
ENFORCEMENT OF SECURITY POLICY COMPLIANCE IN 
VIRTUAL PRIVATE NETWORKS 

 
Haidong Xia, Jayashree Kanchana and José Carlos Brustoloni 

Department of Computer Science 
 University of Pittsburgh 
210 S. Bouquet St. #6135 

 Pittsburgh, PA 15260 – USA 
{hdxia,kanchana,jcb}@cs.pitt.edu  

   

  
 

ABSTRACT 
Virtual Private Networks (VPNs) enable an organization’s members to telecommute from home or while traveling. 
Although members may use computers that are shared, borrowed, or rented from others to connect to a VPN, VPN 
protocols, such as IPsec, typically do not authenticate the configuration of users’ computers. If a computer used 
for VPN access is compromised, an attacker can exploit it to gain unauthorized access. We propose the use of 
attestations to overcome this vulnerability. An attestation is a disclosure of a computer’s configuration, signed by a 
secure coprocessor. We contribute protocol enhancements that enable attestation to be combined with IPsec, such 
that only an organization’s members that use uncompromised computers can gain and maintain access to the 
organization’s VPN. Experiments demonstrate the efficacy and efficiency of our solution. 

 
 
1   INTRODUCTION 
 

Many organizations maintain Virtual Private 
Networks (VPNs) that enable its members to 
connect via the Internet to the respective 
organization’s intranet (Yuan and Strayer, 2001). 
Members may use VPNs, e.g., when they are at 
home or traveling. VPNs often use IPsec to secure 
such communication. IPsec can mutually 
authenticate connection endpoints and guarantee 
packet integrity and confidentiality (Kent and 
Atkinson, 1998) .  
 

The computers used by members are often weak 
links in VPN security. VPN protocols, such as 
IPsec, typically do not authenticate the 
configuration of users’ computers. However, while 
away from an organization, members often use 
computers that are shared with other household 
members, borrowed from a person they’re visiting, 
or rented  from a cybercafé. If an attacker has 
compromised such a computer, the attacker may be 
able to gain unauthorized access to an 
organization’s intranet via a member’s VPN 
connection. 
 

We propose the use of secure coprocessors to 
overcome this vulnerability. The Trusted 
Computing Group (TCG) (Trusted Computing 
Group, 2005a) has standardized secure 
coprocessors (called TPMs – Trusted Platform 
Modules) (Trusted Computing Platform Alliance, 
2002) that have low cost (about $4) and are 
embedded in an increasing number of computers 
from IBM, HP, Dell, and other manufacturers. 
  

 Secure coprocessors enable attestation, i.e.,   
unforgeable disclosure of a computer’s 

configuration to a remote party (Pearson, 2003). 
This paper contributes protocol enhancements that 
enable attestation to be combined with IPsec, such 
that only authenticated users with uncompromised 
computers can connect to an organization’s VPN. 
Man-in-the-middle (MITM) attacks are possible if 
attestation and IPsec endpoints are not the same. 
We propose the use of bound keyed attestation 
(BKA) to thwart such attacks. 
 

Modifications  are necessary also in the 
operating system for properly supporting secure 
coprocessors. First, the integrity of the system’s 
trusted computing base (TCB) needs to be 
measured and stored in the secure coprocessor. A 
system’s TCB includes not only the operating 
system’s kernel, but also loadable kernel modules 
and privileged user-level servers, scripts, and 
configuration files. We propose TCB prelogging to 
guarantee that measurements of all these 
components are properly stored in the secure 
coprocessor.  Second, the operating system must 
prevent undetected modifications of the system’s 
TCB. Administrative users typically can modify a 
system’s TCB after the system boots. We propose 
security association root tripping for automatically 
closing attestation-based IPsec connections when 
an administrative user logs in, and ensuring that  
subsequent attestations reveal that the system may 
have been modified. Third, the operating system 
needs to prevent applications from using secure 
coprocessors in potentially harmful ways. If an 
operating system gives applications raw access to 
secure coprocessor functions, an application could 
bind to itself documents or other files created by  
the user.  The user is then locked in, because he 
cannot access the information using competing or 
future applications (Felten, 2003). We propose 



sealing-free attestation confinement to enable 
secure access to VPNs without software lock-in.  
 

