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The Adaptive Coherence Estimator: A Uniformly
Most-Powerful-Invariant Adaptive Detection Statistic
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Abstract—We show that the Adaptive Coherence Estimator
(ACE) is a uniformly most powerful (UMP) invariant detection
statistic. This statistic is relevant to a scenario appearing in adap-
tive array processing, in which there are auxiliary, signal-free,
training-data vectors that can be used to form a sample covariance
estimate for clutter and interference suppression. The result is
based on earlier work by Bose and Steinhardt, who found a
two-dimensional (2-D) maximal invariant when test and training
data share the same noise covariance. Their 2-D maximal in-
variant is given by Kelly’s Generalized Likelihood Ratio Test
(GLRT) statistic and the Adaptive Matched Filter (AMF). We ex-
tend the maximal-invariant framework to the problem for which
the ACE is a GLRT: The test data shares the same covariance
structure as the training data, but the relative power level is not
constrained. In this case, the maximal invariant statistic collapses
to a one-dimensional (1-D) scalar, which is also the ACE statistic.
Furthermore, we show that the probability density function for the
ACE possesses the property of “total positivity,” which establishes
that it has monotone likelihood ratio. Thus, a threshold test on
the ACE is UMP-invariant. This means that it has a claim to
optimality, having the largest detection probability out of the class
of detectors that are also invariant to affine transformations on the
data matrix that leave the hypotheses unchanged. This requires
an additional invariance not imposed by Bose and Steinhardt:
invariance to relative scaling of test and training data. The ACE
is invariant and has a Constant False Alarm Rate (CFAR) with
respect to such scaling, whereas Kelly’s GLRT and the AMF are
invariant, and CFAR, only with respect to common scaling.

Index Terms—Adaptive detection, adaptive coherence estimator,
adaptive radar and sonar, adaptive array processing, constant false
alarm rate, invariant detection, sample covariance, uniformly most
powerful invariant.

I. INTRODUCTION

I N this paper, we will examine the optimality of the Adap-
tive Coherence Estimator (ACE) statistic when used as a

threshold detection test:
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The purpose of this statistic is to detect the presence of a signal
vector (or steering/replica vector) in a measurement or test
vector by comparing the statistic with a threshold [1]. The
detection must be performed in the presence of noise, clutter,
and interference. Training data vectors are used to construct a
sample covariance that approximates the true covariance .
This statistic is an empirical version of the Constant False Alarm
Rate (CFAR) matched subspace detector, which is the optimal
statistical if the noise covariance matrix is known exactly to
within an unknown scaling level [2]–[4].

When the covariance must in fact be estimated from training
data, an ad hoc adaptive statistic is then formed by substituting
the sample covariance for an exact covariance in the de-
tection statistic formula. The training data is presumed to be
signal-free, with the same noise covariance as the test data. The
class of detectors that rely on this data model have been partic-
ularly useful in radar systems, wherein data vectors from range
cells in the vicinity of a range cell of interest are nominally target
free and can be used reliably to estimate the covariance of the
clutter that is corrupting the test-cell data [5]–[9].

Here, we are interested in the examination of the adaptive de-
tection problem from first principles: Given a test data vector

and a training data matrix , what is the optimal detection
procedure? ACE was shown to be a Generalized Likelihood
Ratio Test (GLRT) for the adaptive detection problem in [10].
However, this is not a strict optimality result, the GLRT merely
being the maximum likelihood (ML) approximation to the op-
timal Neyman–Pearson likelihood ratio test. A true optimality
result is provided by the formalism of Uniformly Most Pow-
erful (UMP) invariant tests. A test is UMP-invariant when, for a
given probability of false alarm, it has the largest probability of
detection (is most powerful) out of all tests that are invariant to
a group of transformations on the data matrix. The structure of
the transformation group is chosen to characterize the scenario
in which the detection statistic will be applied.

A key concept in the theory of UMP-invariant tests is that of the
maximal invariant statistic [2], [11]. This is a reduced function
of the data (similar to a sufficient statistic) that is insensitive
to data transformations of a given form but still sensitive to
other transformations on the data. We want the statistic to be
invariant when the data is subjected to a transformation group
of interest (one that does not change the assumptions of the
two hypotheses) but to vary when the data is subjected to other
transformations. Equivalently, this means that the statistic is
not only invariant to transformations within the group but, also,
that if the statistic is the same for any two data sets, then these
data sets must be related by a transformation within the group
of interest. The key consequence of this is that any function
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of the data that is invariant to the transformation depends on
the data only through the maximal invariant (this is [11, Th.
1, Ch. 6]).

