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Parallel Computational 
Algorithms for the Kinematics 
and Dynamics of Planar and 
Spatial Parallel Manipulators 
This paper introduces a novel approach for the computation of the inverse dynamics 
of parallel manipulators. It is shown that, for this type of manipulator, the inverse 
kinematics and the inverse dynamics procedures can be easily parallelized. The result 
is a closed-form efficient algorithm using n processors, where n is the number of 
kinematic chains connecting the base to the end-effector. The dynamics computations 
are based on the Newton-Euler formalism. The parallel algorithm arises from a 
judicious choice of the coordinate frames attached to each of the legs, which allows 
the exploitation of the parallel nature of the mechanism itself. Examples of the 
application of the algorithm to a planar three-degree-of-freedom parallel manipulator 
and to a spatial six-degree-of-freedom parallel manipulator are presented. 

1 Introduction 

High-performance control of robotic manipulators calls for 
numerical algorithms capable of solving the inverse kinematics 
and the inverse dynamics in real time. This constraint has moti­
vated an important part of the research in the field of manipula­
tor dynamics over the last decade. Indeed, ever since the early 
work on this subject has been carried out (Luh et al., 1980; 
Hollerbach, 1980), several researchers have tackled the prob­
lem of deriving efficient algorithms for the solution of the in­
verse dynamics problem of serial manipulators (see for instance 
Angeles and Ma, 1988; Balafoutis et al., 1988, and many oth­
ers). Additionally, some authors have investigated the possibil­
ity of using parallel algorithms in order to share the computa­
tional load among several processors (see for instance Hashi­
moto and Kimura 1989; Hashimoto et al., 1990; Fijany and 
Bejczy, 1991). For serial-type manipulators, algorithms achiev­
ing a very high degree of parallelism have been proposed (see 
for instance Hashimoto and Kimura 1989; Hashimoto et al., 
1990). 

Meanwhile, from a completely different perspective, it has 
been proposed (MacCallion and Pham, 1979; Hunt, 1978; 
Fichter, 1986; Merlet, 1987; Gosselin, 1988) to use manipula­
tors with a parallel mechanical architecture to provide an alter­
native to current serial-type robotic manipulators which have 
their own limitations. Potential applications of parallel manipu­
lators arise whenever there is a need for large structural stiffness 
or high-performance dynamics and when it is desirable to bring 
the actuators as close as possible to the base. Current applica­
tions of parallel devices include flight simulators (Dieudonne 
et al., 1972) and robotic applications requiring force control 
(Reboulet and Robert, 1985; Merlet, 1988; Kim and Tesar, 
1990) or high-speed motion (Clavel, 1988; Pierrot et al., 1991; 
Gosselin and Hamel, 1994). The dynamics of parallel manipula­
tors has been studied by a few authors (Sugimoto, 1987; Do 
and Yang, 1988; Reboulet and Berthomieu, 1991; Nguyen et al., 
1991; Geng and Haynes, 1992; Guglielmetti, 1994). A complete 
dynamical model of a six-degree-of-freedom parallel manipula­
tor has been presented in (Ma, 1991). 

In this paper, it is proposed to exploit the mechanical architec­
ture of parallel manipulators to obtain parallel computational 
algorithms for the inverse kinematics and inverse dynamics 
problems. Indeed, because of the parallel mechanical architec­
ture, exact parallel algorithms can be derived which do not 
require any iterative procedure. It is shown that this formulation 
leads directly to practical implementations with one processor 
for each of the subchains connecting the platform to the base 
of the manipulator. Examples of application of this novel ap­
proach to planar and spatial parallel manipulators are then pre­
sented. 

2 Inverse Kinematic Problem 
A spatial six-degree-of-freedom parallel manipulator is repre­

sented schematically in Fig. 1. It consists of a base Aj ... Ae 
and a platform Bi . . . Bf, which are connected via 6 legs or 
kinematic chains. Each of the legs is attached to the base through 
a Hooke or Cardan joint and to the platform by a spherical joint. 
Moreover, each of the legs comprises an actuated prismatic joint 
which controls the length of the leg. All the other joints are 
unactuated. Globally, the mechanism has six degrees of freedom 
which allows the positioning and orientation of the platform 
arbitrarily with respect to the base. 

