotes the creation and realization of the
user’s mental model.

* Complex user needs lead to sophisticated Editors. Automatic or semi-automatic Editor generation
promotes rapid adaption to varying user tasks.

See also

P-7: INPUT/OUTPUT SEPARATION(MVC/1980) (page 10)
P-9: TooL As A COMPOSITE (MVC/1979) (page 12)
P-11: SYNCHRONIZE MODEL AND VIEW (page 14)

History

1979: This idea was part of the original MVC. MVC-1] [[MVC-2]
May 2001: MVC pattern written for Mogul patterns workshop.
August 2003: Above pattern refactored and revised

P-7: INPUT/OUTPUT SEPARATION(MVC/1980)

Context

The Editor described in P-6 on page 9 combines input and output in the same object.

Problem

The input and output aspects of the Editor are technically very different with few interdependencies. Their
combination in a single object tends to make this object unnecessarily complex.

Solution

Let the Editor object contain two objects; a View object P7: INPUT/IOUTPUT SEPARATION
responsible for presentation, and a Controller object (Smalltalk-80 MVC)
responsible for taking and interpreting input from the
user.

The illustration shows a UML collaboration model
. . Controller
describing the Smalltalk-80 solution. ‘ mput | S
User fo. Model
i ﬂ o Pe.rslsterige‘,-;’_c
\ View

4
Presentation

v 2003 © Tuggre Rrerskang 2003 arozozzatzern. Slide 17 of 29

© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 10 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fin

The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language
Tools for Tasks (MVC/1979)

This illustration shows an example class hierarchy taken
from the Smalltalk class library.

Forces

* Insimple cases, the Model, View and Controller
roles may be played by the same object. Example:
A scroll bar.

* The View and Controller roles may be played by the
same object when they are very tightly coupled.
Example: A Menu.

* In the general case, they can be played by three dif-
ferent objects. Example: An object-oriented design
modeller.

See also

P-8: TOOLS FOR TASKS (MVC/1979) (page 11)
P-10: SYNCHRONIZE SELECTION (page 13)

History
1980: This is the MVC of the Smalltalk-80 class library.

August 2003: First draft of this pattern extracted from the above

P-8: TooLs FOR TASKS (MVC/1979)

Context

A user and a model object with a fagade that reflects the
user’s mental model.

Problem

To give the user a Too! for performing one or more tasks.
The Tool shall give the user an illusion of interacting
directly with the model.

Solution

We create a user interface with a Tool object that con-
tains the required Editors.

P7: INpuT/OUTPUT SEPARATION

(Smailitalk-80 MVC Ciass Hierarchy)

MVC 2003

@ Toygre Reershaug 2003 ananon zamem. Slide 20 of 29

P8: TooLs FoR TAsks

(1985 OOram MVC)
Tool *
Task Logic

1

1

. Controller — Tiodel
input ode
User b %I [* Implements
- User's Mentai Modei
1 View |
Presentation
User’s Mental Model
MY C 2003 © Trygve Reenskaug 2003 anaoz 34 en. Slide 21 of 29

Some or all Editors can be split into a View-Controller combination as shown in the figure (see

P-7 on page 10)

Forces

* In simple cases, the Tool may consist of a single Editor. This Editor then also plays the Tool role.

» Complex tasks may require several Editors, they then need a separate Tool object to coordinate them.

© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fin

Page 11 of 16

The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language
Tool as a Composite (MVC/1979)

See also

P-9: TooL AS A COMPOSITE (MVC/1979) (page 12)
P-10: SYNCHRONIZE SELECTION (page 13)

P-11: SYNCHRONIZE MODEL AND VIEW (page 14)

History
1979: This is the original MVCIMVC-1]

2001: First draft MVC pattern written for Mogul patterns workshop
August 2003: First draft of this pattern extracted from the above

P-9: TooL As A ComPOSITE (MVC/1979)

P9: TooL As A CoMPOSITE
(Original 1978 MVC Example)

aProject
anActivity %anActivityéanActivity
predecessors successors
Resources B
=T
frontload(t) T - [
frontload(t) [i 1
WV 2003 @ Trygve Reenskaug 2003 enaizooz a6 P, Slide 22 of 29
Problem

Context

A user may want to inspect and operate upon
a complex model buildt as a structure of
interconnected objects. As an example, con-
sider a Project consisting of several Activi-
ties and Resources. The corresponding
model is illustrated on the left of the slide,
while a possible simultaneous presentation
of various aspects is shown in the right half.