In this paper, we show that a threshold test on ACE is UMP-
invariant. This result requires the statistic to have two properties:
1) The statistic must be a maximal invariant with respect to a
compelling transformation on the data matrix. 2) Its likelihood
ratio must be a monotone function of . Then, a threshold test
on the likelihood ratio can be replaced a simple threshold test
on . By the Karlin-Rubin Theorem (see [2] or [12, Th. 1, Ch.
5]), this threshold test is most powerful out of all invariant tests,
uniformly over all possible signal-to-ratios (SNRs), making it
uniformly most-powerful invariant.

To establish that ACE is UMP-invariant, we build on the ear-
lier work of Bose and Steinhardt. In [13], they considered the
adaptive detection scenario in which there is homogeneity be-
tween test and training data. By homogeneity, we mean that
the training data vectors have the same statistical distribution
as the noise in the data being tested. They obtained the inter-
esting result that a two-dimensional statistic, closely related to
ACE, is the maximal invariant. The 2-D statistic is composed
of Kelly’s GLRT [14] and the Adaptive Matched Filter (AMF)
[15], [16]. This is a powerful result, but it is not quite suffi-
cient to construct a simple threshold test, which requires data
reduction down to a single scalar. Furthermore, in [17], Bose
and Steinhardt showed that for this homogeneous adaptive de-
tection problem, a UMP-invariant test cannot even exist. This is
because the level-curves of the the 2-D likelihood surface vary
with signal-to-noise ratio (SNR), meaning the decision region
must change with SNR.

However, by requiring invariance to a more general trans-
formation that permits scaling between test and training data,
the 2-D maximal invariant of Bose and Steinhardt collapses to
a one-dimensional (1-D) invariant: the ACE statistic. The two
scalar statistics of Bose and Steinhardt are not invariant to such
scaling; however their ratio is invariant. This ratio is equivalent
to ACE. We show in this paper that ACE is also a maximal in-
variant. This is the key observation we made in [18] and is a key
observation of this paper.

Our motivation for allowing scaling between test and training
data comes from [10]. There, it was shown that the ACE statistic
is a GLRT when there is an additional scaling parameter , rep-
resenting the scaling of the test-data noise covariance relative to
the training data covariance. When ML estimates of under the
two hypotheses are substituted into the likelihood ratio, the ratio
reduces to the ACE statistic, rather than the GLRT of Kelly.

The following question arises: Why would one want to acco-
modate such scaling? The answer is that it adds robustness to
deviations of the data from the assumed statistical model. The
AMF is more sensitive to scaling of the test vector than it is to
scaling of any single training-data vector. So, the extra scaling
invariance of ACE makes it robust in models that allow for un-
known fluctuatons in data power, as, for example, in radar clutter
[19]. Another compelling fact is that the nonadaptive version of
ACE (the CFAR Matched Subspace Detector [2], [3]) is CFAR
over all elliptically contoured (Gaussian and non-Gaussian) dis-
tributions [4]. There are other scenarios, outside of adaptive
radar, wherein scaling inhomogeneity might arise. This might

occur, for example, in a wireless communications system with
fades over multiple sources of interference.

The cost of this robustness is a performance loss of about 2 dB
when the data is in fact homogeneous, and there is large training
data support. The difference in performance of ACE relative to
Kelly’s GLRT and the AMF is discussed in more detail in [4].
When the training data support is low, there is, in fact, a per-
formance gain for moderate SNR, although a performance loss
persists at high SNR. Of course, when scaling inhomogeneity is
present, Kelly’s GLRT and the AMF cease to be CFAR, which
defeats them and renders moot any attempts to compare detec-
tion performance at a CFAR.