A reference frame 'li(0, X, Y, Z) is fixed to the base and a 
coordinate frame "R'(0',X',Y',Z') is attached to the platform. 
Furthermore, the position of the joints on the base—points A, — 
are denoted by vectors a,, / = 1, . . . , 6 and the position of the 
joints on the platform—points iS,—by vectors b, , / = 1, . . . , 
6. Vectors a, are constant when expressed in frame 'R while 
vectors b, are constant when expressed in frame 'B'. Finally, let 
vector r = [r,, r,, r j ^ denote the position of point O' with 
respect to point O expressed in frame "R and let Q be the matrix 
representing the rotation from frame "R to frame 'R'. From Fig. 
1, one can write: 

[b,]« = [r]« + Q[b,.]«., i = l, (1) 
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where the index outside the square brackets indicates the refer­
ence frame in which a vector is expressed. Subtracting vector 
B; from Eq. (1) , one obtains 

[b,. - a,L = [r]« + Q[b,]«. ~ [a,]«, / = 1, . . . , 6 (2) 
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Fig. 1 Spatial six-degree-of-freedom parallel manipulator 

where the left-hand side represents, in fact, a vector connecting 
point A, to point S;, along the ith leg. Hence, taking the Euclid­
ean norm of both sides of this equation leads to: 

Pi =ll[b,- - a , . y 

= l|[r]« + Q[b,]«. [a,]«||, 1 = 1 , . . . , 6 (3) 

Therefore, for a given position and orientation of the platform, 
the length of each of the legs is easily computed. This constitutes 
the solution of the inverse kinematics problem for the platform, 
which leads to a unique branch. This result has been obtained 
by many authors. However, it is pointed out here that each 
of the six equations obtained for the inverse kinematics are 
independent from one another and can be computed in parallel. 
This result is quite different from what is obtained for serial 
manipulators, where the joint coordinates have to be computed 
in sequence when a closed-form solution is used. This result 
will be exploited next. 

2.1 Parallel Algorithm for the Inverse Kinematics. As 
mentioned above, the six equations obtained for the inverse 
kinematics—Eqs. (3)—are independent from one another. In 
other words, each of the joint coordinates can be computed 
directly from the original data, i.e., from the Cartesian coordi­
nates of the platform. Indeed, Eqs. (3) can be expanded, which 
leads to 

Pi Vi/? + vj + w?, i = 1, 

where 

Ui = r, + quM + qnb] + q^b] - af 

V; = ry + q2M + qi2b] + qjjb^ - aj 

W, = r, + q,ib^ + qnb^ + q^ibj - a] 

(4) 

(5) 

(6) 

(7) 

in which qij denotes the ij component of matrix Q, and in which 
the components of vectors a, and b, have been defined such 
that: 

[a,],= [aUahan\ [b,],. = W,bLb]Y, 

/ = 1, . . . 6 (8) 

where quantities {a', a], a], b', bj, b\) are functions of the 
geometry of the base and the platform. From the above equa­
tions, it is clear that each of the joint coordinates can be com­
puted directly from the geometry of the manipulator and the 
Cartesian coordinates. Hence, we can use one processor for 
each of the legs, i.e., for each of the joint coordinates. The idea 
of the parallelism in the computational scheme can also be 
extended to the computation of the Jacobian matrices. This is 
presented in the next section. 

2.2 Parallel Algorithm for the Evaluation of the Jacob­
ian Matrices. When Eqs. (3) are differentiated with respect 
to time, a set of linear equations relating the joint rates to 
the Cartesian velocities are obtained. Following the formalism 
proposed in (Gosselin and Angeles, 1990) for parallel manipu­
lators, two Jacobian matrices J and K are obtained and the 
velocity equation is written as 

J p + Kt = 0 (9) 

where t is the six-dimensional twist of the platform and p is 
the vector of joint velocities. These vectors are defined as 

t = [ w ^ f n ^ p = [p, Pe,\ (10) 

in which w is the angular velbcity of the platform and r is the 
linear velocity of point O'. From (Gosselin and Angeles, 1990), 
the aforementioned Jacobian matrices can be written as: 

J = diag(pi, . .., p(.) 

and 

K = 

(11) 

(12) 

with 

k,-= [ { ( Q [ b i ] , . ) x s , } ^ s n ' , i = l, . . . , 6 (13) 

where s, is the vector connecting point A, to point B,, i.e., 

s,. = [ t / , , y , . , W , ] ^ / = ! , . . . , 6 (14) 

Matrix J is readily available from the solution of the inverse 
kinematic problem since its non-vanishing components are the 
joint coordinates themselves. Moreover, it is clear from the 
expressions given above that each of the rows of matrix K can 
be computed independently, just as in the case of the inverse 
kinematics. Quantities [/,, V, and W,, which have already been 
evaluated, are used again here. 