The rest of this paper is organized as follows. 
Section 2 reviews the secure coprocessor features 
that we use for protecting VPNs. Section 3 
describes our operating system modifications for 
supporting secure coprocessors. Section 4 explains 
how we integrated attestation with IPsec. Section 5 
presents our experimental results. Section 6 
discusses related work, and Section 7 concludes. 
 
 
2   AUTHENTICATED BOOT AND 
ATTESTATION 
 

This section reviews the two secure coprocessor 
features, authenticated boot and attestation, that 
we use for authenticating the configuration of 
users’ computers in VPNs.   

 
Authenticated boot presupposes that when a 

host is reset, control of the CPU is transferred to a 
small, trusted, immutable software component. In a 
personal computer, this component is the BIOS 
boot block. The operating system’s boot sequence 
is modified such that, before each software 
component A passes control to another software 
component B that has not yet been measured, A 
measures B’s digest, appends the digest to a 
measurement log, and compresses the digest into 
the TPM. A obtains B’s digest using SHA-1 
(Secure Hash Algorithm) (NIST, 1995). SHA-1 
digests are 20 bytes long, regardless of data length. 
This algorithm has properties such that it is 
infeasible to modify B without also modifying its 
digest, or to find a B whose digest is an arbitrary 
value. The TPM compresses a digest into one of its  
registers by concatenating the register’s value and 
the digest, computing SHA-1 on this 
concatenation, and storing the resulting value back 
into the register. The TPM’s registers are 
initialized to zero on host reset. They can be read, 
but cannot be otherwise modified. TPM register 
values can be used to authenticate the measurement 
log, whose plaintext is stored in main memory. 
 

Attestation is a protocol that enables a remote 
party R to obtain and authenticate a host P’s 
measurement log. R sends to P a nonce, i.e., a 
cryptographically random number that is never 
reused. P asks its TPM to sign a so-called quote, 
containing the nonce and current values of the 
TPM’s registers. Presence of the nonce in the quote 
guarantees that a quote cannot be later replayed. 
The signature uses an attestation identity key 
(AIK). P sends the corresponding AIK certificate 
to R together with the quote and measurement log. 
TPMs generate private and public AIK pairs 

internally. TPMs use private AIKs only to sign 
quotes (as defined above), and never reveal such 
keys externally. The host owner obtains the AIK 
certificate from a so-called privacy certifying 
authority, which verifies that the host contains a 
properly attached TCG-compliant TPM. R 
authenticates the AIK certificate using the 
certifying authority’s public key, which R is 
assumed to know out-of-band. R then uses the 
nonce and public AIK to authenticate the quote and 
uses the quote to authenticate the measurement log. 
The authenticated log reveals securely to R what 
software booted in P. 
 
 
3   OPERATING SYSTEM MODIFICATIONS 
 

This section describes our operating system 
modifications for safely supporting secure 
coprocessors. 

 
3.1  TCB prelogging 

 
A computer’s TCB is the part of the computer’s 

configuration that a VPN needs to authenticate. A 
system’s TCB can be defined as the set of 
components whose malfunction (e.g., due to a bug 
or attack) would allow violation of the system’s (or 
the VPN’s) security policies. The TCB includes not 
only a system’s BIOS, master boot record, boot 
loader, operating system kernel, and loadable 
kernel modules, but also their configuration files 
and any privileged applications that could modify 
them, such as scripts or daemons and setuid 
applications owned by administrative users. Many 
TCB components may not be directly relevant to 
VPN security policies, but VPNs need to 
authenticate them because attackers could use them 
to compromise more relevant components. On the 
other hand, unprivileged applications and other 
files that cannot change a system’s security policies 
are not part of the system’s TCB.  

 
The operating system needs to ensure that the 

respective computer’s measurement log contains 
the digests of all components in the system’s TCB. 
This can be difficult for two reasons. First, 
information about what files are or not part of the 
TCB is typically quite diffuse in existing systems. 
Second, certain TCB components may be loaded 
and started only when needed. Therefore, it does 
not suffice to measure TCB components that start 
at boot time. 

 
We propose TCB prelogging, whereby the 

operating system contains a configuration file that 
lists the system’s TCB components and respective 
digests. This TCB list is itself part of the system’s 
TCB, since, e.g., omission of a TCB component in 



the list could cause that component not to be 
authenticated. By convention, the digest of the 
TCB list file is computed considering its value in 
the file to be null, and then stored in the file. 
 

The operating system uses the TCB list for  
prelogging. The kernel appends the entire TCB list 
to the system’s measurement log and compresses 
the list’s digests into the TPM at boot time, 
including components not started at that time. 

