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INTRODUCTION

The main objective of subgroup discovery (SD), a
descriptive data mining technique based on super-

vised learning,1 is the discovery of interesting relation-
ships with respect to a specific property of interest to
the user, the target variable. SD techniques have been
used to address several problems throughout the liter-
ature, among which can be highlighted the results in
domains such as medicine2–6 and bioinformatics.7–10

The main advantage of SD with respect to other tech-
niques in real problems is the obtaining of simple
models easily interpretable by experts.

Evolutionary algorithms (EAs)11 imitate the
principles of natural evolution in order to solve
search/optimization and learning problems. EAs are
very suitable to perform the SD task because they
can reflect well the interaction of variables in
rule-learning processes and provide wide flexibility
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in the representation.12,13 In addition, in the rule
extraction process of SD, it is necessary to optimize
simultaneously different measures so the use of
multiobjective EAs (MOEAs) is well suited.

This article has two objectives. On the one
hand it presents a state of the art of the use of
EAs in SD. On the other hand the article analyses
the suitability and potential of the search performed
by EAs in order to apply to the development of SD
algorithms. The main goodnesses and advantages of
EAs are stated, the lessons learned on the use of this
type of search strategy are summarized, and future
directions to consider in the use of EAs in SD are
discussed.

To do so, the article is organized as follows.
First, the positioning of SD in data mining is presented
where definition, description language and quality
measures for SD are shown in different subsections.
Then, the use of EAs in SD can be observed. This
section presents the main advantages in the use of
EAs for SD task and main features of this type of
algorithms presented throughout the literature within
SD. In addition, we present a taxonomy proposal for
EAs for SD and describe the algorithms presented.
Finally, the suitability and potential of the search per-
formed by EAs in the SD task and the conclusions are
depicted.
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SUBGROUP DISCOVERY

SD extracts descriptive knowledge from data
concerning a property of interest. SD together with
Contrast Set Mining14 and Emerging Pattern Mining15

were grouped within the concept of Supervised
Descriptive Rule Induction16 whose main aim is to
understand the underlying phenomena with respect to
an objective class. Below is formally described the SD
task and two key elements in any SD algorithm, how
the extracted knowledge is represented and evaluated
(both during and outside the learning process).

Definition
The concept of SD was initially introduced by
Kloesgen17 and Wrobel,18 and more formally defined
by Siebes19 but using the name Data Surveying for the
discovery of interesting subgroups. It can be defined
as20:

‘In subgroup discovery, we assume we are given a so-
called population of individuals (objects, customers,
. . . ) and a property of those individuals we are
interested in. The task of subgroup discovery is
then to discover the subgroups of the population
that are statistically ‘‘most interesting’’, i.e., are as
large as possible and have the most unusual statistical
(distributional) characteristics with respect to the
property of interest.’

The main purpose of SD is the search for
relations between different properties or variables with
respect to a target variable.

To represent the knowledge, SD employs rules
which consist of induced subgroup descriptions. Each
rule R can be formally defined as:

R : Cond → Targetvalue

where Targetvalue is a value for the variable of interest
(target variable) for the SD task (which also appears
as Class in the literature), and Cond is commonly a
conjunction of features (attribute-value pairs) which
is able to describe an unusual statistical distribution
with respect to the Targetvalue.

SD uses descriptive induction through supervised
learning which is widely used in classification. How-
ever, SD is differentiated with respect to classification
techniques because it attempts to describe knowledge
by data while a classifier attempts to predict the
target value for new data to incorporate in the model.
Furthermore, an SD algorithm obtains a simple model
composed of individual and interpretable rules, while
the classifier is composed of a set of dependant
rules which are analyzed overall with respect to
accuracy.

Subgroup B

Subgroup C

Subgroup A

FIGURE 1 | Representation of different subgroups in an example
problem.

Figure 1 represents different subgroups in an
example problem. As can be observed, Subgroup A
represents a very specific subgroup because it covers
only two examples of the target variable x, Subgroup
B covers one example more. Both subgroups have
a high quality since all the examples covered are
correctly described. On the other hand, Subgroup C
is more general because it covers all the examples of
the target value x. However, Subgroup C covers one
example of the target value o leading to decrement the
quality of the subgroup. In summary, different types
of subgroups (general and/or precise) can be obtained
in SD as also occurs in classification. However, in SD
the extraction of general subgroups with good values
of precision is really interesting.

The main elements in SD in order to analyze
a proposed SD algorithm or to develop a new one
are the following21: the type of the target variable,
the search strategy, the description language and the
quality measures. Different types of target variable can
be found like binary, nominal or numeric, for example.
With respect to the search strategy used there are in
the literature different proposals based on beam search
like CN2-SD22 or Apriori-SD,23 exhaustive search like
SD-Map24 or Merge-SD25 for example or EAs among
others. The proposals based on EAs as search strategy
are main focus of this study being analyzed in a specific
section. The latter two elements, description language
and quality measures are described in the following
subsections.

Description Language for SD Rules
Interpretability of the extracted knowledge is an
important issue in data mining which determines the
quality of both the algorithm used and the results. This
is particularly true in SD. In this sense, the knowledge
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description language used is one of the most influential
factors on the interpretability when designing an SD
algorithm.

