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Let X and Y be two strings of lengths n and m, respectively, and k and l, respectively,
be the numbers of runs in their corresponding run-length encoded forms. We propose a
simple algorithm for computing the longest common subsequence of two given strings X
and Y in O (kl + min{p1, p2}) time, where p1 and p2 denote the numbers of elements
in the bottom and right boundaries of the matched blocks, respectively. It improves the
previously known time bound O (min{nl,km}) and outperforms the time bounds O (kl log kl)
or O ((k + l + q) log(k + l + q)) for some cases, where q denotes the number of matched
blocks.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Measuring the similarity of two strings is an important
fundamental in many applications, such as pattern match-
ing and computational biology. Two well-known measure-
ments for computing the similarity of two strings, longest
common subsequence (LCS) and edit distance, have been ex-
tensively studied for the past decades. Given a sequence or
string, a subsequence is formed by deleting zero or more
elements arbitrarily. The LCS problem measures the length
of the longest subsequence which is contained in the both
given sequences. The edit distance problem, or more pre-
cisely, the Levenshtein distance problem [9], measures the
minimal number of edit steps which transform a given se-
quence into another one. The edit operations involved in
the Levenshtein distance are insertion, deletion and substi-
tution.

A special edit distance problem stipulates that one sub-
stitution is replaced by one deletion plus one insertion.
A simple formula can do the transformation between the
LCS lengths and the special edit distances [5]. Both the
LCS problem and the Levenshtein distance problem can be
solved by using the dynamic programming technique in

* Corresponding author.
E-mail address: cbyang@cse.nsysu.edu.tw (C.-B. Yang).
0020-0190/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2008.07.005
O (nm) time, where n and m denote the lengths of the two
given strings [15]. Some improved algorithms have also
been proposed, they include reducing the required space,
considering smaller number of matching elements, using
the parallelism and considering other important properties
[7,8,13,16].

Run-length encoding (RLE) is a well-known method for
compressing strings. It considers one string as a sequence
of runs where each run consists of identical symbols and
it is represented by its symbol and length. For example, a
string aaaddbbbbbbcccc is encoded as a3d2b6c4 in the RLE
format. A famous application for RLE is the optical charac-
ter recognition (OCR) system, in which binary alphabet is
used and the RLE usually achieves good compression ra-
tio. It is more useful and efficient if we can measure the
similarity of two RLE strings without uncompressing them.

Several related works for computing the LCS of RLE
strings have been proposed. Bunke and Csirik [4] illus-
trated the concept that splits the dynamic programming
(DP) lattice into blocks, where each block corresponds to
a pair of runs in the two given strings. Their algorithm
computes the LCS in O (nl + km) time by considering the
elements on the boundaries of the blocks only, where k
and l denote the run numbers of the two given strings X
and Y , respectively, and |X | = n and |Y | = m. Apostolico et
al. [1] proposed another algorithm with O (kl log kl) time
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by maintaining a collection of forced paths in the bal-
anced binary search trees. Mitchell [12] reduced the LCS
problem to the geometric shortest path problem and pro-
posed an algorithm with O ((k + l + q) log(k + l + q)) time,
where q denotes the number of matched blocks. Recently,
Liu et al. [11] proposed an algorithm with O (min{nl,km})
time to compute the LCS between an RLE string and an
uncompressed string. Freschi and Bogliolo [5] proposed a
parallel algorithm which computes the LCS in O (n + m)

steps on a systolic array of k + l units. For another sim-
ilar problem, computing the Levenshtein distance of two
RLE strings, Arbell et al. [2] proposed an algorithm with
O (nl + km) time, while Liu et al. [10] proposed an algo-
rithm with O (min{nl,km}) time.

In this paper, we consider the computation of the LCS
of two RLE strings. Some definitions and preliminaries are
given in Section 2. In Section 3, we propose an algorithm
and give the analysis of time complexity. And finally, the
conclusion goes in Section 4.