If the acceleration inversion is also required, Eq. (9) is differ­
entiated with respect to time. This leads to 

J p + j p -h Kt + Kt = 0 (15) 

where t is the generalized acceleration of the platform and p is 
the vector of joint accelerations. These vectors are defined as 

i = [(a\r']\ p = {h hV (16) 

in which di is the angular acceleration of the platform and i* is 
the acceleration of point O'. In Eq. (15), the derivatives of 
matrices J and K need to be computed. They are given as 

j = diag(pi, . . . , pe) 

and 

K = kJ 

(17) 

(18) 

with 

k,- = [{(Q[b,.]„0 X s,. + (Q[b,.],,) X s,.)^ sH" (19) 

where s, and Q are the time derivatives of vector S; and matrix 
Q, respectively. Matrix J is readily obtained from the velocity 
inversion. Moreover, the computation of matrix K is easily 
parallelized since each of the rows is related to the correspond­
ing leg and can be computed independently from the other ones. 
The resulting parallel computational scheme—including the so­
lution of the inverse kinematics and the computation of the 
Jacobian matrices and their time derivatives—is represented 
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schematically in Fig. 2. One processor can be used for each of 
the legs. Because of the mechanical architecture of the manipu­
lator, the nature of the problem is completely parallel. There­
fore, each of the six processors is assigned exactly one sixth 
of the total amount of computations which would have to be 
performed in a serial implementation. 

3 Inverse Dynamics 

The solution of the inverse dynamics problem consists in 
computing the actuator forces or torques required to perform a 
prescribed motion of the manipulator. It requires knowledge of 
the mass and inertial properties of each of the moving links of 
the manipulator. 

For serial manipulators, once the motion of each of the links 
is determined, the recursive apphcation of the Newton-Euler 
equations on each of the links from the end-effector to the base 
leads to an efficient serial algorithm (Luh et al., 1980). The 
serial nature of the algorithm obtained is directly related to the 
serial architecture of the kinematic chain involved. However, 
more detailed analyses lead to parallel algorithms whose com­
plexity is of the order of log («) (Hashimoto andKimura, 1989) 
where n is the number of degrees of freedom of the serial 
manipulator. 

For parallel manipulators, the situation is quite different since 
the end-effector—the platform—^is not the end link of a kine­
matic chain. However, as opposed to the results obtained above 
for the inverse kinematics, it is not obvious from the outset that 
the parallel structure of the mechanism can be exploited in the 
derivation of parallel algorithms for the inverse dynamics. 

In order to formulate the problem systematically, the free-
body diagrams of the platform and of the two parts of one of 
the legs, which are shown in Fig. 3, are first considered. In Fig. 
3(a) , the platform is represented with all the forces acting on 
it. Point Gp denotes the mass center of the platform. Since each 
of the legs is attached to the platform via a spherical joint, no 
torque can be applied to the platform by the legs. Moreover, 
for reasons that will become clearer in the next subsection, 
each of the contact forces between the legs and the platform is 
decomposed as one force acting in the direction of the leg, noted 
f, and one force acting in a plane orthogonal to the direction of 
the leg, noted g, (Reboulet and Berthomieu, 1991). Since the 
direction of the leg is known from the kinematic analysis, force 
f, contains only one unknown—its magnitude^—and force g, 
contains two unknowns. Hence, there are 18 unknowns in the 
free-body diagram of Fig. 3(a) which means that this diagram 
cannot be solved directly. In Fig. 3{b), the free-body diagram 
of the upper part of the /th leg is represented. Point G, i denotes 
the mass center of this link. Forces f, and g,- are still present, in 
virtue of Newton's third law. Moreover, the forces and moments 
applied to the upper part of the leg by the lower part of the leg 
are denoted as follows: force d, is the force acting in a plane 
orthogonal to the leg, force h, is the force acting in the direction 
of the leg—the force applied by the actuator—^moment n, is 
the moment acting in a plane orthogonal to the leg and moment 
o, is the moment acting in the direction of the leg. Again, the 
force and moment acting in the plane orthogonal to the leg 
contain two unknowns while the force and moment acting in 
the direction of the leg contain only one unknown, i.e., their 
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compute k2 
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compute ke 

compute kfi 
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Fig. 2 Parallel computational algorithm for the inverse kinematics, ve­
locity, and acceleration Inversion 