In SD, different sorts of rules have been used for
knowledge representation:

• Boolean rules. Different sorts of Boolean rules
have been presented in the literature. They can
be classified considering the representation of
descriptive variables:

• Pairs of variable/value. This type of rules is
used by the algorithms SDIGA,26 MESDIF27 and
NMEEF-SD.28 Below, a rule of this type can be
observed:

R : IF X1 = 3 AND X2 = Spain THEN Targetvalue
(1)

• Pairs of variable/interval. These rules are
employed by EDER-SD29 and GP3-SD,30 for
example. Next, an instance of this kind of rules
is presented:

R : IF X1 = [1, 3] AND

X2 = Spain THEN Targetvalue (2)

• Pairs of variable/value with order relations. Rules
with pairs variable/value and order operators. It
is used by classical algorithms like CN2-SD22

and SD.3 A rule of this type can be observed
below:

R : IF X1 > 1 AND X2 �= Spain THEN Targetvalue
(3)

• Fuzzy rules. This type of rules, based on fuzzy
logic31 allows to consider uncertainty and to
represent the continuous variables in a way
close to human reasoning. In this way, fuzzy
linguistic labels (LLs) are considered as the
values of the continuous variables. The fuzzy set
corresponding to each LL can be specified by the
user or defined by means of an uniform partition,
if the expert knowledge is not available.

Both crisp and fuzzy rules can have canonical
representation—a conjunction of variable-value pairs

with order relations, equalities or intervals—or the
disjunctive normal form (DNF) representation32

allowing the use of more than one value for each
variable. Eq. (4) represents an example of canonical
crisp rule and Eq. (5) an instance for DNF fuzzy
rule:

R : IF X1 = 3 AND X2 = Spain THEN Targetvalue
(4)

R : IF X1 =
(
LL1

1 OR LL2
1

)
AND X6

=
(
LL2

6

)
THEN Targetvalue (5)

where:

• X = {Xm/m = 1, . . . , nv} is a set of features used
to describe the subgroups and nv is the number
of descriptive features. These variables can be
categorical or numerical.

• T = {Targetvalue/j = 1, . . . , nc} is a set of values
for the target variable and nc is the number of
values.

• LLlnv
nv is the linguistic label number lnv of the

variable nv.

As can be observed, a canonical rule is formed
by variable-value pairs (with only one value per
variable) where all pairs are connected through the
AND operator. Otherwise, DNF rules can include
several values for each variable. In order to represent
this property in the representation, the operator OR
is employed.

Quality Measures Used in SD
A wide number of quality measures have been
presented in the SD literature both to guide the
search process in order to find the best SD rules
and to measure the quality of the SD rule set finally
obtained.17,22 In addition, a complete description
about these quality measures can be found in.1 The
most common quality measures used in SD can be
classified by their main objective such as:

• Complexity measures, related to the inter-
pretability of the subgroups, i.e., to the simplicity
of the knowledge extracted.

• Generality measures, used to quantify the quality
of individual rules according to the individual
patterns of interest covered.

• Precision measures, showing the precision of the
subgroups.

© 2014 John Wiley & Sons, Ltd.
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TABLE 1 Classification of the Quality Measures Used in Subgroup
Discovery

Quality measure C G P I

Number of rules X

Number of variables X

Coverage22 X

Support22 X

Confidence33 X

Precision measure Qc
3 X

Precision measure Qg
17 X

Qg-Weight3 X

Interest34 X

Novelty18 X

Lift35 X

Significance17 X

Sensitivity17 X X

False alarm3 X X

Specificity17 X X

Unusualness36 X X X

Piatetstky-Shapiro37 X X X

C, complexity; G, generality; I, interest; P, precision.

• Interest measures, intended for selecting and
ranking patterns according to their potential
interest to the user.

• Hybrid, that attempt to obtain a good trade-off
between different objectives.

Table 1 summarizes the Quality measures most
used in SD1 and their main characteristics.

According to the SD concept the obtaining
of interesting, simple and interpretable subgroups,
covering the majority of the examples of the interest
property (target variable) is desirable. Considering
this definition and the analysis of the different quality
measures used in the literature, we propose three
guidelines in order to establish the type of measure
more suitable, to guide the search process and to
analyze the quality of the subgroups obtained by any
SD algorithm:

• Interpretability. An SD proposal must obtain few
rules containing a low number of variables in the
antecedent part in order to help to the experts to
understand and use the extracted knowledge, i.e.,
simple and interpretable subgroups are preferred
in SD task.

• Relation sensitivity-confidence. An SD algorithm
must obtain results with a good precision,

where the majority examples covered belong
to the target variable, i.e., it must achieve the
best possible relation between sensitivity and
confidence. Both quality measures are primordial
in order to provide subgroups to the experts that
cover the higher number of described correctly
examples. It is difficult for the algorithms to
achieve this compromise due to the loss suffered
by a measure when trying to increase the other.

• Novelty. An SD model must contribute
novel knowledge, providing the experts with
information in order to describe unusual and
interesting behavior within the data. This
objective could be measured with a wide
number of quality measures as novelty, interest
or significance, among others. Nevertheless, it
is important to highlight the utility of the
unusualness to measure this objective because
it contributes with generality and confidence to
the problem. Moreover, this quality measure is
widely used in the specialized bibliography.

It can be considered that the main purpose of an
SD algorithm is to find a good trade-off between these
three guidelines because this lead to the obtaining of
good results in a wide number of quality measures
and not only in the ones used in the search process.

