
A Formal Approach to Component Adaptation and Composition

David Hemer

School of Computer Science,
The University of Adelaide, SA, 5005, Australia

Email: hemer@cs.adelaide.edu.au

Abstract

Component based software engineering (CBSE), can in prin-
ciple lead to savings in the time and cost of software devel-
opment, by encouraging software reuse. However the reality
is that CBSE has not been widely adopted. From a technical
perspective, the reason is largely due to the difficulty of lo-
cating suitable components in the library and adapting these
components to meet the specific needs of the user.

Formal approaches to retrieval – using formal notations
for interface specification, and semantic based matching tech-
niques – have been proposed as a solution to the retrieval prob-
lem. These approaches are aimed at overcoming the lack of pre-
cision and ambiguity associated with text-based component in-
terfaces, requirements and retrieval techniques. However these
approaches fail to adequately address the problem of compo-
nent adaptation and composition.

In this paper we describe how component adaptation and

composition strategies can be defined using parameterised li-
brary templates. We define a variety of templates, including

wrapper templates that adapt a single program component,

and architecture templates that combine program components.
We include definitions for sequential architectures, independent

architectures and alternative architectures. These library tem-

plates are formally specified, so we are able to employ existing
formal-based retrieval strategies to match problem specifica-

tions against library templates. We discuss how adaptation
and composition can be semi-automated by the library tem-

plates defined in this paper in combination with existing re-

trieval strategies.
Keywords: Component-based Software Engineer-
ing, Component Adaptation, Retrieval, Specification
matching

1 Introduction

Component-based software engineering (CBSE) is an
approach to constructing software programs using a
library of components. The idea is to build programs
by composing various library components, rather
than building the program from scratch. Since CBSE
encourages software reuse, there are potential savings
on development time and costs.

While the concept was first introduced by McIlroy
(1969) more than thirty years ago, CBSE has at best
been slowly adopted. Moreover in safety critical ap-
plications, where the use of CBSE could lead to sav-

Copyright c©2005, Australian Computer Society, Inc. This
paper appeared at the 28th Australasian Computer Science
Conference, The University of Newcastle, Newcastle, Australia.
Conferences in Research and Practice in Information Technol-
ogy, Vol. 38. Edited by Vladimir Estivill-Castro. Reproduc-
tion for academic, not-for profit purposes permitted provided
this text is included.

This work was completed within the School of Information
Technology and Electrical Engineering, The University of
Queensland.

ings in verification effort, uptake of CBSE has been
minimal. There are both technical and non-technical
reasons for this. From the technical perspective, two
of the main challenges (besides from actually popu-
lating the library), are finding components that sat-
isfy the needs of the software engineer (retrieval), and
adapting library components to fit the software engi-
neers specific requirements (adaptation and composi-
tion).

Traditional keyword-based retrieval strategies
have inherent problems, such as the ambiguity and
imprecision associated with informal specifications.
To overcome these problems, formal approaches to
retrieval, referred to as specification matching, have
been proposed (Zaremski & Wing 1997, Perry &
Popovich 1993, Jeng & Cheng 1995, Schumann &
Fischer 1997). Specification matching strategies com-
pare component interfaces and problem specifications
(or user requirements) that have both been formally
specified. Matching of formal specifications involves
establishing that a logical equivalence or relationship
holds between the specifications. Tool support is usu-
ally based on theorem prover technology.

While these approaches show some promise, they
largely ignore the related problems of component
adaptation and composition. So while these match-
ing techniques can be used to locate components that
partially satisfy the user requirements, they provide
no insight into how they can be adapted to fully sat-
isfy the user requirements.

In this paper we propose using templates from
the CARE language (Hemer & Lindsay 2004, Lind-
say & Hemer 1997) to define adaptation strategies
for modifying and combining components. Templates
are modular collections of basic CARE units. Tem-
plates can be parameterised over their functional be-
haviour by including higher-order parameters. The
use of parameters lets us define very general adap-
tation strategies that can be applied to a variety of
problems. We discuss briefly how specification match-
ing strategies can be used to semi-automate the adap-
tation and composition process.

In Section 2 we give a brief overview of the CARE
language, focusing on those parts of the language used
in this paper. In this section we introduce CARE
modules and CARE templates. Sections 3-6 define
a variety of new templates that are used to adapt
and compose CARE components. We define wrapper
templates (Section 3), which are used to adapt sin-
gle components; sequential architectures (Section 4),
used to solve a problem by sequentially combining
components; independent architectures (Section 5),
used to solve a problem by breaking it up into sub-
problems that are solved independently; and alterna-
tive architectures (Section 6), used to solve a problem
by case analysis. We do not discuss iterator architec-
tures in this paper; however a generic accumulator
template is defined in a related paper by Hemer &



Lindsay (2004). In Section 7 we discuss how spec-
ification matching techniques can be used to semi-
automatically apply adaptation templates. In Sec-
tion 8 we summarise related work.

2 The CARE formal development environ-
ment

The adaptation strategies described in this paper are
defined in the CARE language (Lindsay & Hemer
1996, Lindsay & Hemer 1997). While most of the
ideas are more widely applicable, there are certain
features of the CARE language that make it more
suitable for defining adaptation templates than other
languages. We discuss these differences briefly in Sec-
tion 7.