Fig. 3 Free-body diagram of the platform and of the two parts of one 
of the legs 

magnitude. Finally, the free-body diagram of the lower part of 
the leg is represented in Fig. 3(c) . Point G/2 is the mass center 
of this link. Since the link is connected to the base via a Hooke 
joint, only a moment in the direction of the leg can be applied 
by the base link to the lower part of the leg. This moment is 
denoted 1,. Furthermore, the force applied by the base to the 
lower part of the leg is decomposed into two forces: force c, is 
the force acting in the direction of the leg and force e, is the 
force acting in a plane orthogonal to the direction of the leg. 

Hence, the inverse dynamics problem can be formulated glob­
ally using 13 free-body diagrams involving a total of 78 scalar 
unknowns which are nothing but the components of the forces 
and moments defined above. Six of these components are the 
actuator forces and they constitute the output of the inverse 
dynamics procedure. Applying Newton and Euler's equations 
to each of the free-body diagrams, 78 linear equations are ob­
tained, which is consistent with the fact that the problem at hand 
is dynamically determined. However, the system of equations 
obtained is not completely coupled since only a subset of the 
unknown variables appear in each of the equations. In fact, the 
maximum number of unknowns appearing in one same equation 
is 18, which occurs for the equations involving the free-body 
diagram of the platform. This suggests that the solution of the 
problem could probably be broken down into a set of simpler 
problems. Moreover, if it is possible to obtain a set of decoupled 
problems, then a parallel algorithm could be derived. This is 
discussed in the next subsection. 

3.1 Parallel Algorithm for the Inverse Dynamics. As 
mentioned above, the parallelization of the inverse dynamics 
procedure is not as straightforward as in the case of the inverse 
kinematics. Indeed, the free-body diagram of the platform can­
not be solved directly from the outset. However, a closer look 
at the free-body diagrams of Fig. 3(ZJ) and (c) reveals that 
some of the unknowns appearing on these diagrams can be 
solved for directly and independentiy from the other legs if the 
unknown forces and torques are judiciously decomposed. This 
decomposition is the one presented above, i.e., each of the 
unknown forces and torques associated with one particular leg 
is decomposed into a vector in the direction of the leg and a 
vector acting in a plane orthogonal to the leg. The application 
Of the Newton-Euler equations in the plane orthogonal to the 
direction of one given leg to both the upper and the lower part 
of the leg then leads to a system of 8 equations in 8 scalar 
unknowns which can be solved independently from the other 
legs. These equations are obtained as follows: first, the free-
body diagram of the upper part of the leg is considered. The 
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forces and moments are summed in the plane orthogonal to the 
direction of the leg, which leads to 

and 

dj - g,- = m'^af 

r,i X d,. - r,.2 X g, + n,- = 11 

(20) 

w, X Via), (21) 

where a"-"- is the acceleration of the center of mass of the link 
in the plane orthogonal to the direction of the link, ml is the 
mass of the upper part of the leg, I" is the inertia tensor of this 
link, r,, is the vector connecting point G,i—the center of the 
mass of the link—to the point of application of d,, TJJ is the 
vector connecting point G,, to the point of application of g, and 
Mi and <u, are the angular velocity and acceleration of the link, 
respectively. These last two vectors, as well as vector a"-^, are 
obtained from the kinematic analysis. The same equations are 
applied to the lower part of the leg. This leads to 

-d; + e, mla!-^ (22) 

and 

- r . s X d/ + ri4 X e, - !!,• = liw,- + w, x l!w; (23) 

where a 5̂  is the acceleration of the center of mass of the link 
in the plane orthogonal to the direction of the link, m! is the 
mass of the lower part of the leg, Ij is the inertia tensor of this 
link r,, is the vector connecting point G,2—the center of mass 
of the link—to the point of application of d,, r,4 is the vector 
connecting point G,2 to the point of application of e, and w, 
and w, are the angular velocity and acceleration of the link, 
respectively. These last two vectors, as well as vector aj^, are 
obtained from the kinematic analysis. 