 
Thereafter, whenever a file that is a TCB 

component or a script or daemon or setuid 
application owned by an administrative user is 
opened or executed, the kernel measures the file’s 
digest. If the digest is different from that last 
logged for the file (if any), the kernel closes any 
attestation-based security associations that may 
exist, appends the new measurement to the log, 
and compresses the new measurement into the 
TPM. 

 
Therefore, an authenticated measurement log 

will reveal all TCB components that are configured 
to exist in the system (according to the TCB list), 
whether active or not, as well as any unconfigured 
or modified TCB components that have started 
since the system booted. Moreover, a computer’s 
operating system will automatically disconnect the 
computer from a VPN if the operating system loads 
a TCB component that was not disclosed in the log 
that the VPN used to authenticate the computer’s 
configuration. The user may then attempt to 
reconnect the computer to the VPN, but a new 
attestation will reveal the previously undisclosed 
TCB component. Thus, only computers whose 
configuration a VPN accepts can connect and 
remain connected to that VPN. 

 
3.2   Security association root tripping 

 
Users with a regular/limited account cannot 

cause an operating system’s kernel, loadable kernel 
modules, or daemons to compromise the system’s 
policy enforcement. (If that is not true, the system 
has a bug that needs to be fixed.) However, users 
with an administrative account (e.g., root) can 
easily violate the system’s policy enforcement, e.g. 
by using commands such as sysctl or ifconfig or by 
using a debugger to attach and modify privileged 
processes, after boot time. It can be difficult or 
impossible to guarantee that all such configuration 
modifications are captured in the system’s 
measurement log. 

 
We propose to modify the operating system 

such that it detects and takes appropriate action 
when an a user attempts to gain interactive access 
to an administrative account in the system (e.g. by 

logging in or using the su command). If there are 
any attestation-based security associations (e.g. to a 
VPN), the system warns the user that, if the user 
wants to continue, the system will immediately 
drop those security associations and destroy the 
respective keys used for packet-level cryptography. 
Furthermore, if the user wants to continue, the 
system appends this event to the measurement log 
with a well-known digest and compresses the latter 
into the TPM.  

 
Thereafter, attestations will reveal that an 

administrative user has logged in interactively 
since the system booted. VPN administrators can 
configure VPN gateways to deny access to such 
VPN clients, who will need to reboot before again 
gaining access to the network (reboot erases the 
measurement log, as well as any non-persistent 
configuration changes; persistent changes are 
captured by the new measurement log after reboot).  

 
Note that in contemporary operating systems, 

such as Windows XP and Linux, a same user 
typically may have multiple accounts, each with a 
different username and possibly a different 
privilege level. It is usually considered good 
security practice (principle of least privilege) for a 
user to perform as many tasks as possible using a 
regular/limited account, instead of an 
administrative one. Because errors or attacks on 
the latter can much more severely compromise a 
system, many enterprises give administrative 
accounts only to specially trained system 
administrators. Security association root tripping 
does not prevent users who have administrative 
accounts from connecting to a VPN, but while 
connected, such users must use regular/limited 
accounts only. Security association root tripping 
also does not preclude remote system 
administration or help through the VPN, as long as 
these are performed using in client computers 
daemons that VPN gateways are configured to 
trust. 

 
3.3  Sealing-free attestation confinement 

 
In addition to attestation, TPMs provide a 

feature, data sealing, that enables storing a file 
encrypted with a key that a TPM reveals only if the 
computer’s configuration is the same as at the time 
the file was first stored.  

 
An application can use data sealing to lock in a 

user’s files. The application stores the latter 
encrypted with keys that the operating system 
makes available only to that application, and that 
the TPM makes available to the operating system 
only if the computer’s TCB is the same as at the 
time of storage. The operating system denies the 



files’ keys to other applications. If the user tries to 
reconfigure or replace the operating system to 
circumvent this protection, the TPM’s data sealing 
makes the keys unavailable. 

 
Alternatively, an application can use attestation 

for the same purpose. The application stores file 
keys in a remote server. The server reveals such 
keys to a computer’s operating system only if 
attestation shows that the computer’s TCB is one 
that the server trusts, and the computer’s operating 
system vouches to provide the keys only to the 
original application. 