CARE is a language, methodology and set of tools
designed to generate verified code from high-level
specifications. The language is functional in nature,
with a program consisting of units such as types and
fragments. Types model data structures; fragments
are similar to the functions used in functional pro-
gramming languages (e.g. ML and Miranda). Each
unit is formally specified using a Z-like specification
language (Spivey 1989). Units can either be imple-
mented by calls to other units, or by calls to primi-
tives from the target code language. A development is
complete when all types and fragments have been im-
plemented. At this point target language code can be
automatically generated, and proof obligations that
establish the correctness of the generated code with
respect to the initial specification can be generated
and discharged.

CARE supports the notion of reuse by providing a
library of modules and templates. Both modules and
templates consist of a collection of units. We begin
by briefly describing the main units of the language:
types and fragments.

2.1 The CARE language

Types are declared by giving an identifier and speci-
fying the set of values that objects of this type may
take. For example a type NatList representing all
lists of natural numbers can be declared as:

type NatList == seq N.

where seq N represents the set of all sequences of nat-
ural numbers. The specification provides an abstract
representation of the type; a concrete representation
is provided by the implementation. Types can be im-
plemented either by calls to primitives from the tar-
get language, or by combining other types (Lindsay &
Hemer 1997). An abstract (specified) type may have
more than one possible concrete implementation. For
example the natural number abstract type could be
implemented by 16 or 32 bit, signed integers or un-
signed integers.

Fragments are either simple or branching. Simple
fragments, which return a result based on the value of
the inputs, are declared by giving an identifier, a list
of input and output variables, an optional precondi-
tion and a postcondition. The precondition and post-
condition are used to generate proof obligations that
establish the correctness of fragments. For example
the fragment divide for dividing natural numbers,
provided the denominator is non-zero, can be speci-
fied as:

fragment divide(in n,d:Nat,out r:Nat)
pre d 6= 0
post r = n div d.

Branching fragments are used to control flow (they
describe what branch should be taken depending on
the values of the inputs), but may also return outputs
at any of the branches. In their most general form,
a branching fragment is declared by giving an identi-
fier, a list of input variables, an optional precondition,
and two or more result branches. Each result branch
includes a guard, defining the set of inputs for which
this branch will be used, together with an optional
list of output variables and an optional postcondi-
tion. The guard for the final branch may be omitted,
in which case the guard is just the negation of all other
guards. In this paper we will only consider branching
fragments that control flow but do not return any out-
puts and have exactly two branches. Such branching
fragments can be specified by providing a predicate
(the test) on the inputs; the guard for the first branch
is the test, while the guard for the second branch is
the negation of the test. An example is the fragment
isempty, which tests whether a list is empty.
bfragment isempty(in s:List)

test s = 〈 〉.
The test s = 〈 〉 represents the guard for the first

branch. The guard for the second branch is the nega-
tion of this test, i.e., ¬ s = 〈 〉.

Fragments can be implemented either by calling
primitives from the target language directly or by call-
ing other fragments. We will not go into any details
about the first category of implementations, except to
say that we generally prohibit the user from defining
such implementations, instead restricting such imple-
mentations to predefined library components. In the
latter case a fragment implementation may include:
calls to simple fragments; bindings to local variables;
calls to branching fragments for control flow; and se-
quencing. For example, consider the following recur-
sive implementation of a fragment for calculating the
sum of a list of naturals numbers:
fragment sum(in s:NatList, out n:Nat)

post n =
∑len(s)

i=1 s(i)
::= if isempty(s)

then zero
else head(s)::m:Nat;

tail(s)::t:List;
add(m,sum(t))

In this example it is assumed the fragment zero re-
turns the constant 0, add adds two natural numbers,
head returns the first element of a non-empty list and
tail returns the remainder of a non-empty list af-
ter the first element has been removed. The call to
isempty is used to control flow, with the first (termi-
nating) branch taken if the list is empty, and second
branch taken otherwise.

2.2 Modules

Modules are collections of related fragments and
types. A common usage of modules in CARE is for
defining data structures, together with operations on
the data structure. Modules can be parameterised
over sets of values, meaning that polymorphic data
structures can be defined. To use a parameterised
module, any set parameters must be instantiated to
an actual set. We give two examples of data structure
modules, one for representing natural numbers, the
other for representing lists of elements. The second
module is an example of a polymorphic data struc-
ture, with the module parameterised over the type of
the individual list elements.

The Nat module (only a partial listing for space
reasons), shown below defines primitives for repre-
senting and manipulating natural numbers. The im-
plementation details have been left hidden, but one



possible implementation in C would be to represent
the underlying data structure as an unsigned integer.

module Nat is
type Nat == N
fragment add(in x,y:Nat, out z:Nat)

post z = x + y.
fragment mult(in x,y:Nat, out z:Nat)

post z = x ∗ y.
fragment zero(out z:Nat)

post z = 0.
fragment one(out z:Nat)

post z = 1.
end module.

The module includes operations for adding and
multiplying two natural numbers. The operators are
specified using standard arithmetic operators. The
Nat module also includes fragments zero and one
for representing the constants 0 and 1.