It becomes quite clear now that Eqs. (20 ) - (23) form a 
system of 8 scalar equations in 8 unknowns, the unknowns 
being the components of g,, d,, C;, and n,. Moreover, this 
system can readily be solved, regardless of the other legs. The 
solution of this system leads to the determination of the compo­
nents of vector g,. Hence, when this operation is performed for 
each of the legs—in parallel—only 6 unknown quantities will 
remain on the free-body diagram of the platform, i.e., the forces 
in the direction of each of the legs. These can be solved for using 
the Newton-Euler equations on the platform. Finally, Newton's 
equation is applied to each of the upper parts of the legs, in the 
direction of the leg. This allows the computation of h,, the 
actuator force, and thereby completes the procedure. 

The solution of the inverse dynamics derived above is almost 
completely parallel. Only one of the steps—the application of 
the Newton-Euler equations to the platform—must be per­
formed on one single processor. In fact, this part of the algo­
rithm, which amounts to the inversion of a linear system of 
algebraic equations, could also be parallelized. However, for 
the sake of simplicity and to minimize the communication be­
tween the processors, it is executed on a single processor here. 
The algorithm is represented schematically in Fig. 4. As in the 
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Fig. 4 Parallel computational algorithm for the Inverse dynamics 

case of the inverse kinematics, one processor is associated with 
each of the legs which leads to a very important improvement 
in efficiency. This will be clearly demonstrated in the next 
section where the application of the parallel algorithms derived 
above to two examples of parallel manipulators is discussed. 

4 Examples 

4.1 Planar Three-Degree-of-Freedom Parallel Manipu­
lator. First, a simple example presenting the inverse dynamics 
of a planar three-degree-of-freedom parallel manipulator is 
treated. This manipulator has been studied in (Gosselin and 
Angeles, 1988) and a serial algorithm for the inverse dynamics 
has been proposed in (Angeles and Ben-Zvi, 1988). The manip­
ulator is represented in Fig. 5. Three prismatic joints are used 
to position and orient the triangular platform on the plane. All 
the revolute joints are unactuated. The free-body diagrams of 
the platform and of the two parts of one of the legs are shown 
in Fig. 6. 

The inverse kinematics of the manipulator is first studied. If 
the position and the orientation of the platform are known, the 
positions of points 5 , , ( = 1, 2, 3 are readily computed. The 
position of point C —the reference point on the platform—will 
be noted C(x, y) and the orientation of the platform with respect 
to a fixed reference will be given by angle </>. The inverse 
kinematics can then be written as 

p, = M + Vl, 1, 2, 3 

with 

= X + b' cos 4^ - hi sin 4> 

= y + b'i sin 4> + 

- « ? 

• b^t c o s (j) — a^i v^=y 

(24) 

(25) 

(26) 

where (Zjf, fef) are the components of the position vector of 
point iS, in a frame attached to the platform, (af, aj) are the 
components of the position vector of point A, in a frame attached 
to the base and p, is the length of the leg, i.e., the /th joint 
coordinate. Equation (24) can be evaluated independently for 
each of the legs, thereby leading to a parallel algorithm. Each 
of the three processors involved will have to perform 6 multipli­
cations, 7 additions, one square root, one sine and one cosine. 
The computational load is equally distributed among the proces­
sors. 

The velocity equation can be written as 

J p + Kr = 0 (27) 

where f = [x, y, ^Y is the Cartesian velocity vector of the 
platform and p is the vector of joint velocities. Matrix J is a 
diagonal matrix whose nonzero elements are the joint coordi­
nates and hence requires no computations. On the other hand, 
the «th row of matrix K, noted k,, can be written as 

k, =•• [ t / , , y , . , i y , ] , / = ! , 2, 3 (28) 

with 

Wi = -U,{b', sin (f) + b] cos ^) 

+ Vi(bUos<l) ~ M sm<l>) (29) 

Hence, the computation of each row of the Jacobian matrix 
requires 6 multiplications and 3 additions to be performed in 
parallel by each of the 3 processors. The acceleration inversion 
is similar and is not discussed here for the sake of conciseness. 