EVOLUTIONARY ALGORITHMS
FOR SD

SD is a rule-learning process that can be seen as an
approximation problem in which the objective is the
learning of the parameters of the model. In this task,
the search space can be very complex and the search
strategy used becomes a key factor. The search in this
complex search space can be performed using different
strategies, such as bean search, exhaustive search or
EAs. The use of EAs is very well suited because these
algorithms perform a global search in the space while
other systems based on decision trees divide the search
space enabling the not detection of overlapping rules
for the same class.

EAs are stochastic algorithms for optimizing
and searching based on the natural evolution process.
These algorithms were introduced by Holland.38

Different computational paradigms can be found
within EAs: genetic algorithms,38,39 evolution
strategies,40 evolutionary programming41 and genetic
programming.42 It is interesting to remark the use of
the evolutionary rule-based systems43 which use sets
of rules as knowledge representation highlighting the
use of this type of algorithms for efficient searches
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over complex search spaces44 because it has a great
potential as a search tool, allowing the inclusion
of domain knowledge and the obtaining of better
rules. A comparison between evolutionary versus
nonevolutionary methods was performed in13 and
the encouraging performance of the evolutionary
rule-based systems in comparison with the nonevolu-
tionary algorithms was shown. In addition, a review
about the good use of genetic programming for classi-
fication can be observed in12 where main advantages
with respect to the facility in the representation in
different problems, application in different task of
data mining, adaptability to the problems and so on.

This section presents the main features of EAs
and a taxonomy divided into the use of one and other
EAs, allowing the aggregation of the objectives in a
case and the use of different objectives in the other,
and in the use of post-processing methods in order to
improve the rules obtained are presented.

Main Features of EAs Used in SD
The knowledge is represented in SD through rules as
we have previously mentioned. Each rule is divided
into two parts, antecedent and consequent. In this
way, EAs for rule-learning process can consider or
not to represent the consequent within the rule, i.e.,
two codifications can be used: to codify the complete
rule or codify only the antecedent. Moreover, different
options can be taken when codifying the consequent
because the value of the target variable could be fixed
in a value or could be determined to the evolutionary
process in order to cover most of the examples of the
search subspace delimited by the antecedent.

According to this, EAs for rule-learning process
can use different schemes of representation:

1. ‘Chromosome = Rule’ approach, in which
each individual codifies a single rule and the
whole rule set is provided by combining several
individuals in the population. Three categories
are considered:

• The Michigan approach is usually called learning
classifier systems.45 This approach are rule-
based, message-passing systems that employ
reinforcement learning and an EA to learn
rules that guide their performance in a given
environment. New rules are detected through the
EA and bad ones are replaced via competition in
the evolutionary process.

• Iterative Rule-Learning (IRL) approach. In the
evolutionary process the chromosomes compete
where the best rule per run is chosen. The global

solution is formed by the best rules obtained
when the algorithm is run multiple times. SIA46

is a proposal that follows this approach.

• The genetic cooperative-competitive learning
(GCCL) approach,47 in which the complete
population or a subset of it encodes the rules.
In this scheme the chromosomes compete and
cooperate simultaneously.

2. ‘Chromosome = Set of rules’ approach, also
called the Pittsburgh approach, in which each
individual represents a set of rules.48 In this
case, a chromosome evolves a complete set of
rules and they compete among them along the
evolutionary process.

On the other hand, the choice of the
representation determines largely the operation of the
algorithm and it is fundamental to solve the problem.
Different representations for the codification of the
chromosomes can be observed such as:

• Binary codification is based on bits chains where
for each gene we can use different number of
bits.

• Integer/Real codification where the variables of
the problem are associated with only one gen
which has the concrete value within the interval.

• Tree structure is traditionally employed in genetic
programming paradigm.12,42

EAs are widely applied in knowledge discovery.
In SD it is necessary to simultaneously optimize
different measures, which are in conflict with each
other. SD task is so a multiobjective optimization
problem. EAs can address this problem in different
ways. On the one hand, the monoobjective EAs49 face
the problem as the optimization of a single measure,
usually aggregating the different measures into a single
one. On the other hand, MOEAs50,51 attempt to
optimize the different measures at the same time.

Monoobjective Evolutionary SD
These algorithms are based on the utilization of EAs
with a single objective as fitness function. In this way,
the search process is oriented in only one direction
for one objective or for the aggregation of different
objectives in one expression.

Different approaches can be observed in the
bibliography based on an evolutionary fuzzy system
(SDIGA26), on a hierarchical decision rules approach
(EDER-SD29), on an IRL approach (GAR-SD52) and
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FIGURE 2 | Operation scheme of SDIGA algorithm.

based on genetic programming (GP3-SD30). These
algorithms are presented below.

SDIGA.26 It is an evolutionary fuzzy system53

because it uses a knowledge representation fuzzy rules
and evolutionary computation as a learning process.
It is interesting to remark that SDIGA searches for
rules for each value of the target variable, i.e., the
consequent is not represented in the chromosome but
is fixed.

This algorithm follows the IRL approach where
the solution of each iteration is the best individual
obtained and the global solution is formed by the
best individuals obtained in the different runs. The
representation of the individuals is performed through
the ‘Chromosome = Rule’ approach and the core of
SDIGA is an EA using a post-processing step based
on a local search. This hybrid algorithm extracts one
simple and interpretable fuzzy rule with an adequate
level of support and confidence. The algorithm model
can use fuzzy canonical or DNF rules with a predefined
set of LLs.