The List module (only a partial listing for space
reasons) provides primitives for creating and manip-
ulating lists. The module is parameterised over the
set of values (X ) that individual list elements can
take. Primitive operations are provided for: creating
an empty list; accessing the head of a list; accessing
the tail of a list; adding an element to the head of a
list; joining two lists; and calculating the length of a
list. It also includes a branching fragment for test-
ing whether an element is a member of a list. The
function elems returns the set of all elements in a
list (ignoring repetitions), and the function # adds a
single element to the head of a list.

module List[X] is
type List== seqX .
fragment nil(out y:X)

post y = 〈 〉.
fragment head(in x:List, out y:X)

pre x 6= 〈 〉
post y = head x.

fragment tail(in x:List, out y:List)
pre x 6= 〈 〉
post y = tail x.

fragment cons(in x:X,in y:List,out z:List)
post z = x#y.

fragment append(in x,y:List, out z:List)

post z = x a y.
fragment length(in x:List, out n:Nat)

post n = len(x ).
bfragment isin(in x:X, in y:List)

test x ∈ elems(y).
end module.

2.3 Templates

The Care language also includes generic library com-
ponents, called templates. Like modules, templates
consist of a collection of CARE units (types and frag-
ments). However templates can be parameterised
over functional behaviour, as well as over types. This
is achieved by including higher-order parameters, cor-
responding to functions, relations and sets. To use a
template these parameters must be instantiated to an
actual value (in this case either a function, relation or
set). We describe templates with a simple example.
More template examples will be introduced later in
the paper.

An example is the AddConstantArg template,
shown below, which is similar to the “bind1st” tem-
plate from the C++ Standard Template Library
(Breymann 2000). This templates enables us to pass
a constant appearing in the main fragment as an ar-
gument in a call to a secondary fragment. This allows

us to solve a specific problem (e.g., adding 1 to a num-
ber) by using a more general fragment (e.g., adding
two numbers).

We begin by defining the syntax and semantics
of this template. The template implements the pro-
vided fragment main, which includes a single input
argument, by a call to the fragment gfrag, which
includes two input arguments. This is done by pass-
ing the input argument x of main as one argument of
gfrag, and a constant value afrag as the other ar-
gument. A third fragment, afrag, representing the
constant value is also required. The template is pa-
rameterised over the sets X , Y and Z ; a constant
value a : Y ; and a predicate Q : Y × X × Z → B
(representing the post-condition of main). We assume
that the template also includes types X, Y and Z rep-
resenting the sets X , Y and Z respectively, however
the declaration of these types has been dropped for
brevity.

template AddConstantArg[X ; Y ; Z ;
Q : Y ×X × Z → B; a : Y ] is

fragment main(in x:X, out z:Z)
post Q(a, x , z )

::= gfrag(afrag,x).
fragment gfrag(in y:Y, in x:X, out z:Z)

post Q(y , x , z ).
fragment afrag(out y:Y)

post y = a.
end template.

To illustrate how the AddConstantArg tem-
plate is applied consider the following user require-
ment, which specifies a fragment for incrementing a
natural number.
type N == N.
fragment increment(in m:N, out n:N)

post n = m + 1.
We assume that there are no fragments in the li-

brary (and in particular in the Nat module) that can
implement our requirement directly. We can how-
ever apply the AddConstantArg template, replac-
ing the main fragment by increment. To do this we
adapt the template by instantiating the parameters
as:

X ,Y ,Z 7→ N
Q 7→ λ a, b, c • c = b + a
a 7→ 1

and renaming the local variables of main as x 7→
m, z 7→ n. Parameter instantiations are defined using
lambda abstractions. The instantiation of Q above,
will replace an expression of the form Q(x , y , z ) with
z = y +x . This generates the following specified-only
fragments:
fragment gfrag(in y:N, in x:N, out z:N)

post z = x + y.
fragment afrag(out y:N)

post y = 1.
The fragments gfrag and afrag can now be imple-

mented directly by the fragments add and one respec-
tively from the library module Nat, thus completing
the example.

This completes the background to CARE. In the
following sections we present a variety of new adap-
tation templates.

3 Wrapper templates

The first class of adaptation templates that we define
are wrapper templates. As opposed to the other tem-
plates introduced later in the paper, these templates



do not combine fragments. Instead they take a sin-
gle fragment and do some sort of modification on this
fragment to provide a new fragment. We give two ex-
amples of wrapper templates in this section: the first
modifies the input arguments; the second modifies the
precondition.

The DropInput template allows a fragment
(main) to be implemented by calling a secondary frag-
ment (frag1) with one less input argument. This
template can be applied when the input argument to
be dropped does not occur in the main fragment. This
is useful because specification matching only matches
against fragments with exactly the same number of
arguments, even if the preconditions and postcondi-
tions are the same.

template DropInput[X ;Y ;Z;P : X → B;
f : X → Z] is

fragment main(in x:X,in y:Y,out z:Z)
pre P(x )
post z = f (x )

::= frag1(x).
fragment frag1(in x:X, out z:Z)

pre P(x )
post z = f (x ).

end template.

We will illustrate the use of this template in Sec-
tion 4.