We have found the proof that the ACE possesses a monotone
likelihood ratio to be more difficult than we first anticipated. We
prove it by relating monotone likelihood ratio to the property of
“total positivity.” The literature on totally positive kernel func-
tions makes extensive use of a basic composition formula, due
to Polya and Szego (see [20]). We use this composition formula
repeatedly to build up the property of total positivity for ACE
from that of its conditional probability density function. With
the property of total positivity, ACE then has monotone likeli-
hood ratio, and a threshold test on ACE is UMP-invariant. This
is the result needed to complete the line of reasoning we first
presented in [18].

II. MAXIMAL INVARIANCE IN THE PROBLEM OF KNOWN

COVARIANCE (NONADAPTIVE)

A. Matched Subspace Detector (Matched Filter)

The general problem addressed here is the detection of a nar-
rowband signal (or target response) in a measurement

in proper Gaussian noise with covariance struc-
ture . The target-absent and target-present hypotheses are then
parameterized by and . Both signal
and measurement vectors are -dimensional , cor-
responding to, for example, data from doppler/array-element
channels in space-time adaptive processing.

In this section, we introduce the relevant invariance issues
in the simpler context of the nonadaptive problem, wherein the
noise covariance is presumed to be known a priori. We use it to
prewhiten the noise in the test data vector: . Then,

, where .
To simplify matters, we assume that a unitary transformation

has been applied to to rotate the signal vector into the direc-
tion of the first standard basis vector:

(2)

where . Here, is a 1-D signal subspace, and
is its corresponding -dimensional orthogonal subspace.

For generality, we also treat the more general case of multi-
dimensional signal subspaces, wherein the rank-1 signal vector

is replaced by a signal mode matrix , where
contains unknown coefficients. Then, the whitened data vector
is distributed as , and the signal sub-
space is then spanned by the columns of . The
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columns of are chosen to accomodate various types of signal
uncertainty, such as arrival angle or environmental/channel un-
certainty. We apply a unitary rotation matrix so that the signal
subspace is then spanned by the first standard basis vectors.
That is, we construct

(3)

where . Here, is a -dimensional signal sub-
space, and is its corresponding -dimensional or-
thogonal subspace.

We can then write the transformed test vector as

(4)

where the subscripts 1 and 2 indicate the signal and signal-
free subspaces, respectively: and

. As in [13], we seek a transformation on the
data to which we wish the test statistic to be invariant: one that
preserves 1) the Gaussianity of its distribution, 2) the known co-
variance matrix , and 3) the mean under the two hypotheses
(i.e., the mean of should be the zero vector under and a
vector in the signal subspace under ). Such a transforma-
tion leaves the parameter sets that define the two hypotheses
unchanged.

To preserve Gaussianity, we consider affine transformations
of the form . Preserving the mean under
forces to lie in the signal subspace. Assuming the rotation of
(3) has been applied, this means that should be in the
span of the first standard basis vectors: , where

, etc. However, preserving a zero mean under
forces to be the zero vector . In addition, keeping the

mean in requires to have the upper block triangular
form

(5)

where is is , and is .
Finally, forcing the covariance of to remain identity requires

and both to be unitary, leading to

(6)

A maximal invariant is then a reduced-dimension function of
the data that is invariant (insensitive) to transformations of the
form but still varies under (is sensitive to) any other type
of transformation.

Lemma 1: The maximal invariant to the transformation of (6)
is 2-D, consisting of the two scalar quadratic forms
and .

Proof: That these scalars are invariant to in (6) is
a simple consequence of unitarity: For , we have

; the argument is identical for .
Showing that they are a maximal invariant is more tricky. Con-
sider the statement that if undergoes any transformation to
that is not in the form of , then (i.e.,
the maximal invariant varies). A logically equivalent statement

(the contrapositive) is that if undergoes any transformation
such that , then the transformation must
be expressible in the form of . We can construct the fol-
lowing product of unitary matrices:

(7)

where . Suppose ; then, we have

(8)

In an identical matter, a unitary matrix can also be con-
structed such that if . Substituting these
matrices for and , we are able to construct a transforma-
tion in the form of (6).