Structure the user interface so as to support this requirement in a simple and general way.

Solution

Separate the system into four, clearly distinguished parts
that play these roles:

1) The User with his goals and tasks.

2) The Model that is responsible for representing state,
structure, and behavior of the user’s mental model.

3) One or more Editors that present relevant information
in a suitable way and support the editing of this infor-
mation when applicable.

4) A Tool that sets up the Editors and coordinates their
operation. (E.g., the selection of a model object that is
visible in several Editors).

The Future -3 of 3
Where do we go from here?

User Owns Model and Tool

==y
A= o=
Eoio

Domain Services

J Mode!
User Designs & implementsTools and Models
User in the Driver’s Seat

MyC 2003 @ Tayge Reenskaug 2003

sroon3z4126PM. Slide 29 of 29

Complex Editors may again be subdivided into a View and a Controller. (P-7 on page 10).

This solution is a composite pattern and can be regarded as the following “sentence” in the MV C pattern

language: (P-3) (P-4) (P-6) (P-7) (P-8)

© 2003 Trygve Reenskaug

Draft of August 20, 2003 1:26 pm

Page 12 of 16

D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fin

The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language
Synchronize Selection

Forces
TBD

Known uses.

This pattern has been used extensively in the OOram role modelling Tool and other programs. It is also

used in the Exie product!F¥i¢l,

See also

P-8: TOOLS FOR TASKS (MVC/1979) (page 11)
P-10: SYNCHRONIZE SELECTION (page 13)
P-11: SYNCHRONIZE MODEL AND VIEW (page 14)

History

1979: This is the original MY CIMVEL]
2001: First draft MVC pattern written for Mogul patterns workshop
August 2003: First draft of this pattern extracted from the above

P-10: SYNCHRONIZE SELECTION

Context

We have a Tool that shows different Views of the same object.

Problem

A user selects one or more objects in one of the Views. The selection should appear in all Views where the
selected object is visible in order to maintain the object model illusion.

~ P10: SYNCHRONIZE SELECTION Solution
Simple selection in ST-80 class library Let the selection be the responsibility of an object that
. knows all the relevant Views. The Tool is an example of
view] [Conrofer
i&} pointAndClickMouse(aPoint) such an object.

1

|
objectAt(aPoint) 1 A simple example is the division of responsibility in the
T arobed ! ST-80 MVC, a selection MSC is shown in the slide to the

! left.
select(anObject) 1

E Below is another MSC that illustrates how OOram imple-

MVC 2002 @ Tiygve Reeuskaug 2003 srozooazersrn. Slide 18 of 29 ments thlS pattem.

Forces

» The implementation can be quite complex if the deselection and selection of many objects.

© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 13 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fin

The Model-View-Controller (MVC) Its Past and Present
An MVC Pattern Language
Synchronize Model and View

P10: SYNCHRONIZE SELECTION
1985 OOram MVC

-
%Z [OtherView | [1.View [1.Controller] [Tool |
; T T T T

MVC 2003 © Trygve Reenskaug 2003 ar192003 341.6Pn. Slide 24 of 29

P-11: SYNCHRONIZE MODEL AND VIEW

Context

Known uses

This pattern was used extensively in the OOram model-

ling Tool and is also used in the ExielFX® product.

U . .
%er pointAndClickMouse : :
| 1 1 1 1
1 ! objectAt(aPoint) ' See also
: | | o Not Applicable.
1 1 | select(anObject) |
1 | EE——
: : select(anObject) ! .
! ! selecttanObject) ! HlStO’y

August 2003: First version.

A View presents information that it retrieves from one or more model objects.

Problem

The View cashes model data in the screen buffer and/or in its private memory. These data need to be

updated whenever the model changes.This is a special case of the Observer pattern in

Solution

Let the View register with the Model as being a depend-
ent of the Model, and let the Model send approipriate
messages to its dependents whenever it changes. Two
examples are shown on the right. The first is the simple
changed-update solution found in the ST-80 class library.
The second is a summary of the OOram solution which
uses transactions to accumulate changes before releasing
them to the Views.

