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In this paper, methods are shown how to adapt invertible two-dimensional chaotic maps on a
torus or on a square to create new symmetric block encryption schemes. A chaotic map is first
generalized by introducing parameters and then discretized to a finite square lattice of points
which represent pixels or some other data items. Although the discretized map is a permutation
and thus cannot be chaotic, it shares certain properties with its continuous counterpart as long
as the number of iterations remains small. The discretized map is further extended to three
dimensions and composed with a simple diffusion mechanism. As a result, a symmetric block
product encryption scheme is obtained. To encrypt an N × N image, the ciphering map is
iteratively applied to the image. The construction of the cipher and its security is explained
with the two-dimensional Baker map. It is shown that the permutations induced by the Baker
map behave as typical random permutations. Computer simulations indicate that the cipher
has good diffusion properties with respect to the plain-text and the key. A nontraditional
pseudo-random number generator based on the encryption scheme is described and studied.
Examples of some other two-dimensional chaotic maps are given and their suitability for secure
encryption is discussed. The paper closes with a brief discussion of a possible relationship
between discretized chaos and cryptosystems.

1. Introduction

The idea of using chaos for data encryption is cer-
tainly not new and can be traced to the classical
Shannon’s paper [1952]. Even though he does not
use the word chaos, he proposes mixing, measure
preserving transformations which depend on their
arguments in a “sensitive” way. He explicitly men-
tions the basic stretch-and-fold mechanism of chaos:
“. . . Good mixing transformations are often formed
by repeated products of two simple noncommuting
operations. Hopf has shown, for example, that pas-
try dough can be mixed by such a sequence of op-
erations. The dough is first rolled out into a thin
slab, then folded over, then rolled, and then folded
again, etc. . .” Sloane [1982] also points out the im-
portance of chaos for generating random permuta-
tions in groups.

Chaotic maps have been utilized in several dif-
ferent ways in cryptography. Matthews [1989] de-
rives a one-dimensional chaotic map which exhibits
chaotic behavior for parameter values and initial
values within a specified range. He suggests to
use this map for generating a sequence of pseudo-
random numbers, which can be used as a one time
pad for encrypting messages. His work has been
criticized by Wheeler [1989], who shows that when
the chaotic map is implemented on digital com-
puters, the discretized map produces cycles which
are unpredictable and often short. Habutsu et al.
[1991] suggest a cryptosystem in which the inverse
of the one-dimensional tent map is applied N times
to an initial condition representing the plain-text.
In each iteration, one of the two possible preimages
is chosen at random. The decryption is achieved
by applying the tent map N times. For N inverse
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iterations there are 2N possible cipher-texts which
encode the same plain-text. Biham [1991] pointed
out that the cryptosystem could be easily bro-
ken using a chosen cipher-text type of attack, and
the complexity of known plain-text type of attack
is 238.

Bianco et al. [1991, 1994] use the logistic map
to generate a sequence of floating point numbers,
which is then converted to a binary sequence which
is XOR-ed with the plain-text. The parameter of
the logistic map together with the initial condition
form part of the ciphering key. The conversion from
floating point numbers to binary values is done by
choosing two disjoint interval ranges (not necessar-
ily covering the whole unit interval) representing
0 and 1. The authors claim that this irreversible
process makes it impossible to recover the original
values. However, it is a well-known fact from sym-
bolic dynamics that when a chaotic orbit is con-
verted to a sequence of symbols — sets from some
partition — it may be possible to calculate the ini-
tial condition with a much better accuracy than the
size of the partition sets [Fridrich, 1995a, 1995b,
1997a]. The fact that this method is based on float-
ing point arithmetic constitutes a possible disad-
vantage because this makes it machine dependent,
and care needs to be exercised when implementing
the schemes in software. Also, while for most com-
mon chaotic maps there are numerous exact results
guaranteeing aperiodic, chaotic sequences for pa-
rameters from a set of nonzero Lebesgue measure,
we cannot directly transfer the results to computer
approximations. It has been pointed out by Jackson
[1991] and Wheeler [1989] that computer implemen-
tations of chaotic maps can exhibit surprisingly dif-
ferent behavior, e.g. very short cycles, depending on
the particular numerical representation. While it is
probably true that the typical behavior of finite ap-
proximations of chaotic systems should “converge”
to that of their continuum counterparts, only very
little is known at present time. The same com-
ments apply to the work of Protopopescu [1995].
He uses m different chaotic maps, m > 1, which
are initialized using a secret key. If the maps de-
pend on parameters, these, too, are determined by
the key. The maps are iterated using floating point
arithmetic and m bytes are extracted from their
floating point representations, one byte from each
map. These m numbers are then combined using an
XOR operation. The process is repeated to create
a one-time pad which is finally XOR-ed with the
plain-text.

Deffeyes [1991] describes a method in which
a one time pad is generated in two-dimensional
N×M blocks based on a key-dependent geometrical
procedure which remotely resembles a generalized
two-dimensional Baker map. The key is used to
generate an initial block of bits, which is then re-
peatedly permuted and XOR-ed with itself. After
log2 (N ×M) iterations, a pseudo-random looking
block is obtained. This block is then XOR-ed with
the plain-text. The procedure is linear with respect
to the plain-text and its cryptanalysis requires in-
verting a matrix of order N×M . The author argues
that since the complexity of matrix inversion scales
with the third order of the matrix rank, N ×M ,
by making the block sufficiently large, the method
becomes secure.

Caroll and Pecora [1990, 1991, 1992, 1993a,
1993b, 1995a, 1995b], Cuomo and Oppenheim
[1994, 1995], Murali [1993], Kocarev [1992], Par-
litz [1992], Papadimitriou [1992] describe encryp-
tion schemes based on synchronized chaotic circuits.
These analog encryption schemes belong more to
the field of steganography and stealth communica-
tion. Bernstein and Lieberman [1991] use chaotic
circuits to build a pseudo-random number genera-
tor. Since the main focus of this paper is software
encryption of digital data, such as digital imagery
or electronic archives, hardware-based encryption
techniques are not discussed in this paper.