The first scalar is the Matched Subspace Detector of [2]
and [3]. In the case of a rank-1 signal, it simplifies to the form
of a matched filter, and in the multirank cases, it is equivalent to
a projection of onto

(9)

B. CFAR MSD

Now, we consider a slightly less constrained detection
problem, in which the noise covariance is assumed to be known
only to within a scaling constant, i.e., it is , where is
known, and (an additional nuisance parameter) is not. In this
case, the transformation matrix of (6) does not need to preserve
the scale of the covariance and generalizes to

(10)

In this case, and are no longer
invariant to transformations of the form . In
fact, , and . However, their ratio

is invariant to this transformation, and fur-
thermore, it is a maximal invariant. As we show below, the ratio

is a beta-distributed
statistic that is the nonadaptive precursor to ACE. It too is a
maximal invariant.

Proposition 1: The statistic is a max-
imal invariant statistic with respect the tranformation of
(10).

Proof: Since is a monotone (and 1-1) function of , it
suffices to show that is a maximal invariant. This requires
showing that given any pair of data vectors and such that



430 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 2, FEBRUARY 2005

, then there exists a transformation of the form
of (10), such that . Suppose . Then

(11)

where is an unknown (positive) scaling constant. Therefore,
we have

(12)

Then, from that fact that is a maximal invariant with
respect to of (6) (Lemma 1), we know that there exists
a transformation in the form of such that

, and by setting in (10), we then know that there ex-
ists a transformation in the form of such that .

The statistic is a ratio of chi-squared
statistics and is thus F-distributed. It is the CFAR MSD of [2]
and [3]. The statistic is its beta-distributed version

(13)

In the cases of rank-1 and multirank signals, is given by

(14)

These compare to a threshold the cosine-squared of the angle be-
tween the measurement and the signal subspace or .
These cosines are invariant to transformations that leave this
angle unaffected, which can be viewed geometrically as trans-
formations that leave on the surface of a cone.

III. MAXIMAL INVARIANCE IN THE ADAPTIVE PROBLEM

A. Development of the Transformation Group

In the adaptive problem, the covariance matrix is not as-
sumed to be known a priori, meaning it must be estimated. We
assume training data vectors are recorded. They are
presumed to share the same noise statistics as the noise in the test
data: . We construct a joint test and training
data matrix as follows: .

Without loss of generality, we again make the simplifying
assumption that a unitary transformation has been applied to the
data to rotate the signal subspace into the subspace of the first

standard basis vectors. This unitary matrix will have the same
form as that of (3) but with replacing (note
that in the adaptive problem, is known, but is not). In the
derivations that follow, we assume that this transformation has

been made and define the symbols and to be the test and
training data in this coordinate system. We then have

(15)

where the subscripts 1 and 2 indicate resolutions of the data onto
the signal and signal-free subspaces.

When some prior knowledge about the covariance structure
can be reasonably exploited, for example, Toeplitz structure or
low-rank interference plus white noise, the GLRT approach to
finding a detection statistic generally becomes intractable. For
this reason, Bose and Steinhardt [13] considered the adaptive
detection problem from the point of view of maximal invariance.
They characterized transformations of the joint test and
training data matrix that leave unchanged the structural
form of the covariance and preserve the parameter regions that
describe the hypotheses and . Specifically, they required
preservation of 1) Gaussianity, leading to consideration of affine
transformations, 2) the covariance structure, and 3) the mean
(i.e., the mean of should be a vector in the signal subspace
under and the zero vector under ; zero-mean data should
remain so.) Such transformations leave the detection problem
invariant (see [12, ch. 4]).

When no structure on the unknown covariance is to be
enforced, we simply require that the covariance remain posi-
tive-definite and remain the same in both test and training data
[13]. By concatenating the columns of the data matrix to
form vec , the unknown joint covariance of the test and
training data may be written as

cov vec (16)

where indicates the Kronecker product. We thus require in-
variance to transformations of the joint test and training data
matrix that preserve positive-definiteness and ensure that all the
transformed test and training data vectors still share the same
covariance.

For rank-1 signals, Bose and Steinhardt showed that an affine
transformation satisfies these properties if and only if it has the
following form (see [13, App.]):

(17)

where, in a notational compromise, denotes a row vector.
The premultiplying matrix preserves the structure of the mean
and the positive-definiteness of the covariance of the columns of

; thus, is full rank. The post-multiplying matrix is uni-
tary to preserve the independent, identically distributed (i.i.d.)
nature of the noise in the data vectors; thus, is unitary. The
post-multiplying matrix has its first row equal to to preserve
zero mean in all data vectors but the test vector. For multirank
signal subspaces, this transformation group generalizes to

(18)

where both and are full-rank, and is again unitary. This
is actually a special case of the transformation in [21], wherein
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Bose and Steinhardt considered the signal to be spread in both
the row and column space of the data matrix. We will denote the
premultiplying and post-multiplying matrices by and

(19)

The premultiplying matrix leaves the signal in the signal sub-
space spanned by the first standard basis vectors .