This algorithm is included in an iterative process
for the extraction of different rules. In this way,
algorithm marks examples cover for rules to prevent
a new rule being obtained which covers exactly the
same examples in the following runs. Algorithm
produces rules while the generated rules reach a
minimum level of confidence and give information on
areas of the search space in which there are examples
not described by the rules generated in previous

iterations. The rule is improved in a post-processing
phase throughout a hill-climbing process, which mod-
ifies the rule in order to increase the degree of support.

The fitness is an aggregation function where
the selection of the quality measures like coverage,
significance, unusualness, accuracy, sensitivity, crisp
support, fuzzy support, confidence, and fuzzy
confidence is determined by the user. The number of
objectives within the weighted aggregation function is
between 1 and 3.

SDIGA is implemented in the KEEL software
tool54,55 and its operation scheme can be observed in
Figure 2. This algorithm has been applied in order to
search for unusual relationships in different real-world
problems such as:

• Marketing, which was analyzed in.26 The main
objective of this article was to extract conclusions
from the information on previous trade fairs
to determine the relationship between the trade
fair planning variables and the success of the
stand. SDIGA was applied in order to extract
information of interest about each of the three
efficiency groups of stands: low, medium, and
high efficiency.

• Medicine, for the discovery and description of
patients patterns in a psychiatric emergency
department.2 In this work were presented rules
describing relationships between the different
variables stored for each patient and the arrival

© 2014 John Wiley & Sons, Ltd.
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FIGURE 3 | Operation scheme of EDER-SD
algorithm.

time divided in different periods: day, afternoon,
and night.

• E-learning, which was analyzed in different
works.56,57 The main objective was to determine
behavior patterns for the students in e-learning
platforms at the University of Cordoba. Both
articles analyze possible relations between the
usage of complementary activities of a course
and the final marks obtained by the students. The
final mark is used as the variable to characterize,
using the different marks to divide the data
into classes and codifying them as values of the
consequent of the rules.

EDER-SD.29 This EA attempts to characterize
the minority class of a problem. Specifically, the
algorithm describes interesting relations on imbal-
anced data that generates rules for the target variable.
This algorithm is a modification of the HIDER
(HIerarchical DEcision Rules) algorithm.58 It is a
sequential covering EA that produces a hierarchical
set of rules, i.e., an instance will be classified by the
ith rule if it does not match the conditions of the
(i − 1)th precedent rules. The rules are sequentially
obtained until the search space is totally covered.

EDER-SD generates only individuals for the
target variable value corresponding to the minority
class. In addition, this algorithm penalizes an example
when it is covered by a rule, as CN2-SD22 and Apriori-
SD23 do. This penalization instead of removing the
examples produces the obtaining of more complex
rules because they have more conditions, i.e., the
precision of the rules is increased. Therefore, this
algorithm generates pyramidal rules, where the first
rule (with fewer conditions) covers a large number of
instances (high support) but with low precision. The
rest of the rules in the pyramid keep adding conditions
decreasing the support but increasing the precision.

The representation of the individuals is per-
formed through the ‘Chromosome = Rule’ approach,
where a tuple of real values represent the interval of
the ith attribute. This algorithm, instead of SDIGA,26

represents the target variable in the chromosome.
This algorithm is a monoobjective algorithm

and it allows the use of a wide number of the metrics
used in SD such as unusualness, accuracy, sensitivity,
or significance among others. The operation scheme
of the algorithm EDER-SD can be observed in
Figure 3. The good behavior of this algorithm has
been shown in a real-problem with several datasets
in order to generate models for defect classification.
Results obtained show that this algorithm generates
understandable and useful models that can be used
by project managers or quality assurance personnel
to guide the testing effort and improve the quality of
software development projects.

GAR-SD.52 This algorithm is based on IRL
approach and searches for rules for each value of
the target variable. GAR-SD is able to operate with
continuous variables (through the use of intervals) and
discrete ones. The process of searching for different
rules is initiated with the generation of the initial
population according to examples in the dataset that
have not been covered previously by individuals. In
addition, it employs a predefined support indicating
the minimum percentage of examples covered. With
respect to the initialization, continuous attributes
are generated with a reduced interval while discrete
attributes start with a single value.

The representation of the individuals is per-
formed through the ‘Chromosome = Rule’ approach,
where a tuple of real values represent both the interval
of the ith continuous attribute and the value of discrete
variables. These rules are codified through individuals
with variable length in which the consequent is not
included because it is fixed for each run.

© 2014 John Wiley & Sons, Ltd.
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FIGURE 4 | Operation scheme of GAR-SD algorithm.

GAR-SD employs a weighted aggregation
function with six objectives where there are three
quality measures for SD, namely support, confidence,
and significance. The remaining quality measures
are related to the variables which form the rule as
amplitudeC, amplitudeD, and re-covering. Moreover,
the evolutionary process is guided by a modification
of the uniform crossover operator where in the
replication of the population the elitism concept
is employed. In addition, the algorithm uses the
mutation operator and finally an adjustment function
of the intervals is presented.

The validity of the algorithm has been analyzed
with benchmarks obtained from the UCI Repository
of machine learning databases.59

GP3-SD30 is an iterative algorithm that mines
subgroups for each value of the target attribute.
The main objective is to discover the best subgroups
(induced as rules in the form of a derivation tree)
for each target attribute. This approach is based on a
genetic programming algorithm for mining association
rules60 where the individuals are represented by means
of tree structures with antecedent and consequent.