 
Software lock-in can benefit well-established 

software publishers. However, it can also harm 
users because it can block competition and make 
users unable to access their own data in other 
computers or using other applications (Felten, 
2003). In the case of archival data, e.g., such 
access can be necessary when the computer and 
application originally used become obsolete.  
 

To prevent software lock-in, we propose that 
the operating system not export the TPM’s raw 
functions to applications. In particular, we propose 
sealing-free attestation confinement, whereby the 
operating system does not export data sealing to 
applications and supports attestation only in 
conjunction with network access control protocols, 
such as IPsec’s IKE (Harkins and Carrel, 1998). 
Most organizations configure their security 
perimeter such that these protocols cannot go 
through firewalls. Consequently, attestation is 
unavailable for lock-in applications and is confined 
within each organization. 

 
 

4  INTEGRATING ATTESTATION WITH IPSEC 
 
This section describes our protocol 

enhancements for integrating attestation with 
IPsec’s Internet Key Exchange (IKE) (Maughan et 
al., 1998; Harkins and Carrel, 1998). 

 
IKE has two phases. In phase 1, the 

communicating parties authenticate each other and 
establish an IKE security association (SA). The 
IKE SA is bidirectional and determines what 
cryptographic algorithms and keys the parties will 
use to communicate during phase 2. In phase 2, 
parties use the IKE SA to negotiate one or more 
AH (Authentication Header)  or ESP 
(Encapsulating Security Payload) security 
associations between them. AH and ESP SAs are 
unidirectional. AH provides packet authentication, 
while ESP can provide packet authentication 
and/or encryption. Phase 2 negotiations determine 

the cryptographic algorithms and keys used in each 
AH and ESP SA. 

 
We propose performing attestation using the 

IKE SA between IKE’s phases 1 and 2. Attestation 
is computationally intensive and reveals details 
about a computer’s configuration that the 
computer’s owner may wish to disclose only to 
selected parties. Because phase 1 authenticates 
both parties, it enables this desirable policy-based 
control. Phase 1 also establishes the IKE SA, 
which protects attestation from eavesdropping. On 
the other hand, because attestation happens before 
phase 2, it does not need to be repeated for each 
AH and ESP SA negotiation. 

 
We define a new IKE exchange type for 

attestation. This attestation exchange comprises 
the attestation payloads that parties send to each 
other for unidirectional or mutual attestation. We 
also define attestation policy configuration options 
according to which each party initiates and/or 
accepts an attestation exchange with the other 
party at the end of IKE’s phase 1.  
 

Although we protect the attestation exchange 
with the IKE SA, a man-in-the-middle attack could 
be possible. If IKE SA and attestation endpoints do 
not coincide, an attacker may be able to gain VPN 
access using a compromised computer, despite the 
use of attestation. Consider an attacker that wishes 
to gain access to a VPN using a compromised 
computer C1. If the attacker has another computer 
C2 that conforms to the VPN’s security policies, 
the attacker can have C1 forward to C2 attestation 
requests received from the VPN and, conversely, 
forward to the VPN attestation replies received 
from C2. To the VPN, it will appear that C1 

conforms to the VPN’s security policies, even 
though it does not. 

 
To block this vulnerability, we propose the use 

of bound keyed attestation (BKA). BKA differs 
from ordinary attestation (Section 2) in that (1) 
BKA includes a Diffie-Hellman key exchange 
(Diffie and Hellman, 1976), whereby attestation 
endpoints derive a shared secret, and (2) attestation 
endpoints prove to each other that they know both 
BKA’s and IKE SA’s shared secrets. If attackers 
cannot obtain BKA’s and IKE SA’s shared secrets 
(e.g., because VPNs do not accept configurations 
where that would be possible), then man-in-the-
middle attacks are not possible.   

 
BKA uses two publicly known numbers for the 

Diffie-Hellman key exchange: a prime number q 
and an integer �  that is a primitive root of q. These 
numbers do not need to change. The attestation   
initiator   A   (e.g.,   the  VPN gateway)   picks two  



 
Figure 1: Bound Keyed Attestation (BKA). Items between brackets are used only in case of                           

mutual attestation. 
 

 
random numbers: a nonce NA, which is never 
reused, and another integer 0 �  XA < q,  which may 
be reused. The initiator computes its public key 
according to: 

YA = � XA mod q.                                       (1) 
The initiator then sends to the  attestation 
responder B (e.g., the VPN client) a BKA request 
message Mi containing q, � , YA, and NA, as 
illustrated in Fig. 1. 