B. Two-Dimensional Maximal Invariant for the Homogeneous
Detection Problem

For the case of rank-1 signals, Bose and Steinhardt showed
that the following scalars form a 2-D maximal invariant with
respect to

(20)

(21)

where the hat notation is used to indicate that these are adaptive
statistics. Interestingly, these are a 1-1 function of the statistics
given by the AMF and Kelly’s GLRT [13], as we will soon show.
The AMF is obtained by simply substituting the sample covari-
ance matrix for the known covariance in the stan-
dard matched filter [15], [16]:

(22)

Kelly’s statistic is obtained as a GLRT by inserting maximum-
likelihood estimates for the complex signal amplitude and the
covariance matrix into the likelihood ratio [14]:

(23)

To establish the one-to-one map between and
requires some manipulations involving inverses for

partitioned matrices. For generality, we will treat the case
of multidimensional signal subspaces and identify the multi-
rank generalizations of and that are required for our
subsequent analysis of ACE. First, we partition the sample
covariance matrix as follows:

(24)

in order to prove the following lemma.
Lemma 2: Let be the error vector as-

sociated with estimating from using the sample estimate
for the linear minimum mean-square-error filter. De-

note the sample error covariance by .
Then, the quadratic form can be decomposed as

.

Proof: The block-Cholesky decomposition of the sample
covariance and its inverse are given by

(25)

(26)

Let denote the block upper-triangular filtering matrix and
denote the block diagonal prewhitening matrix

(27)

Then, the quadratic form may be written as

(28)

Let us now label these two quadratric forms and

(29)

and consider whether they are affected by the transformation
in (18).

Lemma 3: The 2-D pair

is invariant to the transformation of (18), for
multirank signal subspaces.

Proof: To prove this, we identify the sum as

(30)

and show that is invariant. That is
invariant then follows trivially. We again refer to the pre and post-
multiplyingmatricesas and ,asdefinedin(19).Thetestvector
and training data matrix are transformed as and

. Then, is invariant by a straightforward calculation:

Similarly, for , we have and . This
gives
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In the case of a dimension-1 signal subspace
and in (29) simplify to the 2-D maximal invariant identified
by Bose and Steinhardt. Note that for a rank-1 signal, the steering
vector in our rotated coordinate system is given by

. Then, by using (26), in (22) is given by (29). Fur-
thermore, Lemma 2 identifies the sum of and as ,
meaning that (23) may now be obtained as follows:

(31)

Bose and Steinhardt showed that are not only an in-
variant of but a maximal invariant. This means that any
two data matrices and that yield the same value
for the pair are related by a linear transformation in
the form of (18). This result is extendable to the general multi-
rank signal case, which we now state as Lemma 4.

Lemma 4: The pair of (29) is a 2-D maximal in-
variant for the transformation of (18) in the general case of mul-
tidimensional signal subspaces.

Proof: This is shown in Appendix A.

C. ACE: One-Dimensional Maximal Invariant for an
Inhomogeneous Detection Problem

The adaptive analog to the hypothesis testing problem of Sec-
tion II-B is one in which the test and training data are required
to have the same covariance structure but not the same scaling:

cov vec (32)

Accordingly, we can require invariance to the more general
transformation:

(33)

This is identical to the transformation of (18), except for the
introduction of the scaling , whose only effect is to scale the
test vector by and to accordingly scale its covariance by .

Again, the statistics and are no longer invariant
to and . However, their
ratio is an invariant, and furthermore,
it is a maximal invariant to this transformation. The ratio

is the ACE statistic and is also a maximal
invariant. This brings us to our first key result.

Theorem 1: The ACE statistic is a max-
imal invariant with respect to .

Proof: Since is a monotone function of , it suffices
to show that is a maximal invariant, which is proved in the
same way that Proposition 1 was proved from Lemma 1 in Sec-
tion II-B.