One of the most important aspects of this algo-
rithm is the selection procedure because it works as an
elitist selection allowing some of the best individuals
discovered and more representative from the current
generation to carry over to the next, unaltered.

At the end of the iterative process, GP3-SD runs
a final stage to increase or decrease the width of the
intervals (in continuous domains) in order to discover
a high quality intervals satisfying more instances or
prompting to a more reliable rule.

It uses genetic standard operators for genetic
programming like mutation and crossover. However,

FIGURE 5 | Operation scheme of GP3-SD algorithm.

there is an interesting feature with respect to these
operators because the probability of applying them is
adjusted based on the population requirements. With
respect to the fitness function, this algorithm uses
a weighted aggregation function considering support
and confidence (Figure 4).

The operation scheme of this algorithm can be
observed in Figure 5. At the end of the process, the
algorithm optimizes numerical features (if they are
present in the problem) codified through intervals
with an increase or decrease of their width.

GP3-SD has been validated with benchmarks
obtained from the UCI Repository of machine learning
databases.59

Table 2 summarizes the most important elements
used for each evolutionary approach.

© 2014 John Wiley & Sons, Ltd.
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TABLE 2 Comparison of Properties for Monoobjective Evolutionary Algorithm for Subgroup Discovery

Feature SDIGA26 EDER-SD29 GAR-SD52 GP3-SD30

Evolutionary algorithm Generational with IRL
approach

Generational with IRL
approach

Generational with IRL
approach

Generational with
Elitism

Knowledge
representation

Canonical or DNF fuzzy
rules

Canonical rules with
intervals

Canonical rules with
intervals

Canonical rules with
intervals

Individual coding Chromosome = Rule Chromosome = Rule Chromosome = Rule Tree structure = Rule

Quality measures used
as objectives

Aggregation function with
different measures
among: Coverage,
significance,
unusualness, accuracy,
sensitivity, support and
confidence

Accuracy, sensitivity,
significance, f-measure,
lift or unusualness

Aggregation function
with different
measures: support,
confidence,
significance,
amplitude, amplitude
and re-covering

Aggregation function
with different
measures: support
and confidence

Operators Biased mutation, two point
crossover and local
search

Recombination and
real-code crossover

Uniform crossover,
mutation and
adjustment of
intervals

Standard crossover and
mutation

Multiobjective Evolutionary SD
The simultaneous optimization of different objectives
is desirable in SD. The improvement through an aggre-
gation function induces a search only in a trade-off
zone between all the quality measures used. Moreover,
the analysis of weights used difficult this search pro-
cess. However, a multiobjective optimization is more
suitable for SD because the goal is to find the decision
vectors, which correspond to objective vectors and can
not be improved in a dimension without degrading
one-another, which is called optimal Pareto front.51

Throughout the bibliography different multi-
objective approaches for SD have been presented:
MESDIF27 and NMEEF-SD28 based on evolutionary
fuzzy systems. These approaches are presented, below:

MESDIF.27 This MOEA is an evolutionary fuzzy
system based on the SPEA2 approach.61 It applies
the concepts of elitism in the rule selection (using
a secondary or elite population) and the search
for optimal solutions in the Pareto front. In order
to preserve the diversity at a phenotypic level the
algorithm uses a niches technique which considers the
proximity in values of the objectives and an additional
objective based on novelty to promote rules which give
information on examples not described by other rules
of the population.

The rule induction process obtains rules with
high predictive accuracy and which are comprehen-
sible and interesting. In this proposal, the user can
choose between a wide number of quality measures
(coverage, significance, unusualness, accuracy, sensi-
tivity, support, and confidence) to maximize all the
defined objectives.

One of the most important aspects of MESDIF
is the obtention of results for all the values of the
target variable. It returns the individuals of the elite
population for each value, whose size is defined by
the user.

The algorithm uses the ‘Chromosome = Rule’
approach. The MOEA discovers fuzzy rules whose
consequent is prefixed to one of the possible values of
the target feature. Therefore, all the individuals of
the population are associated with the same value
of the target variable, and so the chromosome only
represents the antecedent of the rule.

MESDIF is implemented in KEEL54,55 and its
operation scheme can be observed in Figure 6. This
algorithm was applied in real-world problems such as
marketing,62 medicine,2 and e-learning.56,57

NMEEF-SD.28 It is a multiobjective evolutionary
fuzzy system based on NSGA-II.63 NMEEF-SD cod-
ifies each candidate solution according to the ‘Chro-
mosome = Rule’ approach, where only the antecedent
is represented in the chromosome and the consequent
is prefixed to one of the possible values of the target
feature in the evolution. Therefore, the algorithm
must be executed as many times as the number of
different values the target variable contains. With
respect to the representation of the rules NMEEF-SD
can use canonical or DNF rules.

As the general objective of NMEEF-SD is to
obtain a set of rules, which should be general and
accurate, the algorithm includes components which
enhance these characteristics. In particular, diversity
is enhanced in the population using a new operator
to perform a re-initialization based on coverage,
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FIGURE 6 | Operation scheme of MESDIF
algorithm.

FIGURE 7 | Operation scheme of NMEEF-SD algorithm.

in addition to a niching technique (the crowding
distance in the selection operator). On the other
hand, in order to promote generalization, as well
as the objectives considered in the evolutionary
approach, the algorithm includes operators of biased
initialization and biased mutation. Finally, to ensure
accuracy, in addition to the objectives NMEEF-SD
returns as its final solution those rules which reach a
predetermined confidence threshold.