The inverse dynamics procedure is similar to the general 
algorithm presented in Section 3.1. A system of 4 scalar equa­
tions in 4 unknowns—the forces orthogonal to the direction of 
the leg and the torque at the prismatic joint—can be written 
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Fig. 5 Planar three-degree-of-freedom parallel manipulator 

for each of the legs. Moreover, this system can be solved in 
closed-form and its solution for the force at the revolute joint 
connecting the leg to the platform takes on the following form 

, _ (// + lu)CJi + OT„/„(a,„)-^— mikjauy 

g, = d, - m„(a,„)-^ (31) 

where di is the component of the interaction force between the 
upper and lower parts of the (th leg in a direction orthogonal 
to the leg, gi is the interaction force between the platform and 
the upper part of the (th leg in a direction orthogonal to the 
leg, // and /„ are the moments of inertia of the lower and upper 
part of the leg, uJt is the angular acceleration of the leg, m„ is 
the mass of the upper part of the leg, m, is the mass of the lower 
part of the leg, (a.a)-"- is the component of the acceleration of 
the mass center of the upper part of the leg in a direction 
orthogonal to the leg, (a,/)-"- is the component of the acceleration 
of the mass center of the lower part of the leg in a direction 
orthogonal to the leg, /„ is the distance from the mass center of 
the upper part of the leg and the revolute joint attached to the 
platform, and h is the distance between the mass center of the 
lower part of the leg and the revolute joint attached to the base. 
The above computations are performed in parallel by each of 
the three processors and they require only 7 multiplications and 
4 additions (assuming that the accelerations of the mass centers 
and the angular accelerations are available). 

Then, the 3 Newton-Euler equations are applied to the plat­
form and a 3 X 3 linear system of equation is obtained in terms 
of the components of the forces applied by the legs to the 
platform in the direction of the legs. In general, this system 
does not contain any zero and must be solved with a general 
procedure. As in the case of the spatial manipulator, this is the 
only non-parallel part of the algorithm. One of the processors 
can be assigned this task, which will require 11 multiplications 
and 6 additions. 

Finally, from the forces computed above, the joint force, hi 
can be computed as follows 

hi = m„(a,„)" -fi (32) 

where (a,„)" is the acceleration of the mass center of the upper 
part of the leg in the direction of the leg and / is the force 
applied by the upper part of the leg to the platform, in the 
direction of the leg. This last operation is performed in parallel, 
for each of the legs and it requires only one multiplication and 
one addition. 

Globally, the time required to compute the inverse dynamics 
of the planar three-degree-of-freedom parallel manipulator can 
then be reduced to the time required to perform 19 multiplica­
tions and 11 additions on one processor. A serial implementa­
tion would yield 35 multiplications and 21 additions. It is re­
called that this does not include some kinematic computations 

that would be necessary to obtain the acceleration of the mass 
center of each of the links. These computations, which are 
required in both the serial and the parallel implementation, can 
also be easily parallelized. This would increase the gain in 
computation time provided by the parallel algorithm. 

4.2 Spatial Six-Degree-of-Freedom Parallel Manipula­
tor. The computational complexity of the algorithm will now 
be discussed for the general case of a spatial six-degree-of-
freedom parallel manipulator such as the one described in Sec­
tions 2 and 3 and represented in Fig. 1. 

4.2.1 Inverse Kinematics. The inverse kinematics is paral­
lelized using the procedure presented in Section 2.1. The com­
putation of the joint variables is performed according to Eq. 
(4). This requires 12 multiplications, 14 additions and one 
square root per processor. Then, the evaluation of each row of 
the Jacobian matrix requires 18 multiplications and 9 additions, 
considering that some of the quantities needed have already 
been computed in the inverse kinematics procedure. Finally, the 
computation of one row of the derivative of the Jacobian matrix 
requires 48 multiplications and 24 additions. In total, the kine­
matic procedure will require 78 multiplications, 47 additions 
and one square root, 6 times less than in a serial implementation 
since the computational load is equally distributed among the 
processors. 

4.2.2 Inverse Dynamics. The first part of the inverse dy­
namics algorithm consists in the solution of Eqs. (20-23) 
which, it is recalled, form a system of 8 linear scalar equations 
in 8 unknowns, the unknowns being the components of g,-, d,, 
e, and ii; (there are only 2 unknowns per vector since we know 
the plane in which these vectors act). However, this system is 
not completely general in the sense that not all the unknowns 
appear in each of the equations. Therefore, the solutioh can be 
simplified substantially. First of all, Eqs. (21) and (23) are 
summed, which leads to the elimination of vector n,. Then, an 
expression for ê  is obtained from Eq. (22) and is substituted 
in the equation resulting from the previous operation. This leads 
to the following 

with 

Pi + Qi =R2 + R4 (33) 

P,- = r,i X d,. - r,-2 X & (34) 

Qi = -Fij X d,. + r,4 X (di + mWi^) (35) 

and where R2 and i?4 stand for the right-hand side of Eqs. (21) 
and (23), respectively. Finally, an expression for vector d, is 
obtained from Eq. (20) and substituted in Eq. (33) which leads 
to an equation in g, only, i.e.. 