The template WeakenPrecond allows a frag-
ment (frag) to be implemented by another fragment
(frag1) with a weaker precondition. This is useful,
because in implementing a fragment f by another
fragment g , we only have to ensure that the precondi-
tion of f implies the precondition of g . This template
can be applied to a fragment whose precondition is
the conjunction of two predicates (represented by the
parameters P and Q). The precondition is weakened
by dropping the second of the conjuncts. We provide
other templates for dropping the first conjunct and
dropping the entire precondition.

template WeakenPrecond[X ;Y ;P : X → B;
Q : X → B; R : X ×Y → B] is

fragment frag(in x:X,out y:Y)
pre P(x ) ∧ Q(x )
post R(x , y)

::= frag1(x).
fragment frag1(in x:X, out y:Y)

pre P(x )
post R(x , y).

end template.

A similar template can be defined that weakens a
precondition by adding disjuncts.

4 Sequential architectures

Sequential architectures allow problems to be solved
by combining fragments sequentially. We give two
examples in this section. The first example, FunDe-
comp, is a syntactic based adaptation strategy. The
second, SeqDecomp, is a semantic based adaptation
strategy, which uses applicability conditions to place
restrictions on parameter values. The FunDecomp
template allows a problem to be functionally decom-
posed into subproblems that can be solved separately.
The main fragment computes an answer by applying
functions g and h to the input arguments, then join-
ing the results by applying a third function f .

template FunDecomp[X ;Y ;U ;V ;W ;
f : U ×V → W ; g : X ×Y → U ;
h : X ×Y → V ] is

fragment main(in x:X, in y:Y, out w:W)
pre P(x , y)
post w = f (g(x , y), h(x , y))

::= gfrag(x,y)::u:U;
hfrag(x,y)::v:V;
ffrag(u,v).

fragment ffrag(in u:U,in v:V, out w:W)
post w = f (u, v).

fragment gfrag(in x:X, in y:Y, out u:U)
pre P(x , y)
post u = g(x , y).

fragment hfrag(in x:X,in y:Y, out v:V)
pre P(x , y)
post v = h(x , y).

end template.

To illustrate the use of the FunDecomp template
consider the following specification for computing the
sum of the lengths of two lists.

fragment sum lengths(in x,y:L, out z:N)
post z = len(x ) + len(y).

The fragment sum lengths can be plugged into the
FunDecomp template, replacing the main fragment.
The template is adapted by instantiating the param-
eters as follows:

X ,Y 7→ seq N
U ,V ,Z 7→ N

f 7→ λ a, b • a + b
g 7→ λ a, b • len(a)
h 7→ λ a, b • len(b)
P 7→ λ a, b • true

After applying these instantiations to the template
we get the following specified-only fragments that are
added to the user program (we omit the trivial pre-
conditions):

fragment ffrag(in u:N,in v:N,out w:N)
post w = u + v.

fragment gfrag(in x:L,in y:L,out u:N)
post u = len(x ).

fragment hfrag(in x:L,in y:L,out v:N)
post v = len(y).

The development continues by finding implemen-
tations for these three fragments. The first of these
fragments can implemented directly by the fragment
add from the Nat module. However the other two
fragments cannot be implemented directly by module
fragments yet, despite their postcondition being the
same as that of the length fragment from the List
module. This is because gfrag and hfrag have an
extra (unused) argument. These fragments can be
adapted by applying the DropInput template. For
gfrag, the template can be applied by instantiating
the parameters as follows:

P 7→ true, f 7→ λ u • len(u)

The following specified-only fragment is returned:

fragment frag1(in x:L, out u:N)
post u = len(x ).

The fragment frag1 can now be implemented by
the fragment length from the List template. To
complete the example the fragment hfrag is imple-
mented in a similar manner.

The second sequential architecture that we de-
scribe here is the SeqDecomp template. Like the
FunDecomp template, it allows us to solve a problem



by sequentially combining two other fragments. How-
ever it differs in that it is not purely syntax based. In-
stead the template includes three applicability condi-
tions that place restrictions on the values that can be
assigned to the parameters. To use the template these
applicability conditions must be proven for the instan-
tiated parameter values. The first condition states
that the precondition of gfrag follows from the pre-
condition of main. The second condition states that
the precondition of hfrag follows from the precon-
dition of main and the postcondition of gfrag. The
third condition states that the postcondition of main
holds, assuming the preconditions and postconditions
of gfrag and hfrag.
template SeqDecomp[X ;Y ;Z; P : X → B;

Q : X ×Y → B; R : X × Z → B; S : Z → B;
U : X → B; V : Z → B; T : Z ×Y → B] is

applic conds
∀ x : X • P(x ) ⇒ U (x )
∀ x : X , z : Z • P(x ) ∧ R(x , z ) ∧ S (z ) ⇒ V (z )
∀ x : X , y : Y , z : Z • U (x ) ∧ R(x , z ) ∧ S (z ) ∧

V (z ) ∧ T (z , y) ⇒ Q(x , y)
fragment main(in x:X, out y:Y)

pre P(x )
post Q(x , y)

::= gfrag(x)::z:Z;
hfrag(z).

fragment gfrag(in x:X, out z:Z)
pre U (x )
post R(x , z ) ∧ S (z )

fragment hfrag(in z:Z, out y:Y)
pre V (z )
post T (z , y).