NMEEF-SD allows to choose between two and
three quality measures as objectives of the evolution-
ary process in order to obtain relevant subgroups,
between: coverage, significance, unusualness, accu-
racy, sensitivity, support, and confidence. It is also
implemented in KEEL54,55 and the operation scheme
can be observed in Figure 7. Recent applications to
real problems with an EA for SD have been analyzed
through this algorithm in different problems such as:

• E-learning,57 where a description of possible
relationships between the use of the e-
learning platform and marks obtained by the
students were analyzed. NMEEF-SD obtained

a comprehensive set of subgroups employing
a low number of variables with the highest
unusualness. Subgroups obtained allowed to the
teachers to take decisions about course activities
to improve the performance of their students.

• E-commerce,64 where the main objective of this
article was to analyze the usage of customers in
a website based on the sell of olive oil in order to
improve its design. Conclusions obtained have
helped to the webmaster team to improve the
design of the website.

• Bioinformatic,7 which presents an interesting
study in this domain in order to find interpretable
knowledge in the Influenza A virus problem and
describe unusual behavior in several subtypes of
this virus. The results of NMEEF-SD offer the
community a new point of view in the analysis
of the Influenza A virus by its interpretability,
which obtains simple rules to represent different
subtypes of the virus.

• Concentrating photovoltaic technology was
analyzed in.65 This technology is an alternative
to the conventional photovoltaic for electric
generation. It produces electricity in a cheaper
way by means of high efficiency multi-
junction solar cells. The main objective was
to describe the main external variables which
improve the performance of the solar cells. The
results confirmed some relationships between
atmospheric variables and maximum power as
well as new knowledge.

Post-processing Approaches for Optimizing
Subgroups
In a data mining process, it is possible to improve
the rules obtained with the adjustment of different
parameters of the algorithm. For example, it is possible
to select some rules, modify intervals, adjust fuzzy
labels, improve rules, and so on. This is also true in SD,
where it is possible to improve the results by analyzing
the rules and performing different adjustments.
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TABLE 3 Comparison of Properties for Multiobjective Evolutionary Algorithm for Subgroup Discovery

Feature MESDIF NMEEF-SD

Evolutionary algorithm MOEA based on SPEA2 MOEA based on NSGA-II
Knowledge representation Canonical or DNF fuzzy rules Canonical or DNF fuzzy rules
Individual coding Chromosome = Rule Chromosome = Rule
Quality measures used as objectives Selected by the user among: Coverage,

significance, unusualness, accuracy,
sensitivity, support, and confidence

Selected by the user among: Coverage,
significance, unusualness, accuracy,
sensitivity, support, and confidence

Selection Tournament Tournament
Operators Biased mutation and two point crossover Biased mutation, two point crossover and

re-initialization based on coverage

This section presents two post-processing
approaches for optimizing subgroups. On the one
hand, the improvement of subgroups obtained by
any SD algorithm based on fuzzy logic is per-
formed through the use of the 2-tuples linguistic
representation.66 This adjustment improves the
extracted knowledge without modify the linguistic
representation of the rules. On the other hand,
subgroups are improved with an approach based on
the search for exceptions within subgroups obtained
by any SD algorithm. This approach combines initial
subgroups with their exceptions in order to improve
the knowledge extracted.

Genetic lateral tuning for SD
Some SD algorithms use fuzzy logic31 to codify
continuous variables which are considered linguistic,
and the fuzzy sets corresponding to the LLs can
be specified by the user or defined by means of a
uniform partition for example if the expert knowledge
is not available. Therefore, the definition of the
optimal fuzzy sets is a complex process. In a post-
processing stage the definition of this fuzzy sets can be
improved, for example through a lateral displacement
of the LLs which is known as the 2-tuples linguistic
representation.66

This approach was presented in67 and allows
the lateral displacement of the labels considering only
one parameter (slight displacements to the left/right
of the original membership functions). This involves a
simplification of the search space that eases the deriva-
tion of optimal models. Furthermore, this process
of contextualizing the membership functions enables
them to achieve a better covering degree while main-
taining the original shapes, which results in accuracy
improvements without a loss in the interpretability
of the fuzzy labels. In the specialized literature, the
2-tuples representation has been used to tackle differ-
ent problems as regression68 or classification.69,70

The symbolic translation of a linguistic term is a
number within the interval [−0.5, 0.5) that expresses

the domain of a label when it is moving between its
two lateral labels. Let us consider a set of labels S
representing a fuzzy partition. Formally, we have the
pair, (si,αi), si ∈ S, αi ∈ [−0.5, 0.5).

This approach employs the lateral tuning
through the global tuning of the semantics. The tuning
follows a major interpretability and it is suitable for
SD task because this property is important for SD
algorithms. It is applied to the level of linguistic
partition, where the pair (si, αi) takes the same tuning
value in all the rules where it is considered. Therefore,
it uses a real representation with two values for
variable. The proposal uses the CHC algorithm71 in
order to design the learning method. It is a genetic
algorithm that presents a good trade-off between
exploration and exploitation, making it a good choice
in problems with complex search spaces.