Forces

The Smalltalk changed/update can lead to a great deal of
annoying flashing on the screen.

The use of transactions can reduce the number of
updates to one for each (composite) user operation.

The use of a ChangeParameter can further reduce flash-
ing by identifying the object property that has changed.
(The View and the Model has a common vocabulary in the Model’s
information retrieval interface).

A more sophisticated ChangeParameter can also identify
the area affected by the change if the model has a notion
of model geometry. (This will be the case for a drawing,
for example)

[GOF]

P11: Syncuronize MODEL AND VIEW
ST-80 class library

[View | [Controller] [Model]
: addDependent(view) :
1 1

1
. 1 !
ed|tOlommand | edit(...) !

S —

! changed(aSymbol)

1
upd a;[e(aSymboI)

V2003

© Tz Reenskang 2003

sinszoo3z4rzspn. Slide 19 of 29

P11: SynchHronize MODEL AND VIEW

1985 OOram MVC

"
;%4\ View | [Controller | [Model | [ChangePar]
U¥er : addDependent(aView) : :

I 1 1

1 1 1

N 1

editommand startTransaction

1
]
| . |
1 edit(...)
[—
1 1 change(params)

—
: endTransaction
—_—

update(aChangePar) :

VG 2003

1
snazoo3za+rzsPi Slide 25 of 29

1
© Taygvs eenskang 2003

© 2003 Trygve Reenskaug

Draft of August 20, 2003 1:26 pm

Page 14 of 16

D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fin

The Model-View-Controller (MVC) Its Past and Present
The future
Synchronize Model and View

Known uses

This pattern was used extensively in the OOram modelling tool. It is also used in the Exie product[EXie].

See also

Not Applicable.

History
August 2003: First version.

3. The future

Where are we? And where do we go from here?
1) We understand many user interface issues (and much more can be found in the literature)

2) We need to automate tool programming. The Naked Objects projectMaked]

is a promising start.
3) We must do more work with architecture and a language common to users and programmers.

Many mainstream developers believe that all we need to support users is to ask them nicely about their
requirements and preferences.

I have now shown that we need much more. We need system models that the users can understand, work
with and evolve over time.

In short, every user needs his own habitable information environment.

The next stage of the InfoBoard project will endeavour to create a humane modelling and programming
language and environment.

The Future -1 of 3 The Future —2 of 3
Naked Objects - concerns Naked Objects - solution

User illusion: Work With Model

Observation:

* GUIs are hard to develop

Possible Solution:

« Concentrate on modeling and implementing
core business objects

+ Expose these objects directly to end users 0@,)'773,, Computer
. &, 5.5, Model
+ Let them interact any way they can User “op S ¥
MVG 2003 © Taygve Roerskaug 2003 gngro03 a5 Slide 27 of 29 MYG 2003 ® Tiygve Reenskaug 2003 sngzonaser e Slide 28 of 29
The Future - 3 of 3

Where do we go from here?

User Owns Model and Tool

=
N
AR §

User Designs & ImplementsTools and Models

User in the Driver’s Seat

MVC 2003 @ Trygve Reenskaug 2003 anozoo3sdrzerm. Slide 29 of 29

Domain Services

© 2003 Trygve Reenskaug Draft of August 20, 2003 1:26 pm Page 15 of 16
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\50-Patterns.fin

References

4. References

[home]

[pattern links]

[Ree-73]

[Ree-77]

[GOF]

[ICCAS]

[Prokon]

[MVC-1]

MVC-2]

[Exie]

[Norman-90]

[Alexander-77]
[Alexander-79]
[UML 2.0]
[MDA]

[Kay-77]

[Cope]

[Roles]

[naked]

mailto: trygve.reenskaug@ifi.uio.no
http://heim.ifi.uio.no/~trygver

http://hillside.net/patterns
http://theserverside.com/patterns/
http://www.c2.com/cgi/wiki?WelcomeVisitors

http://www.c2.com/cgi/wiki?EjbRoadmap
http://www.c2.com/cgi/wiki?FourLayerArchitecture

Trygve Reenskaug: Administrative Control in the Shipyard. ICCAS Conference, Tokyo,
August 1973. A scanned version at http://www.ifi.uio.no/~trygver/mvc/index.html.