2. Preliminaries

Consider two strings X = x1x2 . . . xn and Y = y1 y2 . . . ym
over finite alphabet Σ . The RLE string of X is denoted as
RX1RX2 . . . RXk , where all symbols in RXi are the same and
the symbols in RXi and RXi+1, 1 � i � k − 1, are differ-
ent. The lengths of the runs RX1,RX2, . . . ,RXk are denoted
by n1,n2, . . . ,nk , respectively. A substring xi xi+1 . . . x j of
X is denoted as Xi.. j . A substring RXi.. j of X consists of
the consecutive runs RXi,RXi+1, . . . ,RX j . Similarly, the RLE
string of Y is denoted as RY1RY2 . . . RYl , whose lengths are
denoted by m1,m2, . . . ,ml , respectively. The length of the
LCS of X and Y is denoted as LCS(X, Y ).

2.1. The blocks

The original DP lattice can be divided into k × l sublat-
tices, called blocks [4]. A block (i, j) is dark if the symbols
in RXi and RY j are identical; otherwise, it is called a light
block. Fig. 1 shows an example of dividing the blocks. The
sets of elements on the bottom boundary and right bound-
ary of a block are called the bottom wall and the right
wall of the block, respectively. Note that the element at
the lower right corner belongs to both right and bottom
walls. When computing the LCS, similar to the original lat-
tice, we use a two-dimensional lattice M to record the LCS
lengths of the elements in the lower right corners of the
blocks. For example, the element M[i, j] holds the value of
LCS(RX1..i,RY1.. j). Another three-dimensional lattice W is
used for holding the bottom walls, where W [i, j, r] holds
the value of the rth element on the bottom wall of block
(i, j). Logically, W is a three-dimensional lattice, but phys-
ically, it is mapped to the original two-dimensional DP
lattice. We denote α( j, r) as the original one-dimensional
index in Y which is transformed from the two-dimensional
pair ( j, r), the rth element of run RY j . It is easy to see that

α( j, r) = ∑ j−1
p=1 mp +r. This query can be answered in O (1)

time after the preprocessing on Y with O (m) time.
In the original DP lattice, each monotonically nonde-

creasing path from (0,0) to (n,m) is mapped to a corre-
sponding common subsequence. A path is called forced [1]
Fig. 1. An example for illustrating our idea.

if it traverses the dark blocks by strictly diagonal moves
and traverses the light blocks by strictly horizontal (or ver-
tical, respectively) moves. As shown in Fig. 1, the sequence
of solid lines represents a forced path which starts at the
star mark u0 and ends at the square mark v0 by traversing
three dark blocks diagonally and three light blocks hori-
zontally.

The following lemmas show some properties of the LCS
problem on RLE strings.

Lemma 1 (Dark block). (See [5].) Let X and Y be two strings
and a be one symbol. Let Xar and Y ar denote the strings which
are constructed by appending the run ar to the strings X and Y ,
respectively. Then LCS(Xar, Y ar) = LCS(X, Y ) + r.

Lemma 2 (Light block). (See [5].) Let X and Y be two strings,
and a and b be two distinct symbols. Let Xar and Y bs denote the
strings which are constructed by appending the run ar to X and
appending the run bs to Y , respectively. Then LCS(Xar, Y bs) =
max{LCS(Xar, Y ), LCS(X, Y bs)}.

Lemma 3 (Monotonicity). (See [5].) Let X1..i and Y1.. j be two
strings. Then LCS(X1..i′ , Y1.. j′) � LCS(X1..i, Y1.. j) for each i′ ∈
[1, i] and j′ ∈ [1, j].

By applying Lemma 2 recursively and then removing
the unnecessary elements according to Lemma 3, the fol-
lowing corollary can be derived.

Corollary 1 (Merged light blocks). Let Xar1
1 ar2

2 . . .ari
i and

Y bs1
1 bs2

2 . . .b
s j

j be two strings, and ai′ �= b j′ for each i′ ∈ [1, i]
and j′ ∈ [1, j]. Then

LCS
(

Xar1
1 ar2

2 . . .ari
i , Y bs1

1 bs2
2 . . .b

s j

j

)

= max
{

LCS
(

Xar1
1 ar2

2 . . .ari
i , Y

)
, LCS

(
X, Y bs1

1 bs2
2 . . .b

s j

j

)}
.