Multiobjective Evolutionary Fuzzy System
for Detection of Exceptions in Subgroups
An exception is a rule with incorrectly described
examples corresponding to a different value from
the target variable of the subgroup. The main idea
of this post-processing approach is to find exceptions
within subgroups in order to provide an improvement
in the precision of subgroups and new knowledge for
experts. In this way, this approach is applied for each
subgroup obtained previously for any SD algorithm.
Then, a set of exceptions are obtained for each
subgroup, and finally a modified subgroup formed
by initial subgroups and their exceptions are shown.

The approach based on this methodology is
called MEFES and was presented in.65 It uses a MOEA
and fuzzy logic to tackle the detection of exceptions
in subgroups. It is able to work in fuzzy and/or crisp
domains, obtaining modified subgroups which are
formed by initial subgroups and their exceptions.

The objective of this post-processing approach
is to find exceptions within each input subgroup—i.e.,
examples incorrectly described corresponding to a dif-
ferent value of the target variable—in order to provide
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an improvement in the accuracy of the SD models,
because errors made by the model in the description
of examples are corrected, and new knowledge for
the experts is provided, and new spaces in the data
with unusual behavior are delimited and described.

MEFES uses an integer representation scheme
with as many genes as variables contained in the
dataset, without considering the target variable. It
is able to works with categorical and/or continuous
variables, depending on the problem. The codification
is performed according to the ‘Chromosome = Rule’
approach,53 where only the antecedent is represented
in the chromosome. The value of the target variable
for the individuals is considered to be the opposite
value of the initial subgroup, because the main idea is
to search for exceptions within the subgroup.

The core of the algorithm is performed through
a MOEA following the NSGA-II approach.63 In this
way, MEFES uses nondominated sort and crowding
distance as operators of the algorithm and specific
operators as oriented initialization, oriented mutation,
and oriented re-initialization based on coverage. The
search for exceptions within subgroups is performed
through two quality measures as objective vectors of
the algorithm: confidence and sensitivity.

This approach was also applied to the problem of
concentrating photovoltaic technology.65 The results
were analyzed by experts in this technology and
subgroups with exceptions presented new interesting
and relevant knowledge because some rare cases were
detected.

SUITABILITY AND POTENTIAL OF
THE SEARCH PERFORMED BY EAS
Considering the distinguishing features of the SD task
and the current state of EA-based SD algorithms,
some important questions about the suitability and
potential of this type of algorithms are highlighted.
To do so, this section presents a complete analysis of
the advantages in the use of EAs for SD organized in
different sections. Firstly, the justification on the use
of EAs in the SD task is presented, describing the main
advantages and benefits of this type of algorithms.
Next, lessons learned are shown respect to the use of
EAs for SD. Finally, the challenges to be addressed in
the future are depicted.

Why Using EAs in SD
The process of obtaining descriptive rules using
supervised induction in SD must:

• discover relationships among descriptive vari-
ables and target one,

• represent this knowledge in a simple, understand-
able way using rules and

• optimize different and usually conflicting quality
measures,

including all the available domain knowledge.
SD is a complex problem that can be formulated

from the optimization point of view coding rules as
a parameter structure and searching the parameters
values that give us the optimum for a concrete fitness
function. In this scenario the EAs are a very suitable
tool in order to design an SD algorithm. They are
global search techniques with the ability to explore a
large search space for suitable solutions only requiring
a performance measure. They have shown a good
behavior in complex optimization problems.72

The assortment of SD rules includes rules with
discrete variables, rules with inequality operators,
rules with intervals, fuzzy rules (and combinations
among them) and depending on the kind of rule to use,
the configuration of the search space will be different.
It is interesting to remark that EAs allow a wide
flexibility in the representation. Likewise, the design
of genetic operators allows to reflect in a suitable
way the interaction among variables which is a key
factor in the rule learning processes. Moreover the
generic code structure and independent performance
features of EAs make them suitable candidates to
incorporate a priori knowledge. For SD rule learning
this knowledge can be expressed as definitions or
restrictions for intervals, fuzzy sets corresponding
to linguistic variables, fuzzy membership function
parameters, number of rules, or genetic operators that
bias the search using knowledge related to SD task.

As previously mentioned, the main purpose
of SD algorithms is to find a good trade-off
between interpretability, relation between sensitivity-
confidence and novelty. This complex purpose has
been addressed with classical methods to handle
multiobjective optimization problems, usually the
weighted sum method that scales a set of objectives
into a single objective by multiplying each one with
a user-supplied weight describing his preference.26,30

These approaches look for the best solution repre-
senting only one preference. As it is well known, EAs
have the ability to find multiple optimal solutions in
one single run. It makes EAs into a good approach to
multiobjective optimization problems. MOEAs50,51

can be taken into account multiple goals within the
same optimization process. They generate a set of
nondominated solutions that represent a trade-off
among objectives instead of a single one. The use of
MOEAs is a suitable option for the multiobjective
optimization problem that SD task presents.
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Sometimes, it is necessary to optimize previously
obtained extracted knowledge in SD, such as simplify
rule set, tune intervals, change fuzzy partitions used
in variables or detect exceptions in rules among
others. These problems can also be formulated as
optimization problems approachable by EAs.

Lessons Learned
EAs are used as a global search technique. They are
very suitable to explore large search spaces and to find
adaptable solutions. The contribution of this type of
algorithms to the SD task can be summarized in the
following main properties:

1. Chromosome = Rule is probably the more
natural representation for extracting rules in
SD. It should be noted that the main objective
of SD is to obtain rules to represent independent
chucks of knowledge. An evolutionary search
process where an individual is a rule allows
to explore in an efficient and effective way the
complex search space.