Trygve Reenskaug: Prokon/Plan -- A Modelling Tool for Project Planning and Control. Informa-
tion Processing 77, B. Gilchrist, Editor. IFIP, North-Holland Publishing Co. (1977)

Gamma, Helm, Johnson, Vlissides: Design Patterns. Addison-Wesley, Reading 1995. ISBN 0-
201-63361-2

Trygve Reenskaug: Administrative Control in the Shipyard. ICCAS Conference,
Tokyo, August 1973. A scanned version on
http://heim.ifi.uio.no/~trygver/mvc/index.html

Trygve M.H. Reenskaug: Prokon/Plan -- A Modelling Tool for Project Planning and
Control. IFIP Congress, Toronto 1977. North-Holland, 1977 A scanned version on
http://heim.ifi.uio.no/~trygver/mvc/index.html

Trygve Reenskaug: THING-MODEL-VIEW-EDITOR - an Example from a planningsystem. Tech-
nical note, Xerox PARC, May 1979. A scanned version on
http://heim.ifi.uio.no/~trygver/mvc/index.html

Trygve Reenskaug: MODELS - VIEWS - CONTROLLERS. Technical note, Xerox PARC, Decem-
ber 1979. A scanned version on http://heim.ifi.uio.no/~trygver/mvc/index.html

See http://www.exie.com

Donald A. Norman: “The Design of Everyday Things.” Doubleday/Currency 1990. ISBN 0-385-
26774-6.

Alexander, Christopher, et al. A Pattern Language, Oxford University Press, New York, 1977.
Alexander, Christopher. The Timeless Way of Building, Oxford University Press, New York, 1979.

The Unified Modeling Language, version 2.0. See http://www.omg.org/uml/

OMG Model Driven Architecture (MDA). See http://www.omg.org/mda/

Alan C. Kay: Microelectronics and the Personal Computer. Scientific American 237, 3. Sept.
1977

Coplien, James O. and Douglas C. Schmidt, ed. Pattern Languages of Program Design, Addi-
son-Wesley, 1995.

Reenskaug, Wold, Lehne: Working With Objects. Manning/Prentice Hall 1996. ISBN 0-13-
452930-8 The reference work. This book is out of print. A buggy .pdf version
can be downloaded free from above website.

Naked Objects home page: http://www.nakedobjects.org/home.html

© 2003 Trygve Reenskaug
D:\Mine dokumenter\Publications\2003-09-MVC\Handout\99-References.fin

Draft of August 20, 2003 1:26 pm Page 16 of 16

http://heim.ifi.uio.no/~trygver
http://heim.ifi.uio.no/~trygver
http://hillside.net/patterns
http://theserverside.com/patterns/
http://www.c2.com/cgi/wiki?WelcomeVisitors
http://www.c2.com/cgi/wiki?EjbRoadmap
http://www.c2.com/cgi/wiki?FourLayerArchitecture
http://www.ifi.uio.no/~trygver/mvc/index.html
http://heim.ifi.uio.no/~trygver/mvc/index.html
http://heim.ifi.uio.no/~trygver/mvc/index.html
http://heim.ifi.uio.no/~trygver/mvc/index.html
http://www.exie.com
http://www.omg.org/uml/
http://www.omg.org/mda/
http://www.nakedobjects.org/home.html
http://heim.ifi.uio.no/~trygver/mvc/index.html

	1.� Introduction
	2.� An MVC Pattern Language
	P-1: Integrated Domain Services
	P-2: Line Department Owns Domain Components
	P-3: Mental Object Models
	P-4: Personal Information Systems
	P-5: Domain/User Matrix
	P-6: Model/Editor Separation
	P-7: Input/Output Separation(MVC/1980)
	P-8: Tools for Tasks (MVC/1979)
	P-9: Tool as a Composite (MVC/1979)
	P-10: Synchronize Selection
	P-11: Synchronize Model and View

	3.� The future
	4.� References