2.2. The Range Minimal Query (RMQ) problem

Given an array of real numbers A[1..n], the range mini-
mal (maximal) query (RMQ) problem is to answer the con-
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sequent queries on intervals. Given an interval [i1, i2], 1 �
i1 � i2 � n, an RMQ asks to return the index of the mini-
mal element in the interval A[i1, i2]. Straightforwardly, one
can answer each query in O (n) time without any prepro-
cessing. On the other hand, a naive algorithm can achieve
O (n2) preprocessing time and O (1) answering time. The
goal is to make both the preprocessing and answering as
efficient as possible. Bender and Farach-Colton [3] pro-
posed an algorithm which reduces the RMQ problem to
the lowest common ancestor (LCA) problem [6] on the Carte-
sian tree [14] of array A. Their algorithm achieves O (n)

preprocessing time and O (1) answering time. We denote
RMQmin(A, i1, i2) and RMQmax(A, i1, i2) as the minimal
value and maximal value in the interval A[i1, i2], respec-
tively.

Theorem 1. (See [3].) Given an array A of n elements, one
can preprocess A in O (n) time such that for any given interval
[i1, i2], one can determine RMQmin(A, i1, i2) and RMQmax(A,

i1, i2) in O (1) time.

3. Our algorithms

Before starting to explain our algorithm, we take Fig. 1
as an example to illustrate the idea of our algorithm.

3.1. The basic idea

Let X = a3b6c4a12 and Y = b3a8c4b8a5c4a4 be two RLE
strings. We show how to calculate the value of element
v0, i.e. W [4,7,2], with the following recursive steps. To
calculate v0, only v1 is needed to consider according to
Lemma 1, that is v0 = v1 + d1. To calculate v1, two val-
ues v2 and v6 are needed according to Lemma 2, that
is v1 = max{v2, v6}. By expanding the values of the re-
maining elements on the forced path between u0 and
v0, the following equations are obtained. v2 = v3 + d2,
v3 = max{v4, v7}, v4 = max{v5, v8} and v5 = u0 + d3.

By combining these equations and removing some vari-
ables, we can get a clearer equation v0 = max{v6 + d1,

v7 + (d1 + d2), v8 + (d1 + d2), u0 + (d1 + d2 + d3)}. Ob-
serving this equation, we can see that {v6, v7, v8} are
the lower right corners of the blocks, and u0 is located
at either the bottom wall of a light block or the lower
right corner of a dark block. To calculate u0 of the first
case, we only consider two values u1 and u2 according
to Corollary 1, where u1 is at the bottom wall of the
dark block by a vertical leap through the light blocks and
u2 is also a lower right corner of a block. Summarizing
the above observation, the elements needed to be calcu-
lated in the original DP lattice include the lower right
corners of all blocks and the bottom walls of the dark
blocks.

3.2. The algorithm

Our algorithm for computing the LCS length of two RLE
strings is given in Algorithm 1. However, tracing out the
resulting sequence is also easy if an additional pointer is
attached to each element of the DP lattices M and W after
Algorithm 1. LCS(X, Y )

Initialize the boundaries of the DP lattices M, W
Do preprocessing for P
for i = 1 to k do

Do preprocessing for Ci , Li , Hi

for j = 1 to l do
if block (i, j) is a light block then

M[i, j] ⇐ max{M[i − 1, j], M[i, j − 1]}
else

ComputeWall(i, j)
M[i, j] ⇐ W [i, j,m j ]

end if
end for

end for
return M[k, l]

Algorithm 2. ComputeWall(i, j)

for r = 1 to m j do
if forced path does not across row (i − 1) then

W [i, j, r] ⇐ RMQmax(Li ,0, j − 1) − Ci [ j, r]
else

i′ ⇐ P [i]
( j′, r′) ⇐ Hi [ j, r]
β1 ⇐ RMQmax(Li , j′, j − 1) − Ci [ j, r]
if (i − 1, j′, r′) is a lower right corner of a block then

β2 ⇐ M[i − 1, j′] + ni

else
β2 ⇐ max{M[i − 1, j′ − 1], W [i′, j′, r′]} + ni

end if
W [i, j, r] ⇐ max{β1, β2}

end if
end for

the value of this element is computed. As shown in Algo-
rithm 1, the DP lattices M and W are computed row by
row. If block (i, j) is light, we can get the value of M[i, j]
by finding the maximum of M[i − 1, j] and M[i, j − 1]
immediately according to Lemma 2. On the other hand,
if block (i, j) is dark, we have to compute all values on
the bottom wall of block (i, j) besides the lower right cor-
ner. The function ComputeWall(i, j) shown in Algorithm 2
is used for this computation.