2. There are not Chromosome = Set of rules
or Cooperative-Competitive approaches in the
literature. This could be related to the individual
character of the SD rules. Nevertheless, the
development of proposals based on these
approaches (in special cooperative-competitive
for the consideration of a more limited search
space) could be analyzed. This approach
would allow to consider rules with overlapping
between antecedents and different consequents
in a suitable way. In addition, it could allow
to obtain both rules and exceptions in a single
stage.

3. Some proposals codify both antecedent and con-
sequent in the search process. This codification
allows to determine the value of the consequent
in order to obtain rules so it gives a higher flex-
ibility in the learning process. However, rules
for all values of the target variable may not
be obtained. In certain situations where experts
need to obtain information only for some values
of the target variable, it would be necessary to
use algorithms that fix the consequent value. As
a consequence, the use of a prefixed consequent
in the learning process reduces the search space
and could improve the learning process in an
efficient and effective way. Definitely, codifica-
tion of individuals is associated to the necessity
of the experts.

4. There is no consensus about the most suitable
type of rule for the SD task (interval, fuzzy,

categorical, and DNF). The election usually
relies on the particular preferences for the
problem. In problems with a continuous domain
(not previously discretized) the learning process
is more complex but the EAs provide a suitable
framework.

New Challenges on the Use of EAs for SD
There are some potential areas of future research
regarding the use of EAs for SD. Some of them are the
following:

1 Overlapping and interaction among SD rules. So
far the cooperation between rules has not been
taken into account in SD. Algorithms evaluate
individually rules during the search process. At
the end averages of the quality measures of the set
of individual rules are obtained. Thus obtaining
overlapping rules is not prevented or detected,
except for some approaches that weights the
examples already covered.

The analysis of overlapping rules in SD can be
interesting in some cases:

• Two rules with the same consequent and
overlapped antecedents could be considered as
two different points of view to describe the value
of the target variable. This can provide useful
knowledge to the expert on the problem. The
development of EAs for SD that considers this
overlapping could be relevant.

• Rules with different consequents and overlapped
antecedents mean overlapping between classes.
If classes are overlapped it might be interesting
to develop EAs to pay special attention to
the description of the minority class. In
the special case when an antecedent includes
the other, we are talking about exceptions.
There is a post-processing approach for the
extraction of exceptions from SD rules,65 but an
approach addressing the learning of general rules
and exceptions together would be interesting.
Moreover, this situation is possible to analyze
it from the point of view of the multilabel
classification problem.

• The interaction among rules has not been
considered yet in SD algorithms due to the
individual evaluation of the SD rules. As the
common use of SD algorithms is the obtaining of
a set of simple rules that provide knowledge in a
classification problem, it would be interesting
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to develop SD algorithms considering the
interaction among rules.

2. SD algorithms for regression problems. In
regression problems the description of the
relation among descriptive variables and one
variable of interest (in this case, continuous)
could be interesting for the expert. The EAs
for SD presented throughout the literature
work only with discrete/categorical target
variables and there is only one nonevolutionary
algorithm, SD-Map �,73 that addresses this
problem.

The learning of SD rules for the description of
regression problems must face a more complex search
space in which the dependences among descriptive
features and continuous target variable must by ana-
lyzed as well as the proper way to manage the target
variable. Again, for this complex problem, the adapt-
ability on the representation and operators and the
robustness capacity of EAs make them a good choice
to design SD algorithms for regression problems.

3. Scalability issues in SD. When applying SD to
real-world problems, these usually are large
or high dimensional datasets. The former is
related to the number of instances and the
later with the number of features. There are
two typical possibilities to face it74: redesigning
the algorithm to run efficiently with huge
input datasets or reducing the size of the
data before the application of SD algorithm
without changing the result drastically. In the
specialized bibliography different sampling and
filter algorithms are proposed with the aim to
reduce the number of instances before applying

the SD algorithms.75–77 Until now there are
no studies that attempt to reduce the number
of variables for SD task or to approach the
large and high dimensional component through
a multiobjective EA. The analysis of estimations
for the quality measures based on a reduced
subset of the pattern problems could be
interesting.

4. SD algorithms for multilabel classification
problems. Multilabel classification78 can be seen
as a generalization of binary and multiclass
classifications. It does not impose an a priori
limit on the number of elements that the set of
outputs can hold. The extraction of SD rules for
this kind of problems imposes a set of additional
difficulties and restriction to the search process.
It would be interesting to develop new SD
algorithms for this type of problems.

This overview has presented an analysis about
the evolutionary extraction of descriptive rules in SD.
A complete analysis of different approaches, type of
rules, codification schemes, genetic operators, and
quality measures has been performed. Moreover, it has
been shown the development carried out of EA-based
processes for generating SD rules and for optimizing
SD rules obtained in a previous stage. On the other
hand, main guidelines that should be satisfied by any
SD approach in order to facilitate the selection of
quality measures more adapted both to evaluating the
subgroups discovered and to guide the search process
have been presented.

Considering the distinguishing features and the
state of the art for SD task, the advantages, and
benefits that the use of EAs for this data mining task
have been shown.
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55. Alcalá-Fdez J, Sánchez L, García S, del Jesus MJ,
Ventura S, Garrell JM, Otero J, Romero C, Bacardit
J, Rivas VM, et al. KEEL: a software tool to assess
evolutionary algorithms for data mining Problems. Soft
Comput 2009, 13:307–318.
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