Gutowicz [1993, 1994] describes an encryp-
tion scheme based on one-dimensional cellular au-
tomata. An interesting feature of his scheme is
that one plain-text can correspond to many cipher-
texts in a random manner. This feature makes
the cipher-text slightly larger than the plain-text,
however. There are no known cryptographic weak-
nesses of this scheme known to the author of this
paper.

As discussed above, virtually all today’s chaos
based software encryption techniques use the
one time pad. However, one time pad is not
suitable for encryption of large amounts of data,
such as digital imagery, electronic databases and
archives. The scheme presented in this paper,
is a symmetric block encryption technique based
on two-dimensional chaotic maps. Possible ad-
vantages of the proposed scheme over other avail-
able encryption schemes are discussed below. A
good introductory text on encryption is [Schneier,
1996].

Public key encryption schemes are not suitable
for encrypting of large amounts of data and archival
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because of their relatively slow performance. Also,
the security of public key cryptographic schemes lies
in the computational complexity of certain prob-
lems, such as factorization of large numbers or com-
puting of the discrete logarithm problem. Advances
in algorithmic techniques, number theory, and dis-
tributed computing are unpredictable and are likely
to force us to reencrypt large databases and archives
with a longer key to maintain a sufficient degree of
security. In addition to that, the newly emerged
field of quantum computing could, theoretically,
make those methods totally unusable in the future
[Brassard, 1988].

It is a better idea to encrypt large data
files with private-key symmetric block encryption
schemes. Although advances in crypt-analytic
techniques and quantum computing threaten sym-
metric encryption schemes as well [Brassard, 1997],
those schemes can provide a more stable framework
with a higher degree of security and are certainly
much faster than public-key schemes. Today’s most
common block encryption scheme, the Data En-
cryption Standard, DES, was designed for hard-
ware implementation and software implementa-
tion is relatively slow. New, bulk encryption
schemes, such as Blowfish or IDEA, perform much
better in software and offer higher encryption
rates. Depending on the number of rounds, Blow-
fish is 3–5 times faster than DES, and IDEA
is twice as fast as DES (based on [Schneier,
1996] the throughput for DES is 35 kB/sec. on a
33 MHz 486).

This paper can be considered as an extension
of the work of Pichler and Scharinger [1994,
1995] who first introduced the idea of using dis-
cretized two-dimensional chaotic maps for cryptog-
raphy. In this paper, it is shown how to adapt in-
vertible chaotic two-dimensional maps on a torus
or on a square for the purpose of encryption. Al-
though a detailed study is presented for a two-
dimensional Baker map only, the techniques and
ideas are applicable to other two-dimensional
chaotic maps.

A chaotic map is first generalized by intro-
ducing parameters and then discretized to a finite
square lattice of points which represent data items.
In the rest of this paper, we refer to the square lat-
tice as an “image” and the data item will be called
a “pixel”. The values of pixels will be called gray
levels. It is clear that this terminology does not
limit our method to digital imagery. Although the
discretized map is a permutation and thus cannot

be chaotic, it shares certain sensitivity and mix-
ing properties with its continuous counterpart. It
is shown that the average length of cycles and the
number of different cycles correspond a typical ran-
dom permutation. The discretized map is further
extended to three dimensions and composed with a
simple diffusion mechanism to obtain a block prod-
uct encryption scheme. The performance of the ci-
pher is studied using computer simulations. The
cipher has good diffusion properties with respect to
the plain-text and the key.

The main features of the encryption scheme
studied in this paper are a variable key length,
a relatively large block size (several kB or more),
and a high encryption rate (1 Mb unoptimized
C code on a 60 MHz Pentium). The cipher is
based on two-dimensional chaotic maps, which are
used for creating complex, key-dependent permu-
tations. Unlike most of today’s symmetric encryp-
tion schemes, which rely on complex substitution
rules while somewhat neglecting the role of permu-
tations, the new cipher is based on complex permu-
tations composed with a relatively simple diffusion
mechanism.

Section 2 describes a general five-step pro-
cess of building a symmetric block cipher from
a two-dimensional chaotic map. The process of
building a cipher that utilizes the two-dimensional
Baker map is explained in detail in Sec. 3. This ci-
pher is further studied in the next four sections. In
Sec. 4, the total number of keys for an N×N image
is counted. Since the security of the cipher lies in
its permutation step, which is key-dependent, it is
important to study the permutations as functions
of the key. For the Baker map, this is analyzed in
Sec. 5 by defining a measure of similarity between
permutations. It is shown that similar keys (pa-
rameters of the chaotic map) produce similar per-
mutations and form clusters. The size of the largest
cluster of similar keys is estimated. The length of
the cycles forming the permutations is studied and
a comparison is made with random permutations.
It is shown that after several iterations, the map be-
haves as a typical random permutation. The sim-
ilarity measures are used in Sec. 6, to study the
cryptographic strength of the Baker-map-induced
permutations for a direct search for the key under
a known plain-text attack and a cipher-text only
attack. In Sec. 7, a new type of a pseudo-random
number generator is introduced and its suitability
for encryption properties is evaluated. Some exam-
ples of other simple chaotic maps are given in Sec. 8
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and their suitability for cryptographic purposes is
discussed. Section 9 contains a brief compari-
son between chaotic systems and cryptosystems.
The basic features of the chaos-based encryption
scheme, its advantages and disadvantages and fu-
ture research directions are summarized in the last
Sec. 10.