In Algorithm 2, to calculate element (i, j, r) at the bot-
tom wall of block (i, j), some additional information is
needed. Let σi denote the symbol of run R Xi . We define an
array P where P [i] points out the index of the former run
of R Xi which contains the same symbol σi . An array Ci is
prepared for each row i where Ci[ j, r] stores the number
of occurrences of σi in the suffix Yα( j,r)..m of Y . Another
array Li is prepared and it contains the values of the lower
right corners of the blocks in row (i − 1) plus the num-
ber of occurrences of σi between the corners to the right
end of Y . That is, Li[ j] = M[i − 1, j] + Ci[ j,m j] for each
j ∈ [0, l]. When computing the value W [i, j, r], we have
to consider the forced path that ends with (i, j, r). Fig. 1
shows an example to trace along the forced path. We have
to find out the location on row (i − 1) where the forced
path is across on, and we denote the found element as
(i − 1, j′, r′). An array Hi is prepared where Hi[ j, r] points
out the head of the forced path corresponding to (i, j, r),
we may say that Hi[ j, r] = ( j′, r′).

If the forced path is never across on row (i − 1), we
ignore the starting element of the forced path since its
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(a) (b) (c)

Fig. 2. An example for illustrating the time complexities. (a) O (nl + km). (b) O (km). (c) O (kl + p1).
value is equal to M[i − 1,0], which is 0, and the value
W [i, j, r] can be determined by considering the maximum
of the values {Li[0], Li[1], . . . , Li[ j − 1]}, each represent-
ing the length of the corresponding common subsequence.
Note that, after the maximum is found, the number of
occurrences of σi in the range [α( j, r),m] of Y should
be subtracted. On the other hand, if the starting element
(i − 1, j′, r′) exists, its value must also be considered. If
the starting element is located at the lower right cor-
ner of a block, its value has been computed and stored
in M . Otherwise, according to Corollary 1, this value can
be determined by finding the maximum of two values
M[i − 1, j′ − 1] and W [i′, j′, r′]. The temporary variables
β1 and β2 are used to store the best lengths of these two
kinds of common subsequences, respectively, and we can
get the LCS length which ends at (i, j, r) among them.

3.3. How fast is it

As illustrated previously, the elements which have to
be calculated in the original DP lattice include the lower
right corners of all blocks and the bottom walls of the
dark blocks, and each of the values can be calculated in
O (1) time. Let p1 and p2 denote the numbers of elements
on the bottom and right boundaries of the dark blocks.
Before the algorithm starts, we can precalculate the two
values p1 and p2 to determine which of the input strings
is considered as string X . Note that, although a logical
three-dimensional array is used for storing the data in our
algorithm, this array can be easily mapped to the compact
one-dimensional memory space with excluding the unused
elements. After the DP lattices M and W are computed,
the resulting sequence can be traced out in O (k + l) time
according to the additional pointers. We can get the fol-
lowing theorem.

Theorem 2. There exists an algorithm for computing the LCS of
two given RLE strings X and Y in O (kl + min{p1, p2}) time.

Now we compare the time complexity of our algorithm
with some previously proposed algorithms, O (nl + km)

[4], O (min{nl,km}) [11], O (kl log kl) [1] and O ((k + l + q)

· log(k + l + q)) [12], where q denotes the number of
matched blocks. Fig. 2 shows the comparison among the
time complexities O (nl + km), O (km) and O (kl + p1). It
shows that our algorithm outperforms the time complex-
ities O (nl + km) and O (min{nl,km}) for all cases. If the
number of blocks is large, our algorithm outperforms the
time complexity O (kl log kl). If there are many small dark
blocks, our algorithm outperforms the time complexity
O ((k + l + q) log(k + l + q)).

4. Conclusion

In this paper, we propose a simple algorithm for
computing the LCS of two given RLE strings. This algo-
rithm adopts the subset of the elements in the origi-
nal DP lattices. We improve the previously known time
bound O (min{nl,km}) and outperform the time bounds
O (kl log kl) or O ((k + l + q) log(k + l + q)) for some cases.
When considering the special edit distance problem in
which one substitution is replaced by one deletion plus
one insertion, we may first compute the LCS length and
then transform to the edit distance [5]. It is an open
question if there exists an algorithm for solving Leven-
shtein distance problem in the same time complexity
O (kl + min{p1, p2}), which outperforms the best known
time bound O (min{nl,km}) [10].
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