(r,! - ri2 - r,3 + rj4) X g,- = Z (36) 

Fig. 6 Free-body diagram of the platform and of the two parts of one 
of the legs of the planar three-degree-of-freedom parallel manipulator 
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with 

Z = R2 + R4 - r,, X m"iSi'l^ + Tn X m'l2i"i^ 

- TM X {mlaf + mWi^) (37) 

Equation (36) can be solved for the components of g,, the force 
applied by leg i to the platform in the plane orthogonal to the 
direction of the leg. It is pointed out that Eq. (36) could also 
have been obtained from the application of the Euler equation 
to the whole leg, considering a fixed point, i.e., the lower end 
of the leg. 

If the vectors are expressed in a local frame, with one of its 
axes in the direction of the leg, then the computations will be 
simplified. However, this entails the transformation of all the 
velocities and accelerations in this frame. Such a transformation 
requires 9 multiplications and 6 additions and must be per­
formed for vectors w, ta, a", and aj. Then, Eq. (36) can be 
used directly to compute the two non-vanishing components of 
gi in the local frame. This requires a total of 64 multiplications 
and 39 additions. Hence, the first part of the procedure, which 
is executed in parallel by each of the 6 processors requires a 
total of 100 multiplications and 63 additions per processor. 

As mentioned in Section 3.1, the second part of the algorithm 
cannot be directly parallelized and must be assigned to one of 
the processors. It consists in the application of the Newton-
Euler equations to the platform which leads to a system of 6 
linear equations in 6 unknowns, i.e., the components of the 
forces appUed to the platform by each of the legs in the direction 
of the leg. In general, this system of equations will not contain 
any zero. Therefore, its solution will require approximately 120 
multiplications and 110 additions, including the preparation of 
the right hand side of the Unear system and the fact that the 
forces g,, (' = 1, . . . , 6, must be transformed into the reference 
frame attached to the platform. 

Finally, the last part of the procedure can be computed in 
parallel on each of the six processors. This allows the computa­
tion of the actuator force h, as 

h, = fi + m'laf (38) 

In the above equation, vectors f, and a"" must be transformed 
into the reference frame attached to the leg. The equation be­
comes then scalar since 2 of the 3 components of each of the 
vectors will be equal to zero. This last step will therefore require 
19 multiplications and 13 additions per processor. 

Hence, the time to complete the inverse dynamics procedure, 
assuming that the kinematic computations have been performed, 
is equivalent to the time required by 240 multiplications and 
190 additions on one single processor. The same algorithm 
implemented on a single processor would require 834 multipli­
cations and 566 additions, whereas the direct solution of the 
original system of 78 equations in 78 unknowns would require 
approximately 150000 multiplications and additions. The gain 
is, therefore, substantial. Moreover, the algorithm derived 
here—regardless of the fact that it can be parallelized—leads 
to a much more stable procedure since the largest linear system 
of simultaneous equations encountered is a system of 6 equa­
tions in 6 unknowns. 

In a real implementation, the communication overhead intro­
duced by the fact that several processors are used would have 
to be considered. Experimental results illustrating this effect are 
given in (Guglielmetti 1994). However, since only 6 processors 
are used here (for the six-degree-of-freedom manipulator) and 
that they can execute exactly the same code, it is expected that 
this overhead would be limited. 

5 Conclusion 

The inverse kinematics and the inverse dynamics of parallel 
manipulators have been studied in this paper. The objective was 
to derive parallel algorithms which would make use of several 

processors in order to improve the numerical efficiency. It has 
been shown that, for this type of manipulator, the inverse kine­
matics and the inverse dynamics procedures can be easily paral­
lelized. The parallelization of the inverse kinematics and of the 
computation of the Jacobian is straightforward while the key to 
the parallelization of the dynamics was the definition of judi­
cious local reference frames. An efficient closed-form algorithm 
using n processors, where n is the number of kinematic chains 
connecting the base to the end-effector, has been presented. 
Examples of the application of the algorithm to a planar three-
degree-of-freedom manipulator and to a spatial six-degree-of-
freedom parallel manipulators have been presented. In each 
case, the algorithm leads to a very significant improvement of 
the computational efficiency and of the robustness. 
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