2. A Method for Creating
a Chaos-Based Cipher

The process of developing a chaos-based cipher can
be summarized as follows. First, a chaotic map
is generalized by introducing parameters into the
map. Geometrical arguments are often used at this
stage. Then, the map is modified so that its do-
main and range are both the same square lattices
of points (pixels, or some other general data items).
The map is extended to three dimensions so that
the values of the pixels (the gray levels) can be
changed. A diffusion step is introduced by compos-
ing the generalized discretized map with a simple
diffusion mechanism. Let us consider square im-
ages consisting of N × N pixels with L levels of
gray. The method for developing a cipher consists
of the following five steps.

2.1. Choosing the basic map

In this step, the mathematical form of a chaotic
two-dimensional map f which maps the unit square
I × I, where I = [0, 1], onto itself in a one-to-
one manner is chosen. There are a number of dif-
ferent chaotic maps which seem to be suitable for
ciphering purposes. However, the only maps of in-
terest are those which are simple so that the cipher-
ing/deciphering phases can be performed quickly.
The map should allow natural parametrization to
create a short ciphering key with a large number of
possible keys. Such maps are often described geo-
metrically (e.g. the Baker map, the Cat map, the
Standard map, etc.).

2.2. Generalization

In the second step, a set of parameters is
introduced into the map to create a part of the
ciphering key. If the basic map is described in
geometric terms, the parametrization is usually
straightforward. If it can be done in several differ-
ent ways, the one which best suits the purpose of se-
cure ciphering needs to be chosen. Two-dimensional

chaotic maps will be characterized by a sequence of
integers. Another parameter is the number of appli-
cations of the chaotic map. It is typically an integer
less than 15.

2.3. Discretization

This step consists of modifying the generalized map
to account for the fact that an image is a finite lat-
tice of points. The domain and range of the map
is changed from the unit square I × I to the lat-
tice NN

0 ×NN
0 , where NN

0 = {0, . . . , N − 1} with
N equal to the number of pixels in one row. The
discretized map F takes each pixel and assigns it
to some other pixel in a bijective manner (e.g. the
discretized version is a permutation of pixels). The
discretization must satisfy the following asymptotic
property:

lim
N→∞

max
0≤i, j<N

|f(i/N, j/N) − F (i, j)| = 0 , (1)

where f is the continuous basic map and F is the
discretized version. The formula requires the dis-
cretized map to become increasingly closer to the
continuous map as the number of pixels tends to
infinity.

2.4. Extension to three dimensions

At this point, the cipher is just a permutation ci-
pher. By extending the map to three dimensions,
the pixel values are also modified and a good sub-
stitution cipher is obtained. This can be easily
achieved with a very little increase in cipher com-
plexity. A general procedure which can be applied
to any two-dimensional map is described in this
paper.

2.5. Composition with
a diffusion mechanism

Since the chaotic map extended to three dimensions
is a complicated substitution cipher with no diffu-
sion properties, it is necessary to compose the map
with some simple diffusion mechanism. Linear feed-
back registers with carry over [Pichler & Scharinger,
1994, 1995] or other simple nonlinear mechanisms
can be used to achieve this goal. The resulting ci-
pher is a product cipher with good diffusion and
confusion properties.
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3. Cipher Construction
for the Baker Map

3.1. The two-dimensional Baker map

The Baker map, B, is described with the following
formulas

B(x, y) = (2x, y/2)

when 0 ≤ x < 1/2 ,

B(x, y) = (2x− 1, y/2 + 1/2)

when 1/2 ≤ x ≤ 1 .

The map acts on the unit square as depicted in
Fig. 1. The left vertical column [0, 1/2) × [0, 1)
is stretched horizontally and contracted vertically
into the rectangle [0, 1) × [0, 1/2), and the right
vertical column [1/2, 1)× [0, 1) is similarly mapped
onto [0, 1) × [1/2, 1). The Baker map is a chaotic
bijection of the unit square I × I onto itself.

3.2. Generalized Baker map

The map can be generalized in the following way
[Pichler & Scharinger, 1994, 1995]. Instead of

Fig. 1. Baker map.

dividing the square into two rectangles of the
same size, the square is divided into k vertical
rectangles [Fi−1, Fi) × [0, 1), i = 1, . . . , k, Fi =
p1 + · · ·+ pi, F0 = 0 such that p1 + · · ·+ pk = 1 (see
Fig. 2). The lower right corner of the ith rectangle
is located at Fi = p1 + · · · + p1. The generalized
Baker map stretches each rectangle horizontally by
the factor of 1/pi. At the same time, the rectangle
is contracted vertically by the factor of pi. Finally,
all rectangles are stacked on top of each other as in
Fig. 2. Formally,

B(x, y) =

(
1

pi
(x− Fi), piy + Fi

)
for

(x, y) ∈ [Fi, Fi + pi)× [0, 1) ,

It is convenient to denote the Baker map and its
generalized version as B(1/2, 1/2) and B(pi,..., pk), re-
spectively. The generalized map inherits all impor-
tant properties of the Baker map such as sensitivity
to initial conditions and parameters, mixing, and
bijectiveness.

3.3. Discretized Baker map

3.3.1. Version A

Since an image is defined on a lattice of finitely
many points (pixels), a correspondingly discretized

Fig. 2. Generalized Baker map.
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form of the basic map needs to be derived. In par-
ticular, the discretized map is required to assign a
pixel to another pixel in a bijective manner. Since
the discretized map is desired to inherit the prop-
erties of the continuous basic map, the discretized
map should become increasingly close to the ba-
sic map as the number of pixels tends to infin-
ity. This requirement is expressed mathematically
with Eq. (1). Following the approach suggested by
Pichler and Scharinger [1994, 1995], the discretized
generalized Baker map will be denoted B(n1..., nk),
where the sequence of k integers, n1, . . . , nk, is
chosen such that each integer ni divides N , and
n1 + · · ·+nk = N . Denoting Ni = n1 + · · ·+ni, the
pixel (r, s), with Ni ≤ r < Ni + ni, and 0 ≤ s < N
is mapped to

B(n1,..., nk)(r, s) =

(
N

ni
(r −Ni) + s mod

N

ni
,

ni
N

(
s− s mod

N

ni

)
+Ni

)
.