 
The responder then picks a random integer 0 �  

XB < q, which may be reused, and computes its 
public key according to: 

YB = � XB mod q.                                       (2) 
The responder computes the attestation shared 
secret as: 

KAB = YA
XB mod q,                                   (3)    

and its  attestation binding: 
 BB = SHA1(NA | KIKE | KAB | YA |  

                               “BKA response”),               (4)  
where ‘|’ denotes concatenation and KIKE is keying 
material derived from the IKE SA’s shared secret. 
The responder also computes the initiator’s 
attestation nonce: 

 nA = SHA1(NA | KAB).                              (5) 
The responder then gets from its TPM its quote QB 
containing nA. Finally, the responder sends to the 
initiator a BKA response message Mr containing 
YB, a fresh nonce NB, BB, QB, and B’s measurement 
log LB and AIK certificate CB. Alternatively, if the 
responder also wishes to obtain the initiator’s 
attestation, the responder sends to the initiator a 
BKA response-request message Mrr containing the 
same fields as Mr. 

The initiator processes Mr as follows. First, the 
initiator computes the attestation shared secret as: 

KAB = YB
XA mod q.                                    (6) 

The initiator then computes the expected value of 
BB using KAB. If the received BB does not  match 
this expected value, the initiator sends a BKA error 
message to the responder (possibly the IKE SA and 
BKA endpoints are not the same, and a MITM 
attack is happening). Otherwise, the initiator 
authenticates CB using the respective certifying 
authority’s public key (known securely out-of-
band),  authenticates the responder’s quote QB 
using nA and CB, and authenticates the responder’s 
measurement log using QB. If any of the 
authentications fails, or the initiator does not 
recognize a measurement in the responder’s log LB 
as that of a  trusted software component, the 
initiator sends a BKA error message to the 
responder. Otherwise, the initiator computes its 
binding: 

BA = SHA1(NB | KIKE | KAB | YB |  
                   “BKA success”).                   (7) 

The initiator then sends to the responder a BKA 
success message Ms containing BA, and enables 
IKE’s phase 2. 
 

Processing of Mrr by the initiator is similar to 
that of Mr, except that: 

 (a) the initiator also computes the responder’s 
attestation nonce: 

nB = SHA1(NB | KAB)                               (8) 
and gets from the initiator’s TPM its quote QA 
containing nB, and:  

(b) instead of  Ms,  the   initiator  sends  to  the  

VPN gateway (A) 
 
Select XA, NA 
YA = � XA mod q 
 
 
 
 
 
 
 
 
KAB = YB

XA mod q 
Verify BB, CB, QB(nA), LB 
BA = SHA1(NB | KIKE | KAB | YB | ...) 
[ nB = SHA1(NB | KAB) 
Get QA(nB), LA, CA  ] 
 

q, � , YA, NA 

VPN client (B) 
 
 
 
 
Select XB, NB 
YB = � XB mod q 
KAB = YA

XB mod q 
BB = SHA1(NA | KIKE | KAB | YA | ...) 
nA = SHA1(NA | KAB) 
Get QB(nA), LB, CB 

 

 

 

 

 

 

 

Verify BA, [ CA, QA(nB), LA  ] 

YB, NB, BB, QB(nA), LB, CB 

BA, [ QA(nB), LA, CA ] 



Table 1: IKE latency and projected throughput with or without BKA for VPN client attestation 
(standard deviations represented between brackets: [� ]) 

 
Step Unmodified IKE IKE + BKA 

Phase 1 130.7 ms [52.4] 108.1 ms [0.6] 
BKA  2486.1 ms [229.4] 
Phase 2 1050.2 ms [10.7] 1037.3 ms [4.8] 
Total 1180.9 ms [63.0] 3631.5 ms [228.4] 
CPU busy 125.3 ms [0.9] 216.3 ms [1.1] 
Projected throughput 428 clients/min 277 clients/min 
   

responder a BKA success-response message Msr 
containing BA, QA, and A’s measurement log LA 
and AIK certificate CA. 
 

The responder processes Ms by computing the 
expected value of BA and verifying that the 
received BA matches it. If so, the responder enables 
IKE’s phase 2. Processing of Msr is similar, except 
that, if the received BA matches its expected value, 
(1) the responder also authenticates CA, QA, and LA, 
and (2) if all authentications succeed, and the 
responder identifies each measurement in the 
initiator’s log as that of a trusted software 
component, then the responder enables IKE’s 
phase 2. 