end template.
To illustrate the use of the SeqDecomp template,

suppose we want to implement the following fragment
for returning the maximum value in a non-empty list
of natural numbers:
fragment max(in x:L, out m:N)

pre x 6= 〈 〉
post m ∈ elems(x ) ∧ ∀ e ∈ elems(x ) • m ≥ e.
The strategy we employ to implement max, is to

use the SeqDecomp template to combine the follow-
ing two fragments, the first used to sort the list in
ascending order, and the second to return the last el-
ement of a non-empty list (this is a very inefficient
way to solve the problem and is used for illustration
purposes only):
fragment sort(in x:L, out y:L)

post items(x ) = items(y) ∧ ordered(y).
fragment last(in x:L, out m:N)

pre x 6= 〈 〉
post m = last(x ).
We plug these three fragments into the template,

replacing main with max, gfrag with sort, and hfrag
with last. The template parameters are instantiated
as follows:

X 7→ seq N
Y 7→ N
Z 7→ seq N
P 7→ λ a • a 6= 〈 〉
Q 7→ λ a, b • b ∈ elems(a) ∧ ∀ e ∈ elems(a) • b ≥ e
U 7→ λ a • true
R 7→ λ a, b • items(a) = items(b)
S 7→ λ a • ordered(a)
V 7→ λ a • a 6= 〈 〉
T 7→ λ a, b • b = last(a)

After instantiation the applicability conditions be-
come:

∀ x : seq N • x 6= 〈 〉 ⇒ true

∀ x : seq N, z : seq N •
x 6= 〈 〉 ∧ items(x ) = items(z ) ⇒ z 6= 〈 〉

and

∀ x : seq N, y : N, z : seq N •
y = last(z ) ∧ ordered(z ) ∧ items(x ) = items(z ) ⇒

y ∈ elems(x ) ∧ ∀ e ∈ elems(x ) • y ≥ e

All of these conditions can be proven to be true.

5 Independent architectures

Independent architectures allow problems to be
solved by splitting the problem into subproblems that
can be solved independently, such that each subprob-
lem does not rely on input or output from the other
subproblems. An example is the template ParDe-
comp, which implements the fragment main, which
returns two results, by calling two separate frag-
ments that each return one of the results. Each sub-
fragment only relies on the initial input value of the
main fragment.

template IndepDecomp[X ;Y ;Z;P : X → B;
Q : X ×Y → B; R : X × Z → B] is

fragment main(in x:X, out y:Y, out z:Z)
pre P(x )
post Q(x , y) ∧ R(x , z )

::= qfrag(x)::y:Y;
rfrag(x)::z:Z;
y,z.

fragment qfrag(in x:X, out y:Y)
pre P(x )
post Q(x , y)

fragment rfrag(in x:X, out z:Z)
pre P(x )
post R(x , z ).

end template.

Consider for example the fragment minmax that
returns the minimum and maximum values in a list
of natural numbers, returning these values in separate
output variables.
fragment minmax(in x:L, out m,n:N)

pre x 6= 〈 〉
post m = min(x ) ∧ n = max (x ).

The fragment minmax can be plugged into the In-
depDecomp template, replacing the main fragment.
The template is adapted by instantiating the template
parameters as follows:

X 7→ seq N
Y ,Z 7→ N

P 7→ λ a • a 6= 〈 〉
Q 7→ λ a, b • b = min(a)
R 7→ λ a, b • b = max (a)

Applying these parameter instantiations gives rise to
the following fragment specifications:
fragment qfrag(in x:L, out m:N)

pre x 6= 〈 〉
post m = min(x ).

fragment rfrag(in x:L, out n:N)
pre x 6= 〈 〉
post n = max (x ).
These problems can now be solved separately.



6 Alternative architectures

The final class of adaptation architecture templates
are the alternative architectures. For this class of
the templates the main fragment is implemented by
choosing between two or more other fragments. In
CARE we consider only deterministic alternatives,
where the choice depends on the value of the input
arguments of the main fragment.

The CaseAnalysis template lets us implement
a fragment (main) by breaking the problem into two
cases, and implementing these two cases separately. It
has the effect of introducing an if-then-else construct.
The test is specified by the branching fragment bfrag,
the if case is represented by the fragment ifrag and
the else case is represented by the fragment efrag.
This template is useful when there is a library com-
ponent that implements the required function for all
but some exceptional inputs.

template CaseAnalysis[X ;Y ;Z; R : X ×Y → B;
P : X ×Y → B; Q : X ×Y × Z → B] is

fragment main(in x:X, in y:Y, out z:Z)
pre P(x , y)
post Q(x , y , z ).

::= if bfrag(x,y) then return ifrag(x,y)
else return efrag(x,y).

bfragment bfrag(in x:X, in y:Y)
test R(x , y).

fragment ifrag(in x:X, in y:Y, out z:Z)
pre P(x , y) ∧ R(x , y)
post Q(x , y , z ).

fragment efrag(in x:X, in y:Y, out z:Z)
pre P(x , y) ∧ ¬ R(x , y)
post Q(x , y , z ).

end template

To illustrate the use of the CaseAnalysis tem-
plate, consider the following example for adding an
element to a list of natural numbers, such that the
list contains no repetitions both before and after the
call to the operation.

type N == N.
type L == seq N.
fragment addelem(in e:N, in s:L, out t:L)

pre NoRep(s)
post NoRep(t) ∧ elems(t) = elems(s) ∪ {e}.