(2)

This formula is based on the following geometrical
considerations. An N×N square is divided into ver-
tical rectangles of height N and width ni. Following

Fig. 3. Discretized versions of the Baker map.

the action of the generalized Baker map, these verti-
cal rectangles should be stretched in the horizontal
direction and contracted in the vertical direction to
obtain a horizontal ni × N rectangle. To achieve
this for the discretized map, each vertical rectangle
N × ni is divided into ni boxes N/ni × ni contain-
ing exactly N points (see Fig. 3, Version A). Each
of these boxes is mapped to a row of pixels. Since
there are ni boxes, a horizontal rectangle ni × N
is obtained, as required. Now, how the pixels in
each box are mapped to a row of pixels need to be
specified. Since the original Baker map is contin-
uous on each box, the only plausible discretization
is to map the box column by column. An example
for N = 16, ni = 2 is shown below. The rectangle
N/ni × ni = 16/2 × 2 = 8 × 2 is mapped to a row
of 16 pixels as follows:

8 16

7 15

6 14

5 13

4 12

3 11

2 10

1 9

↓

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Examples of permutations for a complete 6-
pixel image and an 8-pixel image are worked out
in detail in Figs. 4 and 5. For the 6-pixel image, a
3-1-2 division is used, while in the 8-pixel case the
division is 2-4-2.

Equation (2) is a symbolic, mathematical de-
scription of this geometric procedure. It is possi-
ble to justify the formula via symbolic dynamic.
The action of the generalized Baker map can be
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Fig. 4. The permutation induced by the discretized Baker
map for a 6-pixel image (division 3, 1, 2).

described with Bernoulli shifts on double-infinite
sequences. Similarly, it can be shown that the ac-
tion of the discretized map defined by Eq. (2) can
be represented by Bernoulli shifts in finite Abelian
groups [Pichler & Scharinger, 1994, 1995]. This rep-
resentation enables an elegant description of the dy-

namic in a symbolic form. This form could also
be utilized for an efficient software and hardware
implementation.

The application of the Baker map to a gray
scale test image 472×472 shown in Fig. 6 produces
encrypted images as demonstrated with Figs. 7 and
8. The ciphering key was randomly generated and
consists of the following sequence of 17 divisors of
472:

(8 8 8 59 59 4 4 118 118 4 2 4 4 59 8 4 1) (3)

Figure 6 shows the original image, and Figs. 7
and 8 show the results of applying the general-
ized discretized Baker map once and nine times,
respectively.

Fig. 5. The permutation induced by the discretized Baker map for an 8-pixel image (division 2, 4, 2).

Fig. 6. The test image 472 × 472 pixels with 256 gray
levels. Fig. 7. The test image after applying the Baker map once.
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Fig. 8. The test image after applying the Baker map nine
times.

The fact that spatially localized information in the
original image becomes nonlocal and uncorrelated
in the encrypted image can be illustrated with the
following example. The original image consists of
a 10 × 10 black square on a white background of
a 472 × 472 image (see Fig. 9). A randomly gen-
erated ciphering key (3) was used to iterate the
discretized generalized Baker map nine times. The
result is shown in Fig. 10. The black pixels are scat-
tered all over the image in an apparently random
manner.

3.3.2. Version B

It is possible to generalize the geometric procedure
to an arbitrary combination of integers (e.g. not
only divisors of N are considered) n1, . . . , nk which
add up to N . This is important for several
reasons:

• By constraining ni to divisors of N , certain val-
ues of N may produce relatively small number
of ciphering keys (for example, when N has only
small number of divisors). When the encryp-
tion method is applied to the raw image data,
some images would have to be slightly enlarged
to the nearest integer N with a large number of
divisors.
• Even though the cipher is used as a block cipher

with a fixed block size which could be chosen at

Fig. 9. An image consisting of a 10 × 10 black square on a
white background.

Fig. 10. Figure 9 encrypted after nine iterations.

our leisure, the constraint of ni being divisors of
N can be rather limiting.
• The randomness properties of the permutations

are much better for keys with general ni than for
keys consisting of divisors only.

In order to generalize the procedure to an ar-
bitrary sequence of numbers n1, . . . , nk, similar



Symmetric Ciphers Based on Two-Dimensional Chaotic Maps 1267

geometric arguments as before are used. The im-
age is again divided into vertical rectangles N ×ni.
Each rectangle is divided into ni boxes containing
exactly N points. Now these boxes do not neces-
sarily have to have a rectangular shape (see Fig. 3,

Version B). The top and bottom row of each box
may exhibit a one-pixel “step”. However, it is still
possible to map the pixels column by column to
a row of pixels. The procedure is illustrated with
N = 16, ni = 6 below. The first 4 columns will be
by one pixel longer than

3 6 9 12

2 5 8 11 14 16

1 4 7 10 13 15

↓

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

the remaining ni − 4 columns. In particular, the
first 4 columns will consist of dN/nie pixels, where
dxe denotes the smallest integer greater or equal to
x. An example of a permutation for an 8-pixel im-
age is worked out in detail in Fig. 11. The only
small inconvenience is that there is no simple for-
mula similar to Eq. (2). Also sacrificed is the ad-
vantage of having a Bernoulli shift-based descrip-
tion of the discretized map. However, as discussed
in [Fridrich, 1997b] on fast implementations of the
ciphering technique on sequential computers, the
implementation of the encryption algorithm for an
arbitrary combination of ni is no more complicated
than in the previous case.