The adaptive statistics and are related as follows:

(34)

Then, in the cases of rank-1 and multirank signals, the maximal
invariant ACE is given by

(35)

where , and .

IV. ACE HAS MONOTONE LIKELIHOOD RATIO

A. The Statistical Distribution of ACE

We consider the distribution in the general multirank case,
where the signal subspace has dimension to accomodate un-
certain signal waveforms. We begin with a result in [4] and [22],
which is that the “F” version of ACE has a stochastic represen-
tation in terms of five statistically independent random variables

(36)

where and are Gaussian distributed, and , and are
chi-squared distributed. More specifically, and model the
random realizations of the test-data vector and are distributed

as and
. The random variables , and account

for the random realizations of the training-data matrix and
are distributed as ,
and . In all derivations, we assume that the
distributions are obtained from complex Gaussian random
variables, wherein degrees of freedom refers to a random
variable generated from proper complex normal random
variables of unity variance or, equivalently, from real
random variables of one-half variance.

The determination of the density function for is simplified
by conditioning on the beta-distributed random variable

(an approach used by Kelly
in his study of [14]). Letting , the density of

is a beta density with and degrees of freedom:

(37)

The coefficient
is a beta function, where

is a gamma function.
Then, it can be shown [4], [23], [24] that, conditioned on the

beta-distributed random variable in (36) has a noncentral
F distribution

(38)

where the parameter is the noncen-
trality parameter. In the case of sensor array detection, it is the
output signal-to-noise ratio (SNR) of the array. The arguments
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and are the numerator and denominator degrees of freedom,
respectively.

It is well known that the noncentral F density can be written as
a mixture density, which is an infinite sum of central F densities,
weighted by Poisson coefficents [11]:

(39)

where the noncentrality parameter appears in the Poisson
coefficient , and
is a central F density with numerator and denominator
degrees of freedom. Conditioned on the parameter , the density
of is then given by

(40)

Making the change of variable , we have

(41)

Note that each term in this infinite series contains a beta density
with and degrees of freedom.

By integrating over the marginal density of , the noncentral
density of ACE in its form may be written as an integral

(42)

(43)

Under the hypothesis , only the first term of the
summation remains, and the density is given by

(44)

(45)

Fig. 1. Probability density functions of �̂. UnderH , the SNRs are 0, 4, 8, and
12 dB; data dimension isN = 10, signal dimension is p = 1, and training-data
support is K = 15.

There is an interesting connection between the dependence of
the distribution on the output SNR and invariance theory.
Space constraints do not permit a full discussion of it here, but
the transformation group on the data matrix in-
duces a transformation group that acts on the parameters

. The distribution of the statistic that is a maximal
invariant with respect to (i.e., ) will then depend on the
parameter which is a maximal invariant with respect to

(this is [11, Th. 3, ch. 6]). In this case,

is the maximal invariant with respect to the
induced transformation , and the distribution of thus
depends on .

To summarize, (42) and (44) are representations for the den-
sity of for and for . These can be used to obtain
numerical approximations for the densities, as shown in Fig. 1,
for various SNRs. The corresponding log-likelihood ratios are
shown in Fig. 2. Plots such as these suggest that the conjecture
that ACE has monotone likelihood ratio [18] might be true.

We wish to prove that this is true, for all possible values of
, and . In order to show this, our

intent from this point forward is to show that the density of
possesses the property of “total positivity,” to be defined below,
and, from this, conclude that has monotone likelihood ratio.

B. Total Positivity

Consider the likelihood ratio, which we denote by

(46)
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Fig. 2. Log-Likelihood ratios for �̂ for the densities in Fig. 1. Under H , the
SNRs are 0, 4, 8, and 12 dB; N = 10; p = 1, and K = 15.

A threshold test on the likelihood ratio can be replaced by a
threshold test on the statistic if the likelihood ratio is a mono-
tone function of . This condition can be expressed as

for all and (47)

This is equivalent to positivity of the determinant of the matrix

(48)

To establish the positivity of the determinant of , we will refer
to a more general concept termed “total positivity” by Karlin
[20].

Definition 1 (Total Positivity, STP ): A kernel function of
two variables is defined to be “totally positive” of order

(abbreviated TP ) if, given values of the function evaluated
at the ordered points and , the
matrix , whose element is given by ,
has a non-negative determinant:

(49)

When the inequality is strict, this condition is called “strictly
totally positive” and is abbreviated STP .