 
BKA assumes that VPN gateways are 

configured to trust only client configurations that 
do not reveal SA secrets (including KAB and KIKE) 
to users with regular/limited accounts; otherwise, 
an attacker might be able to hijack the VPN 
connection of such a user. BKA messages are 
conveyed in attestation payloads of the attestation 
exchange. The attestation nonces nx are one-way 
functions of not only the nonces Nx but also the 
attestation shared secret KAB. Therefore, the quotes 
are bound to the attestation shared secret, which in 
turn is bound to the IKE SA’s shared secret by Bx, 
where x is A or B.  
 
 
5   EXPERIMENTAL RESULTS 
 

This section reports the results of experiments 
performed to evaluate the proposed mechanisms. 
Reported results are averages of six measurements.  

 
We implemented the operating system 

modifications described in Section 3 on FreeBSD 
4.8 and installed this operating system on an IBM 
ThinkPad T30 computer with 1.8 GHz Pentium 4 
CPU, 256 MB RAM, TPM version 1.1b, and TPM-
aware BIOS. The master boot record and GRUB 
were modified for measuring digests and 
compressing them into the TPM, as necessary for 
authenticated boot. We measured a total boot time 
of 20.08 s (�  = 0.12) before and 20.15 s (�  = 0.17) 

after our modifications. Although TCB prelogging 
and file digest measuring impose overheads, they 
are completely dominated by other boot costs. 
During system operation, each file digest 
measurement can be cached, and need not be 
repeated while the file is not modified (Sailer et al., 
2004a). Because TCB components change 
infrequently, file digest measurements can be 
expected to have little impact on steady-state 
performance. Security association root tripping 
affects only certain commands (e.g., login and su) 
and only when used for administrative accounts. 
Therefore, it also has negligible performance 
impact, as does sealing-free attestation 
confinement. 

 
We integrated KAME racoon (KAME, 2005), 

an open-source implementation of IPsec’s IKE, 
with BKA, as described in Section 4. We installed 
the modified racoon daemon in the aforementioned 
IBM T30 computer, which served as VPN client, 
and on a Dell Dimension 4550 computer with 2.4 
GHz Pentium 4 CPU, 256 MB RAM, and 
unmodified FreeBSD 4.10. The latter computer 
served as VPN gateway. We used BKA with 
precomputed modulus (1024-bit) and primitive 
root. 

 
Table 1 shows the latency for the VPN client to 

connect to the VPN, with or without VPN client 
attestation. Reported results are for IKE’s main 
mode and authentication by RSA signatures. VPN 
client attestation increased latency from about 1.2 s 
to about 3.6 s. This latency increase is due mostly 
to the client’s TPM. We measured that it takes 2.5 
s (�  = 0.2) for the client to obtain a quote from its 
TPM. Even with the inexpensive TPM used, 
however, the total latency can be considered 
acceptable. 

 
In order to evaluate BKA’s impact on the VPN 

gateway’s CPU utilization, we instrumented the 
operating system’s idle loop and interrupt vector. 
The instrumented operating system uses the CPU’s 
built-in cycle counter to measure CPU idle time, 
excluding interrupts. We also instrumented racoon 
to measure the time necessary for a VPN client to 



gain access. Table 1 shows how long the VPN 
gateway’s CPU was busy while processing a single 
VPN client’s connection request, and the projected 
throughput (load for saturating the CPU). BKA 
reduces projected throughput from roughly 428 to 
277 clients/minute. BKA’s overhead is due to its 
use of public-key algorithms for key exchange and 
authentication of certificates and quotes, as well as 
repeated applications of SHA-1. Although BKA’s 
overhead is significant, the projected throughput is 
acceptable for many applications. In case of higher 
loads, multiple VPN gateways can be used. 
 
 
6     RELATED WORK 
 

There are several recent industrial initiatives 
for creating mechanisms that verify a node’s 
configuration before the node is accepted in a 
network, in a manner similar to what we propose 
in this paper. Cisco’s Network Admission Control 
(NAC) (Cisco, 2005) is currently available on 
certain routers, but it uses a proprietary access 
control protocol. Microsoft has announced a 
similar architecture, Network Access Protection 
(NAP) (Microsoft, 2005a), but specifications or 
products are not currently available. TCG also has 
a similar initiative, Trusted Network Connect 
(TNC). Unlike NAC and NAP, TNC may use 
attestation to prevent forging of configuration 
information by attackers. Some TNC specifications 
have been published (Trusted Computing Group, 
2005b), but they do not cover how TNC 
functionality will be integrated with IPsec. 
Moreover, operating system modifications are 
outside the scope of TCG’s specifications. 