3.4. Extension to rectangular images

It is always recommended that an image be com-
pressed before it is encrypted. From this point
of view, it does not make much sense to further
generalize the discretized Baker map to rectangular
images since one will have to pad the compressed

image to the block size anyway. Nevertheless, the
continuous Baker map can be readily applied to
both squares and rectangles without any changes.
It is interesting to attempt the same feat in the
discretized case. The problem with the discretized
version is that given an M×N image with M 6= N ,
the number of pixels in each vertical rectangle, niN ,
may not be a multiple of M . In order to keep the
number of pixels in each vertical rectangle at some
multiple of M , the rectangles are modified to allow a
one-pixel step in the vertical sides of each rectangle.
This is a similar modification as in the description
of Version B. Consequently, some boxes may have
a unit step in pixels not only at the top or the bot-
tom but also at the sides. Of course, when niN is
divisible by M , there will be no steps in the verti-
cal sides of the rectangle. This slight modification
of the Baker map preserves the geometric charac-
teristics of the original continuous Baker map. The
discretization is also consistent with Eq. (1). As
explained in [Fridrich, 1997b] since it is possible

Fig. 11. Permutation induced by the discretized Baker map for an 8-pixel image when the integers ni are not divisors of 8
(division 3, 5).
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to implement the scheme using transfer matrices,
there is no additional complication of the practical
implementation.

3.5. Extension to three dimensions

The method described in this section is general and
can be applied not only to the Baker map, but
to any two-dimensional discretized map. It can
be used to modify any one-to-one two-dimensional
mapping to a three-dimensional mapping which acts
both on the pixels and on their gray levels. The ex-
tension can be achieved by a slight modification of
the chaotic map and it significantly contributes to
the security of the whole cipher. The resulting sub-
stitution cipher can create a random looking image
with uniform histogram in only a few iterations.

Consider a N × N square image with L gray
levels. Let B be any discretized two-dimensional
chaotic map. Let gij denote the gray level of the
pixel (i, j),

gij ∈ {0, . . . , L− 1} = NL
0 . A map

h : NN
0 ×NN

0 ×NL
0 → NL

0

needs to be found such that the pixel (i, j) with
gray level gij is mapped to B(i, j) with a gray level
h(i, j, gij). The three-dimensional map

B3 : NN
0 ×NN

0 ×NL
0 → NN

0 ×NN
0 ×NL

0

should be invertible to make deciphering possible.
This means that B3(i, j, g) 6= B3(i, j, g′) for each
(i, j) ∈ NN

0 ×NN
0 and g, g′ ∈ NL

0 . This is possible
if and only if h is one-to-one for each i, j. This re-
quirement is not restrictive at all and enables one to
construct a large variety of gray level permutations.
For example,

h(i, j, gij) = gij + h(i, j) mod L , (4)

where h is any (possibly not one-to-one) function
of i and j, produces an acceptable map h. In this
case, h can be interpreted as a simple shift cipher
with the shift size h(i, j) dependent on the posi-
tion of the pixel i, j. The shift size h(i, j) could
be computed quickly using some bit operations on
i and j, or it could be stored in a look up table.
For a fast encryption, h should be chosen so that it
can be performed quickly or, preferably, hard-wired
into an encrypting hardware, while maintaining the
security of the cipher. Future work includes the in-
vestigation into the performance of the encryption

scheme for various choices of h obtained using XOR
operation with i and/or j.

To explain how the 3D chaotic map works, let
us represent the permutation induced by the dis-
cretized two-dimensional chaotic map B using two
transfer matrices t1 and t2. The discretized map
B transforms a pixel with coordinates (i, j) to a
new position (t1(i, j), t2(i, j)). Storing the pixel
values of the original image in a two-dimensional
integer array pixel[0 . . . N −1][0 . . . N−1], the new,
enciphered image is stored in the integer array
new pixel[0 . . . N − 1][0 . . . N − 1]. The following
code fraction in C explains how the 3D map trans-
forms the pixel values.

Code fraction 1.

for(i = 0; i < N ; i+ +)

{
for(j = 0; j < N ; j + +)

{
new pixel[t1[i][j]] [t2[i][j]]

= (pixel[i][j] + h(i, j))%L ;

}
}

The deciphering process can be implemented using
transfer matrices in a similar way. In fact, having
computed the transfer matrices t1 and t2, the in-
verse transfer matrices t1−1, t2−2 can be obtained
directly from t1, t2 without having to perform any
integer arithmetic operations:

t1−1(t1(r, s), t2(r, s)) = r

t2−1(t1(r, s), t2(r, s)) = s .

The three-dimensional chaotic map leads to a sub-
stitution cipher which can create a random im-
age with uniform histogram in a few iterations.
The randomness properties of the image enciphered
with a three-dimensional Baker map are studied in
Sec. 7. The result of enciphering the test image
from Fig. 6 with the key (3) using h(i, j) = i . j is
shown in Figs. 12 and 13. Figure 12 shows the enci-
phered image after one iteration. The result after 9
iterations is shown in Fig. 13. Even one iteration of
the 3D chaotic Baker map makes the histogram uni-
form, although the histogram of the original image
was highly nonuniform.
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Fig. 12. The test image after one iteration of a 3D chaotic
map. The histogram of the image is uniform.

Fig. 13. The test image after nine iterations of a 3D chaotic
map. The histogram of the image is uniform.

Figures 14 and 15 show the result of enciphering
a black square using one and two iterations, respec-
tively. As can be seen from the figures, starting with
a black square only two iterations of the 3D chaotic
map create an image with a uniform histogram!

We note that our encryption scheme in the cur-
rent stage has zero diffusion, which is, of course,

Fig. 14. Histogram of a black square after one iteration of
the Baker map with gray-level mixing function h(i, j) = i, j.