So, to show that the likelihood ratio is monotone, it is suffi-
cient to interpret as a kernel function of two variables
and to show that it is strictly totally positive of order 2, or STP .
We wish to show that

(50)

To show this, we will make repeated use of a basic composi-
tion formula, originally due to Polya and Szego (see [20, p. 17],
[25], and [26]). This formula can be stated generally in terms
of -dimensional integrals over order- kernels. For simplicity,

we will only state and prove it here for the order-2 case that is
of interest to us.

1) Integral Composition: Suppose is the composi-
tion of two kernels and .
Then, the corresponding determinant for is given by an inte-
gral of determinants:

(51)

This can be shown by direct expansion of the determinants as
follows:

(52)

We will use the fact that the formula also holds if the compo-
sition is a sum rather than an integral.

2) Sum Composition: Suppose
. Then, we have

(53)

This is shown in same manner as the integral composition for-
mula (note that the determinants are zero when ).

From these formulas, it can easily be seen that the property
of total positivity is preserved under such compositions. The
following lemma makes this precise.

Lemma 5 (Preservation of Total Positivity): If
, and and are both STP , then is

STP .
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Proof: This can be seen directly from (51). The property
of STP for and ensures strict positivity of the integrand,
which ensures strict positivity of the integral and, thus, STP
for . STP is also preserved for sum compositions of (53), pro-
vided the number of terms in the sum exceeds one (note again
that the determinants are zero when ).

C. Total Positivity of ACE

Lemma 5 may be applied repeatedly to show that the density
is STP for positive .

Lemma 6: The density is an STP kernel with re-
spect to and , for positive . Equivalently, the likelihood
ratio is monotone for positive SNRs:

(54)

Proof: Referring to (42), we make the change of variables
, and rewrite it as the integral composition of two kernels

and

(55)

The kernels are given by

(56)

(57)

where is a Poisson coefficient,
and is an indicator function (one on , zero
elsewhere).

Furthermore, may be written as the sum composi-
tion of two kernels, and

(58)

The strategy for the remainder of the proof is as follows,
with the details contained in Lemmas 7 through 10 in Ap-
pendix B: 1) Show by direct calculation that the kernels

, and are totally positive
STP (Lemmas 7, 8, and 10). 2) Use the summation compo-

sition formula and Lemma 5 to show that is totally
positive (Lemma 9). 3) Use the integral composition formula
to show that is totally positive.

A continuity argument in Appendix C extends this result to
the case . Then, we have the following theorem, which
is a key theoretical result of this paper:

Theorem 2: The likelihood ratio for ACE is monotone:

(59)

Theorem 1 shows ACE to be a maximal invariant, and The-
orem 2 shows its likelihood ratio to be monotone. Together they
establish ACE as a UMP-invariant statistic for threshold detec-
tion. The following theorem makes this precise.

Theorem 3: A threshold test on is UMP-invariant out of
all tests that are invariant to the transformation group of
(33).

Proof: Because is a maximal invariant, any test that is
invariant to depends on the data matrix only through .
By the Neyman–Pearson lemma, a threshold test on the like-
lihood ratio of is then Most Powerful (MP) out of all tests
that are invariant to . That is, a Neyman-Pearson likeli-
hood ratio test is an MP-invariant detector for a given value of
output-SNR . Because has monotone likelihood ratio, the
Karlin–Rubin Theorem [11] then makes a direct threshold test
on uniformly most powerful, that is, MP for all .

V. CONCLUSION

We have extended the transformation group of Bose and
Steinhardt to accommodate the problem for which the ACE
is a GLRT, that is, where the covariance of the primary test
vector can be scaled relative to that of the training data. With
this extension, we have proved that ACE is a maximal invariant
with respect to transformations that include such scaling.

With the additional property of total positivity, we have
shown that ACE has monotone likelihood ratio and, thus, that
a threshold test on it is UMP-invariant. This provides a precise
statement of the class of tests for which ACE has optimal
detection performance. The structure of the transformation
group gives additional insight into the scenario for which ACE
can be expected to be advantageous, namely, one in which
there is a lack of scaling homogeneity between the test-data
and training-data.