If we attempt to implement this with a call to the
fragment cons from the List module, then we get the
following proof obligations:

∀ y : seq N • NoRep(y) ⇒ true
∀ x : N; y , z : seq N • NoRep(y) ∧ z = x#y ⇒

NoRep(z ) ∧ elems(z ) = elems(y) ∪ {x}

For the first proof obligation, we must establish
that the precondition of the library fragment cons
is weaker than that of addelem (in effect show that
cons is defined for any input values that addelems
is defined for). This proof obligation can easily be
proven. For the second proof obligation we must es-
tablish that the postcondition of cons is stronger than
that of addelem (we can assume that the precondi-
tion of addelem holds). However it is easy to find
a counterexample to this proof obligation, i.e., the
case where x ∈ elems(y), since in this case the list
z = x#y contains two occurrences of the element x .

Instead we solve this problem by applying the
CaseAnalysis template. We replace the fragment

main by addelem, and adapt the template as follows:

X 7→ N
Y 7→ seq N
Z 7→ seq N
P 7→ λ a, b • NoRep(b)
Q 7→ λ a, b, c • NoRep(c) ∧

elems(c) = elems(b) ∪ {a}
R 7→ λ a, b • a ∈ elems(b)

Under this instantiation we get the following
specified-only fragments:

bfragment bfrag(in x:N, in y:L)
test x ∈ elems(y).

fragment ifrag(in x:N, in y:L, out z:L)
pre NoRep(y) ∧ x ∈ elems(y)
post NoRep(z ) ∧ elems(z ) = elems(y) ∪ {x}.

fragment efrag(in x:N, in y:L, out z:L)
pre NoRep(y) ∧ ¬ x ∈ elems(y)
post NoRep(z ) ∧ elems(z ) = elems(y) ∪ {x}.

The next stage of the development is to implement
the branching fragment bfrag by the fragment isin
from the List module. To do this we instantiate the
type parameter from the List modules as follows:

E 7→ N

Next, the fragment efrag can be implemented by
cons from the List module. The following proof obli-
gations must be discharged:

NoRep(y) ∧ ¬ x ∈ elems(y) ⇒ true
NoRep(y) ∧ ¬ x ∈ elems(y) ∧ z = x#y

⇒ NoRep(z ) ∧ elems(z ) = elems(y) ∪ {x}

The first obligation is trivial. The second can be
proved by observing that adding an element to a list
with no repetitions only produces repetitions if the
element was already member of the original list. Fi-
nally the fragment ifrag can be implemented by re-
turning the second argument, the list y , as an answer
(x already appears in y , so we do not want to add it
again).

7 Discussion

In CARE, program development starts with a spec-
ification of the problem (the problem specification).
The aim is to implement this problem specification
using (one or more) module fragments. However
module fragments rarely match the problem specifi-
cation as-is, so we may employ adaptation templates
to adapt the module fragments into a form that sat-
isfies the problem specification. To semi-automate
this development process we employ existing formal-
based approaches to retrieval. We briefly describe
how three formal-based retrieval approaches – signa-
ture matching, syntactic matching, and specification
(semantic) matching – have been used to find matches
between the problem specification and library com-
ponents. We then briefly discuss how we combine
multiple matching steps using tactics.

Signature matching (Rittri 1989, Runciman &
Toyn 1989), matches the functional signatures of li-
brary components and problem specifications. We
employ signature matching prior to syntactic or se-
mantic matching. It serves two purposes. Firstly to
narrow the search space by removing any modules
or templates with signatures that do not match the



problem specification. Secondly to generate renam-
ings of module/template variables and instantiations
of type parameters so that the input/output variables
and types of the library module/template fragment
are the same as the problem specification fragment.

Syntactic matching (Rollins & Wing 1991, Hemer
& Lindsay 2002) is applied when one or both of the
fragments includes higher-order parameters. It in-
volves matching specifications using higher-order pat-
tern matching or unification. We employ syntactic
matching to match problem specifications against li-
brary templates, or to match problem specifications
that include parameters (see example below) against
modules. Two fragment specifications with respect
to some instantiation of the parameters are said to
match syntacticly if and only if after applying the
instantiation they are the same up to renaming of
bound variables. Matches are described in terms of
instantiations of parameters. These instantiations
may be partial in the sense that not all of the template
parameters are instantiated. For example, in Sec-
tion 6, the parameter R is not instantiated when syn-
tactic matching is applied to match the problem spec-
ification (addelem) against the main fragment from
the CaseAnalysis template. Uninstantiated param-
eters could either be instantiated in later matches (in
this case when matching bfrag against isin) or in-
stantiated by the user.