Fig. 15. Histogram of a black square after two iterations
with gray-level mixing function h(i, j) = i, j.

undesirable from the security point of view. For
example, the scheme could be broken with a cho-
sen plain-text attack with only N × M chosen
plain-texts. We introduce diffusion in the next
section.

3.6. Composing with
a diffusion mechanism

The diffusion methods described in this section are
not constrained to the Baker map and can be ap-
plied to any block-substitution cipher including the
3D Baker map from the previous section. Any
three-dimensional discretized chaotic map has a ro-
bustness property in the sense that flipping one
pixel in the encrypted image influences one pixel
in the decrypted image. The error does not diffuse
through the image. This error robustness is poten-
tially dangerous and makes the method vulnerable
to a chosen plain-text type of attack. If an eaves-
dropper can choose the images to be encrypted, he
could encrypt two images which differ in one pixel,
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and then compare the encrypted versions. This
way, the eavesdropper can learn to which pixel is
the modified pixel mapped to. Repeating this pro-
cedure for each pixel in the image can reveal the
permutation of pixels. It is then possible to recon-
struct the parameters of the chaotic map. The only
thing left would be the crypt-analysis of function h.
Clearly, a diffusion mechanism must be present in
any secure cipher [Shannon, 1949].

We suggest inserting a diffusion step into the
encryption scheme after the permutation and gray-
level mixing. Therefore, one complete encryption
step consists of (i) one permutation with simultane-
ous gray-level mixing, (ii) one diffusion step during
which information is spread over the image. This
way, an error will diffuse to neighboring pixels each
time the chaotic map is iterated.

There are many ways one can implement a dif-
fusion step into the scheme. Pichler and Scharinger
[1994, 1995] take a product of the Bernoulli cipher
with a maximal length linear feedback shift regis-
ter with carry over. Their method also generates
uniform histograms and, at the same time, achieves
complete diffusion with respect to plain-text. We
have experimented with two different methods.

Method 1. Assuming the dimensions of the im-
age are even numbers, one can divide the im-
age into a regular tessellation of 2 × 2 squares.
The new gray levels of each pixel within each
2 × 2 group depend on all four gray levels in
the group. This way, after one iteration, the
number of influenced pixels approximately quadru-
ples. By adjusting the number of iterations, one
can achieve complete diffusion, or partial diffu-
sion which will enable partial recovery of the im-
age, while keeping the chosen plain-text attacks
unfeasible. It has been observed that this mod-
ification can not only achieve complete diffusion
with respect to changes in pixels, but also complete
diffusion with respect to changes to the cipher-
ing key. Modifying the ciphering key by one bit
or modifying the plain-text by one bit changes
completely the cipher-text. This was tested by
comparing the two cipher-texts and evaluating the
correlation between these two. The results of
many computer tests showed that only statistical
correlation corresponding to two random images
occurred.

Method 2. In the second method, the diffusion
was obtained by scanning the image by rows (start-

ing, for example, in the upper left corner), and
changing the gray levels according to the formula

v∗k = vk +G(v∗k−1) mod L

v−1 = initial value ,

where vk denotes the gray levels arranged in a one-
dimensional vector obtained by scanning the image
by rows. The function G is some arbitrary function
of the gray level, and it was chosen as a fixed ran-
dom permutation implemented using a lookup table
in our tests. The corresponding inverse step used
in the deciphering procedure is

vk = v∗k −G(v∗k−1) mod L .

The implementation of the diffusion Method 2 is
explained below using a code fraction written in C.

Code fraction 2.

previous = initial value ;

for(i = 0; i < N ; i+ +)

{
for(j = 0; j < N ; j + +)

{
pixel[i][j] = pixel[i][j] +G(previous) ;

previous = pixel[i][j] ;

}
}

This procedure achieves complete mixing very
quickly and also produces a complete diffusion with
respect to the plain-text. Both methods also make
our ciphering technique sensitive to the key in the
sense that small changes to the key produce sta-
tistically independent cipher-texts. In other words,
there are no clusters of similar keys, which would
weaken the scheme. The complete encryption
scheme is schematically explained in Fig. 16. The
enciphering process consists of several iterations of
the 3D substitution step composed with the diffu-
sion step. Detailed study of the cipher with diffu-
sion will be the subject of further research.

4. The Number of Ciphering Keys
for the Baker Map

The ciphering key is formed by the parameters of
the chaotic map, the number of applications of the
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Fig. 16. A diagram of the product encryption scheme. One
iteration is composed of one permutation step and one diffu-
sion step.

map, the parameters of the gray-level transforma-
tion h, and parameters of the diffusion part. For
both versions of the Baker map, the key KB is

KB = {C, n1, . . . , nk, p1, . . . , ph, D} ,

where C is the number of iterations of the Baker
map, n1, . . . , nk are the parameters of the Baker
map, p1, . . . , ph are the parameters necessary to
describe h, and D is the set of parameters
needed for the diffusion step. Experiments with
real images and the cipher security analysis in
Secs. 5 and 6 suggest that C < 15 produces safe
encryption.

The number of possible keys grows very rapidly
with the number of pixels in the image. Since the
map (4) and the diffusion contribute the same way
for any chaos-based cipher, we exclude their contri-
bution to the number of ciphering keys and calcu-
late the number of ciphering keys due to parameters
of the chaotic maps. So, let us calculate the num-
ber of ciphering keys produced only by n1, . . . , nk.
To estimate the total number of different cipher-
ing keys, consider Version A of the Baker map.
The task is to estimate how many times an in-
teger N can be written as an ordered sum of its
divisors. The number of divisors, k, ranges from
some small number, such as 2 if N is even, to N
for a key consisting of N ones. The total num-
ber of ciphering keys, K(N), depends on N and
on how many different divisors exist for N . Triv-
ially, when N is a prime number, K(N) = 1. For
N = 2m, K(2m+1) ≈ [K(2m)]2. For N = 64,

128, 256, 512, K(N) ≈ 1015, 1031, 1063, 10126, re-
spectively. The number K(N) tends to be higher
for N with a large number of different divisors,
such as N = 30, 60, 120, 240. The table below
shows K(N) as a function of N for selected values
of N .