 
Our TCB lists are similar to what Tripwire 

uses to verify host integrity (Tripwire.org, 2005). 
However, unlike Tripwire, we enable VPN 
administrators to verify host integrity remotely.  

 
TcgLinux (Sailer et al., 2004a) is a Linux-

based operating system with TPM support. It uses, 
however, techniques that are quite different from 
what we propose. Because tcgLinux does not have 
a TCB list, it logs and compresses into the TPM 
digests of all files that are executed, and requires 
shells and other programs to be modified to do the 
same with their security-sensitive scripts and 
configuration files. This design makes it harder to 
verify that all TCB configuration files are being 
measured. It also unnecessarily exposes in 
attestations the execution of unprivileged 
programs, reducing user privacy. TcgLinux has 
mechanisms to prevent administrative users from 
making system modifications that might not be 
detected by attestation. It does allow, however, any 
modifications that would be detected by attestation. 

TcgLinux attestations have been used to secure  
VPN access (Sailer et al., 2004b). However, that 
solution has several shortcomings. First, it does not 
examine how to integrate attestation with IPsec so 
as to avoid MITM attacks, as we have done in 
Section 4. Second, tcgLinux may be vulnerable to 
MITM attacks even if it used BKA, because it does 
not prevent administrative users from reading 
secret keys and other parameters of VPN tunnels. 
In contrast, we use security association root 
tripping to close VPN tunnels before such reading 
would be possible. Third, the VPN gateway has to 
verify fresh attestations of each client frequently. If 
attestation frequency is low, users may be able to 
connect an insecure node to the VPN long enough 
to cause harm. On the other hand, our 
experimental results suggest that high attestation 
frequencies could hurt the VPN gateway’s 
throughput. In contrast, security association root 
tripping achieves security with a single attestation 
at the end of each client’s IKE phase 1. 

 
Microsoft’s Next Generation Secure 

Computing Base (NGSCB) project (Microsoft, 
2005b) uses TPMs and divides the system into 
trusted and untrusted halves. The untrusted half 
runs a conventional operating system, including  
file system and network protocol stack. On the 
other hand, the trusted half secures user credentials 
and keys for digital rights management. It uses 
storage and communication services provided by 
the untrusted half. NGSCB requires special CPUs 
with Intel’s LaGrande Technology (LT). Terra 
(Garfinkel et al., 2003) is an operating system with 
similar architecture, but uses a virtual machine 
monitor instead of LT. It is unclear how NGSCB or 
Terra would be used for securing network access, 
because those systems cannot guarantee the 
integrity of the untrusted half’s configuration. 

 
The techniques described in this paper can be 

used to better control access not only to VPNs, but 
also to enterprise local area networks (LANs). The 
latter may be desirable, e.g., to prevent mobile 
computers contaminated with viruses while on a 
trip from propagating malware to other computers 
when back in the office. We discuss in another 
paper the integration of BKAP with PEAPv2, a 
protocol commonly used for access control in 
enterprise LANs (Xia, Kanchana and Brustoloni, 
2005).   

 
 

7    CONCLUSIONS 
 
Current VPN protocols, such as IPsec, do not 

authenticate the configuration of users’ computers. 
Consequently, by compromising the latter, 
attackers can gain unauthorized access to VPNs. 



We described how attestation can be integrated 
with IPsec, such that only authenticated users with 
uncompromised computers can obtain and 
maintain  VPN access. Attestation is a disclosure 
of a computer’s configuration, signed by a secure 
coprocessor. Attestation requires mechanisms 
against undetected configuration changes, 
tampering by administrative users, man-in-the-
middle attacks, and software lock-in. We described 
operating system and protocol modifications for 
solving these problems and implemented them on 
the open-source FreeBSD operating system and 
KAME racoon IKE daemon. Experiments show 
that our operating system modifications have 
negligible overhead. Experiments also show that 
our protocol modifications have significant impact 
on VPN connection latency and VPN gateway 
throughput. The overhead is not excessive, 
however, and is justified by the extra security that 
attestation provides. 
  