APPENDIX

A. Maximal Invariant for the Homogeneous Detection Problem

Proof of Lemma 4: We must show that if we are given
two data matrices and such that and

, we can construct a transformation in the form of
(18) relating the two data matrices. The proof is a variation on
the method presented by Raghavan et al. in [8, App. B].

Introduce the vectors , and

, which are adaptively prewhitened by the appropriate

components of the covariance matrix. Then, ,

and . Referring to the block-Cholesky factorization
of in (26), consider the block upper-triangular filtering
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matrix and block diagonal prewhitening matrix defined
in (27). Then, we have

(60)

The condition implies that the vectors and
are equal in magnitude and related by a unitary transformation:

. Similarly, and must also be related by
a unitary transformation: . Defining a new block-
diagonal unitary matrix formed from and , we can
express this as

or

(61)

(62)

Note that the matrices , and are all upper
block triangular, and therefore, so is their product. Therefore,

and are related by a block upper-triangular transformation
in the form of the premultiplying matrix of (19). We denote the
matrix by

(63)

Now, consider the training-data matrices and , trans-
formed the same as their associated test-data vectors in (61):

(64)

From (26) and (27), we have

(65)

Therefore, block diagonalizes the sample covariance .
(This can be verified directly by multiplying the matrices out.)
Up to this point, this proof has followed that of [8], except that
in [8], is transformed, rather than .

As a consequence, we have that the rows of and are
orthonormal:

(66)

Therefore, we can extend and to full unitary matrices
and

(67)

This gives , and thus

(68)

where is also a unitary matrix. Now substituting in
(64) to write these matrices in terms of the original training-data
matrices, we have

(69)

Combining (63) and (69), we have

(70)

(71)

where is block upper-triangular, and is unitary. Thus, the
Lemma is proved: Given data matrices that produce the same
value for the pair , these data matrices are related by a
linear transformation of the form of (18).

B. Total Positivity for Positive SNRS,

Lemma 7: The kernel of (56) is STP with respect
to and .

Proof: We want to show that

for

(72)
Let . Using the Pochammer notation to
indicate a ratio of gamma functions ,
the ratio can be written as

(73)

which shows the ratio to be monotone increasing in for all
.

Lemma 8: The kernel of (58) is STP with
respect to and .

Proof: Equivalently, we show that the derivative of the
ratio is positive. The ratio is
given by

(74)

and the derivative with respect to is given by

(75)

(76)

Lemma 9: The kernel
of (56) is STP with respect to and .

Proof: Both and are STP by Lemmas 7 and 8. Then,
the summation composition formula and Lemma 5 ensures that
the composition is STP .
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Lemma 10: The kernel of (57) is STP with respect
to and , for .

Proof: The determinant that defines total positivity
is zero for

. It is non-negative for ,
where it is given by

(77)

It is strictly positive for , which can be seen by
considering the derivative of the ratio with
respect to . The ratio is given by

(78)

with a positive derivative given by

(79)

Proof of Lemma 6: The lemma states that the density
is an STP kernel with

respect to and , for positive . From Lemmas 9 and 10,
we know that is STP and that is STP for . Then,
by the integral composition formula and Lemma 5,
is STP , with the additional observation that the integrand is
non-negative and strictly positive for .

C. Total Positivity for Non-Negative SNRS

In order to prove Theorem 2, we need to extend Lemma 6 to
zero SNR .

Proof of Theorem 2: An inequality for can be
established from the continuity of with respect to .
We first show the soft inequality

(A) (80)

We prove this by contradiction. Suppose Proposition is not
true . This would imply

where (81)

(82)

Due to continuity of , there exists a such that ,
which would imply that

(B) (83)

(Therefore, , or equivalently, .) Proposition
would contradict Lemma 6, so must be true.

To show that the inequality is strict, we again prove by con-
tradiction, supposing that it would be possible to have equality:

(C) (84)

From Lemma 6, we have

(85)

Multiplying the left and right sides of (84) by the associated
sides of this inequality, we would have

(86)

After cancellation, we would have

(87)

which would contradict the soft inequality of (80) (C A, or
equivalently A C). Therefore, we cannot have equality, and
the inequality of (80) must in fact be strict, and the Theorem is
proven.
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