N K(N) N K(N) N K(N)

4 5 27 26425 50 2.6e11

6 24 28 5e6 51 1.8e8

8 55 30 1.5e8 52 3.1e12

9 19 32 4.7e7 54 8.0e13

10 128 33 2.2e5 55 6.6e6

12 1627 34 9.2e6 56 6.8e13

14 741 35 51885 57 1.8e9

15 449 36 1.5e10 58 9.5e11

16 5271 38 6.3e7 60 3.8e17

18 45315 39 2.0e6 62 6.5e12

20 83343 40 1.4e10 63 2.5e11

21 3320 42 1.8e11 64 3.8e15

22 29966 44 3.5e10 128 e31

24 5.1e6 45 4.7e8 256 e63

25 571 46 2.9e9 512 e126

26 2.0e5 48 4.8e13 1024 e255

In the table, the following notation is used: 2.0e5
means 2.0 × 105, etc. For Version B of the Baker
map, it is easy to see that the total number of ci-
phering keys K(N) = 2N−1 for all N . This number
monotonically increases with N and is consistently
larger by several orders of magnitude compared to
Version A. The number of keys, K(N, m), of length
equal to m is

K(N, m) =

(
N

m

)
.

5. Structure of the Permutations
Induced by the Baker Map

Each permutation can be uniquely represented
as a collection of cycles. The structure of the

permutations induced by the generalized discretized
Baker map is studied. The average length of a cy-
cle, and the average number of cycles were used to
compare the permutations with a typical random
permutation.
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The average length of a cycle is defined as the
expected value of the number of iterations of the
map necessary to bring a randomly chosen pixel
back to its original position. Given N2 pixels, if a
permutation consists of k cycles of length c1, . . . , ck,
such that c1 + · · · + ck = N2, the expected value,
C(N), of the cycle for a randomly chosen pixel is

C(N) =

k∑
i=1

c2i

N2
.

The average number of cycles, cyc(N), is defined as
the expected value of k. It can be shown [Feller,
1957], that for a random permutation,

C(N) =
N2 + 1

2
,

cyc(N) = 2 ln(N)± 2 ln(N) .

A set of computer experiments with 1000 randomly
chosen keys of length between 10 and 15 for a square
image 472 × 472 pixels gives C(N) = 111, 115.7,
cyc(N) = 33.5. These values should be compared
to random permutations with C(N) = 111, 392.5,
cyc(N) = 24.6. Since the standard deviation for
cyc(N) is 24.6, we can conclude that the permuta-
tions induced by the Baker map behave as typical
random permutations.

Another aspect of the permutations important
for the security of the cipher is how the permuta-
tions depend on the key n1, . . . , nk. Do similar keys
generate similar permutations? How can one mea-
sure similarity for permutations? In order to answer
these questions, we studied a simplified version of
our encryption scheme with gray-level mixing and
diffusion removed and studied this weakened per-
mutation cipher.

Figures 17–20 show the results of deciphering
an image using wrong ciphering keys. The original
image shown in Fig. 6 consists of 472 × 472 pixels
with 256 gray levels. When the key (3)

(8 8 8 59 59 4 4 118 118 4 2 4 4 59 8 4 1)

was changed by replacing the parameter 4 on the
sixteenth place by two parameters 2,

(8 8 8 59 59 4 4 118 118 4 2 4 4 59 8 2 2 1)

Fig. 17. Test image enciphered with (8 8 8 59 59 4 4 118 118
4 2 4 4 59 8 4 1) and deciphered with (8 8 8 59 59 4 4 118 118
4 2 4 4 59 4 4 2 2 1).

Fig. 18. Test image enciphered with (8 8 8 59 59 4 4 118 118
4 2 4 4 59 8 4 1) and deciphered with (8 8 8 118 4 4 118 118
4 2 4 4 59 8 4 1).

the deciphered image shown in Fig. 17 is clearly
recognizable, although it does contain some “noise”.
While replacing the two parameters 59 on the fourth
and the fifth place by their sum results in a much
more noisy deciphered image (Fig. 18), one can
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Fig. 19. Test image enciphered with (8 8 8 59 59 4 4 118 118
4 2 4 4 59 8 4 1) and deciphered with (8 8 8 59 59 4 118 118
4 4 2 4 4 59 8 4 1).

Fig. 20. Test image enciphered with (8 8 8 59 59 4 4 118 118
4 2 4 4 59 8 4 1) and deciphered with (8 8 8 59 59 4 4 59 59
59 59 4 2 4 4 59 8 4 1).

however, still find some traces of the original image
(e.g. the edge on the right side of the face). Fig-
ure 19 shows the result of deciphering using a key
in which the parameter 4 on the seventh place in (3)
was moved after the second parameter 118. Clearly,

the attempt to decipher the image has been unsuc-
cessful. Figure 20 was obtained using a modifica-
tion of the key (3) in which the two parameters 118
were replaced by four parameters 59. Again, the
deciphered image does not bear any resemblance to
the original.

The keys in which one parameter is replaced
by a sequence of smaller parameters, or in which
small parameters are merged into a larger one, are
“close to each other”. This observation suggests
that each ciphering key is surrounded by a cluster
of keys which are close to it. Below, we estimate
the size of these clusters.

The similarity between two keys, K1 and K2,
should be measured by the difference in the perfor-
mance of their ciphering maps B1 and B2 on a typ-
ical image.