 
BIBLIOGRAPHY 
 
CISCO. Network Admission Control. [Online] 

http://www.cisco.com/en/US/netsol/ns466/netw
orking_solutions_package.html (retrieved 
8/7/2005). 

DIFFIE, W. and HELLMAN, M. New Directions 
in Cryptography. Transactions on Information 
Theory, IEEE, 1976, 22:644-654. 

FELTEN, Edward. Understanding Trusted 
Computing. Security and Privacy, IEEE, 
May/June 2003, pp. 60-62. [Online] http://-
www.princeton.edu/~echi/ele572/Felten%20-
%20Understanding%20trusted%20computing.p
df    

GARFINKEL, T. et al. Terra: A Virtual Machine-
Based Platform for Trusted Computing. In:  
19th SYMPOSIUM ON OPERATING 
SYSTEMS PRINCIPLES, Proceedings… 
ACM, 2003. [Online] http://www.stanford.edu/-
~talg/papers/SOSP03/terra.pdf 

HARKINS, D. and CARREL, D. The Internet Key 
Exchange (IKE). IETF, RFC 2409, 1998. 
[Online] ftp://ftp.rfc-editor.org/in-notes/-
rfc2409.txt 

KAME. Homepage. [Online] http://www.kame.net/ 
(retrieved 8/7/2005). 

KENT, S. and ATKINSON, R. Security 
Architecture for the Internet Protocol. IETF, 
RFC 2401, 1998. [Online] ftp://ftp.rfc-
editor.org/in-notes/rfc2401.txt 

MAUGHAN, D. et al.  Internet Security 
Association and Key Management Protocol 
(ISAKMP). IETF, RFC 2408, 1998. [Online] 
ftp://ftp.rfc-editor.org/in-notes/rfc2408.txt 

 
 

MICROSOFT. Network Access Protection. 
[Online] http://www.microsoft.com/-
windowsserver2003/technologies/networking/na
p/default.mspx (retrieved 8/7/2005). 

MICROSOFT. Next Generation Secure Computing 
Base – Technical FAQ. July 2003. [Online] 
http://www.microsoft.com/technet/security/new
s/ngscb.mspx (retrieved 8/7/2005). 

NIST. Secure Hash Standard. Federal Information 
Processing Standards Pub. 180-1, Apr. 1995. 
[Online] http://www.itl.nist.gov/fipspubs/-
fip180-1.htm 

PEARSON, S. (ed.). Trusted Computing Platforms 
– TCPA Technology in Context. Prentice Hall, 
2003.  

SAILER, R. et al. Design and Implementation of a 
TCG-based Integrity Measurement 
Architecture. In: USENIX SECURITY 
SYMPOSIUM, Proceedings… USENIX, Aug. 
2004.  [Online] http://www.usenix.org/-
publications/library/proceedings/sec04/tech/sail
er.html 

SAILER, R. et al. Attestation-based Policy 
Enforcement for Remote Access. In: 11th 
CONFERENCE ON COMPUTER AND 
COMMUNICATIONS SECURITY (CCS), 
Proceedings… ACM, Oct. 2004. [Online] 
http://portal.acm.org/citation.cfm?id=1030083.
1030125 

TRIPWIRE.ORG. Homepage. [Online] http://-
www.tripwire.org/ (retrieved 8/7/2005). 

TRUSTED COMPUTING GROUP. Homepage. 
[Online] 
https://www.trustedcomputinggroup.org/home 
(retrieved 8/7/2005). 

TRUSTED COMPUTING GROUP. Trusted 
Network Connect. [Online] https://-
www.trustedcomputinggroup.org/downloads/T
NC/ (retrieved 8/7/2005). 

TRUSTED COMPUTING PLATFORM 
ALLIANCE. Main Specification Version 1.1b. 
[Online] 
https://www.trustedcomputinggroup.org/downlo
ads/specifications/TCPA_Main_TCG_Architect
ure_v1_1b.zip (retrieved 8/7/2005). 

XIA, H.; KANCHANA, J.; BRUSTOLONI, J. 
Using Secure Coprocessors to Protect Access to 
Enterprise Networks. Lecture Notes in 
Computer Science, 3462:154-165. Springer-
Verlag, 2005. [Online] http://www.cs.pitt.edu/-
~jcb/papers/net2005.pdf  

YUAN, R. and STRAYER, W. T. Virtual Private 
Networks: Technologies and Solutions. 
Addison-Wesley, April 2001. 

 
 