When matching against templates that include ap-
plicability conditions (such as SeqDecomp from Sec-
tion 4), we use syntactic matching to calculate param-
eter instantiations. However we also need to use a the-
orem prover tool to check that the instantiated appli-
cability conditions are satisfied. In some cases it may
be necessary to defer proving the applicability condi-
tions until all of the parameters have been instanti-
ated (as discussed above this can be achieved either by
subsequent matching steps or by the user supplying
instantiations). An alternative is to prove the appli-
cability conditions in a prover that supports higher-
order logic such as Isabelle/HOL (Nipkow, Paulson &
Wenzel 2002), but this will require user interaction.

Specification matching (Perry & Popovich 1993,
Jeng & Cheng 1995, Zaremski & Wing 1997) is ap-
plied when the problem specification and library com-
ponent specification are first-order (i.e., they do not
include any higher-order parameters). Specification
matching encompasses a variety of semantic-based
matching techniques (Zaremski & Wing (1997) pro-
vide a comprehensive listing), where the logical mean-
ings of preconditions and postconditions of fragments
(or functions) are compared. We employ specifica-
tion matching to match problem specifications with
no higher-order parameters against modules.

Our current work is focussed on combining mul-
tiple matching steps in order to improve the au-
tomation of the process. To do this we have de-
fined a tactic language, similar to that used by
many interactive theorem provers (Gordon, Milner &
Wadsworth 1979), consisting of several basic search
tactics and “tacticals” for combining tactics to build
more complex tactics. We include a tactical for trying
alternate tactics and another for combining tactics in
sequence.

With this language we can write tactics that at-
tempt to apply specific templates and modules. Such
templates will typically attempt to adapt the prob-
lem specification by matching against a sequence of
adaptation templates until the problem specification
is in a form that can be implemented directly by a
module. A very simple tactic that can be easily writ-
ten in this language is to attempt to match the prob-
lem specification against all of the modules (and stop
if successful), or first match against the DropInput
wrapper template to drop an extra argument then

match against all of the modules. This tactic could
be used to automatically find implementations for the
fragments ffrag, gfrag and hfrag in the first exam-
ple in Section 4.

8 Related work

The approach described in this paper is similar to the
automated component adaptation approach of Penix
& Alexander (1997). However our approach differs
in several important ways. The first difference is the
treatment of higher-order parameters and how they
are matched. Penix and Alexander, whose approach
is based on the Larch Shared Language (LSL), de-
fine parameters in a separate “problem theory” to
the main functions. Problem theories give the sig-
nature of parameters, and other constructs used in
the main theory part. Parameters instantiations are
calculated by doing signature matching on problem
theories. The separation of parameter definition from
the rest of the module results in more false matches
than using pattern matching, thus shifting more bur-
den onto semantic based matching.

A second difference is that while Penix and
Alexander show a diagram for an architectural com-
ponent similar to our case analysis template, the
corresponding component specification fails to ad-
equately capture this information. In particular
while the specification language can capture sequen-
tial composition of components, it fails to model
branching in component architectures. In contrast
our approach can readily capture this information us-
ing branching fragments.

Morel & Alexander (2003) use specification slic-
ing to decompose a problem into two or more smaller
problem specifications which can be solved individ-
ually. Specification slicing is based on data depen-
dencies; in effect they break specifications into in-
dependent subproblems. We achieve a similar effect
through the use of independent architectures (Sec-
tion 5), however their approach could be more effi-
cient and could be used as a preprocessing stage.

Bracciali, Bragi & Canal (2002) describe an ap-
proach to adapting mismatching behaviours. Their
methodology has three main features: component in-
terfaces; adaptor specifications; and adaptor deriva-
tion. Components interfaces include a specification
of the functions offered and required (via signatures),
together with the specification of the behaviour (the
interaction protocol). Adaptor specifications spec-
ify interoperation between two components. Adaptor
derivation automatically generates a concrete adap-
tor. Adaptor derivation is based on matching function
signatures; in this sense our approach is more sophis-
ticated. However, their approach takes into account
non-functional behaviour and they use π-calculus to
model more complex connectors (architectures).

Bosch (1999) proposes a slightly different approach
to those discussed already. Rather than defining gen-
eral adaptation techniques that can be applied to
any component, Bosch instead associates adaptation
techniques with particular components. Such an ap-
proach allows Bosch to not only define adaptations
similar to the ones defined in this paper (so called
black-box adaptations), but also white-box adapta-
tions that require knowledge of the internals of a com-
ponent. However it is not clear that such an approach
could be integrated with formal-based retrieval.

Konstantas (1993) provides support for interoper-
ability of object-oriented components across different
environments and implementation languages. The
aims of Konstantas (1993) are similar to the aims
of our work, except our focus in more fine-grained.
This approach uses type matching (similar to signa-



ture matching) to define relationships between types
in order to transform a client interface to a form con-
sistent with the interface of the service.

Finally we say a few words about applying these
ideas to other formal component languages. While
this paper uses the CARE language to present the
ideas of component adaptation schemata, the general
ideas are more widely applicable. The closest coun-
terpart to CARE is KIDS (Smith 1990) (now part of
Specware), and in general most of the ideas presented
in this paper could be applied to enhance the capa-
bilities of KIDS. However one of the main differences
between CARE and KIDS is the existence of branch-
ing fragments, which as we have already discussed
adds much to the expressibility of the language, espe-
cially in defining templates/architectures with control
branching. Therefore we would lose some of the ca-
pabilities if we applied these ideas to KIDS.

The reuse capabilities of other formal languages,
in particular state-based languages such as B, could
similarly be enhanced, by using adaptation templates.
However the existence of state introduces new com-
plexities that need to addressed.

9 Conclusions

In this paper we have described how component-based
software engineering can be enhanced by providing
support for both component retrieval and component
adaptation. The approach described in the paper,
using the CARE language and method, builds on ex-
isting formal-based approaches to CBSE. In particu-
lar we extended existing work on specification match-
ing by defining general strategies for adapting com-
ponents using templates. Furthermore, we showed
how different matching techniques can be combined
to provide support for retrieval, where the matching
technique used depends on the kind of library com-
ponent.

Acknowledgements

This work was funded by Australian Research Council
Discovery Grant DP0208046, Compilation of Specifi-
cations. Thanks go to Colin Fidge for his useful feed-
back on an earlier draft of this paper.

References

Bosch, J. (1999), ‘Superimposition : A component
adaptation technique’, Information and Software
Technology 4(5), 249–305.

Bracciali, A., Bragi, A. & Canal, C. (2002), Adapt-
ing components with mismatching behaviours, in
J. Bishop, ed., ‘Proceedings of CD’2002’, Vol.
2370 of LNCS, Springer Verlag, pp. 185–199.

Breymann, U. (2000), Designing Components with the
C++STL, Addison-Wesley.

Gordon, M. J., Milner, A. J. & Wadsworth, C. P.
(1979), Edinburgh LCF : A Mechanised Logic of
Computation, Vol. 78 of Lecture Notes in Com-
puter Science, Springer-Verlag.

Hemer, D. & Lindsay, P. (2002), Supporting
component-based reuse in CARE, in M. Oud-
shoorn, ed., ‘Proceedings of the Twenty-Fifth
Australasian Computer Science Conference’,
Vol. 4 of Conferences in Research and Practice in
Information Technology, Australian Computer
Society Inc., pp. 95–104.

Hemer, D. & Lindsay, P. (2004), ‘Template-based con-
struction of formally verified software’, IEE Pro-
ceedings Software . Accepted for publication.

Jeng, J.-J. & Cheng, B. (1995), Specification match-
ing for software reuse: A foundation, in
‘Proceedings of ACM Symposium on Software
Reuse’, pp. 97–105.

Konstantas, D. (1993), Object oriented interoperabil-
ity, in O. M. Nierstrasz, ed., ‘Proceedings of
ECOOP’93’, Vol. 707 of LNCS, Springer Verlag,
pp. 80–102.

Lindsay, P. & Hemer, D. (1996), An industrial-
strength method for the construction of formally
verified software, in ‘Proceedings of ASWEC’96’,
IEEE Computer Society Press, pp. 26–37.

Lindsay, P. & Hemer, D. (1997), Using CARE to
construct verified software, in M. Hinchey &
S. Liu, eds, ‘Proceedings of ICFEM’97’, IEEE
Computer Society Press, pp. 122–131.

McIlroy, M. (1969), ‘Mass produced software compo-
nents’, Software Engineering Concepts and Tech-
niques pp. 88–98.

Morel, B. & Alexander, P. (2003), A slicing ap-
proach for parallel component adaptation, in
‘Proceedings of ECBS’03’, IEEE Computer So-
ciety, pp. 108–114.

Nipkow, T., Paulson, L. C. & Wenzel, M. (2002), Is-
abelle/HOL A Proof Assistant for Higher-Order
Logic, number 2283 in ‘LNCS’, Springer.

Penix, J. & Alexander, P. (1997), Toward automated
component adaptation, in ‘Proceedings of the
Ninth International Conference on Software En-
gineering and Knowledge Engineering’, pp. 535–
542.

Perry, D. & Popovich, S. (1993), Inquire: Predicate-
based use and reuse, in ‘Proceedings of the 8th
Knowledge-Based Software Engineering Confer-
ence’, pp. 144–151.

Rittri, M. (1989), Using types as search keys in func-
tion libraries, in ‘Proceedings of the Fourth In-
ternational Conference on Functional Program-
ming and Computer Architecture’, ACM Press,
pp. 174–183.

Rollins, E. & Wing, J. (1991), Specifications as search
keys for software libraries, in K. Furukawa, ed.,
‘Eighth International Conference on Logic Pro-
gramming’, MIT Press, pp. 173–187.

Runciman, C. & Toyn, I. (1989), Retrieving re-usable
software components by polymorphic type, in
‘Proceedings of the Fourth International Confer-
ence on Functional Programming and Computer
Architecture’, ACM Press, pp. 166–173.

Schumann, J. & Fischer, B. (1997), NORA/HAMMR:
Making deduction-based software component re-
trieval practical, in ‘Proceedins of ASE’97’,
IEEE Computer Society, pp. 246–254.

Smith, D. (1990), ‘KIDS: a semiautomatic program
development system’, IEEE Transactions on
Software Engineering 16(9), 1024–1043.

Spivey, J. (1989), The Z Notation: a Reference Man-
ual, Prentice-Hall, New York.

Zaremski, A. M. & Wing, J. (1997), ‘Specification
matching of software components’, ACM Trans-
actions on Software Engineering 6(4), 333–369.