Let Dk denote the number of pixels (i, j) in
the original image I which are mapped to different
pixels after k applications of the maps B1 and B2,
i.e. Bk

1 (i, j) 6= Bk
2 (i, j), Clearly, when Dk becomes

comparable to the total number of pixels in the im-
age, N2, the images Bk

1 (I) and Bk
2 (I) will bear no

resemblance. An important issue from the point of
view of the security of the cipher is how fast Dk

increases with k, and how Dk depends on the simi-
larity between the ciphering keys K1 and K2. Both
questions are answered below.

It will be useful to represent ciphering keys as
disjoint unions of subintervals of the interval [0, N).
Let

K1 = (ni(1), ni(2), . . . , ni(k))

denote a ciphering key with ni(1), . . . , ni(k) being
the parameters, such that ni(1) + · · · + ni(k) = N .
Denoting Nj = ni(1) + · · ·+ ni(j), N0 = 0, Nk = N ,
the key K1 can be represented by a union U1 of
disjoint subintervals of [0, N)

U1 = [0, N
(1)
1 ) ∪ [N

(1)
1 , N

(1)
2 )

∪ · · · ∪ [N
(1)
k−1, N

(1)
k ) .

The similarity between two keys, K1 and K2, will
be measured by the total length of intervals from
U1 ∩ U2. Denoting

U2 = [0, N
(2)
1 ) ∪ [N

(2)
1 , N

(2)
2 )

∪ · · · ∪ [N
(2)
m−1, N

(2)
m ) ,

assume that the two keys are the same with the

exception of one interval in U1, [N
(1)
s , N

(1)
s+1), which
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corresponds to a union of several smaller consecutive intervals in U2. This can be best visualized graphically
as:

U1 = |........|......|...|.................|.......|.................|.......................|......|......|

U2 = |........|......|...|.................|.......|.................|....|.....|.........|.|......|......|

In this particular example, the seventh inter-
val in U1 has been replaced by a union of four
smaller intervals in U2. From the graphical inter-
pretation of the Baker map it is easy to see that
the vertical rectangle with pixels with indices (i, j),

N
(1)
s ≤ i < N

(1)
s+1, 0 ≤ j < N , will be placed differ-

ently under application of B1 and B2. Therefore,

D1 = (N
(1)
s+1 − N

(1)
s ) × N = ni(s) × N . When ap-

plying the Baker map the second time, the number
of newly misplaced pixels increases by ni(s)×N mi-
nus the relative portion of already misplaced pixels
from the previous step

ni(s)

N
× ni(s) ×N = n2

i(s) .

This argument can be repeated to obtain an approx-
imate recurrent formula

Dk = Dk−1 + ni(s) ×N −
ni(s)

N
Dk−1 ,

k = 1, 2, . . . .

By dividing the last expression by the total number
of pixels, N2, the following formula for the relative
count of misplaced pixels is obtained:

rk = Dk/N
2

rk = (1− ε)rk−1 + ε

where ε = ni(s)/N , 0 ≤ ε ≤ 1. It is easy to solve
this recurrent expression for rk to obtain

rk = 1− (1− ε)k−1

Dk = rkN
2 .

(5)

Since Eq. (5) is the basis of further cipher security
considerations, it is important to study its valid-
ity for real images. In order to test the formula,
an image was encrypted using two different keys
with an increasing number of iterations. The im-
ages were compared and the pixels with different
gray levels were counted. This number, which is a
function of the number of iterations k, is denoted
as Dgk. Finally, Dgk was compared to Dk based on
Eq. (5).

Set #1.

In the first set of experiments, it is assumed that
each pixel in the image has a different gray level.
The ciphering keys used in simulations are:

K1 =(8 8 8 59 59 4 4 118 118 4 2 4 2 2 59 8 4 1) ,

K2 =(8 8 8 59 59 4 4 118 118 4 2 4 2 2 59 4 4 4 1) ,

K3 =(8 8 8 59 59 4 4 118 118 4 2 4 2 1 1 59 8 4 1) .

The 16th interval of K1 of length 8 was replaced
by two subintervals of half the length in K2 and the
14th interval in K1 was replaced by two subintervals
of length 1 in K3. The following table summarizes
the number of differently placed pixels, Dgk, under
iterations with K1 compared to iterations with K2

and K3.

K1K2 K1K3

k Dgk/N
2 rk = Dk/N

2 Dgk/N
2 rk = Dk/N

2

1 1.695e-2 1.695e-2 4.237e-3 4.237e-3

2 3.361e-2 3.361e-2 8.457e-3 8.457e-3

3 4.960e-2 4.999e-2 1.252e-2 1.266e-2

5 8.020e-2 8.192e-2 2.054e-2 2.100e-2

10 0.1481 0.1571 3.871e-2 4.157e-2

20 0.2532 0.2896 6.842e-2 8.142e-2

40 0.3817 0.4953 0.1108 0.1562

80 0.4906 0.7453 0.1537 0.2880

160 0.5354 0.9351 0.1841 0.4931

320 0.5405 0.9958 0.1915 0.7430

As can be seen from the table, the accuracy of
Eq. (5) is better than 7% when the number of it-
erations is less than 10. The accuracy decreases to
about 15% when the number of iterations reaches
20. The main reason why Dgk/N

2 and rk deviate
for k > 30 is the discrete nature of the Baker map.
The ciphers K1K2 and K1K3 differ in an interval

[N
(1)
s , N

(1)
s+1] of lengths 8 and 2, respectively. In

the course of iterations, the pixels from the vertical
rectangle

{(i, j)|N (1)
s ≤ i < N

(1)
s+1, 0 ≤ j < N}
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will not be mapped to all pixels in the image but to
a smaller set.1 This is caused by periodicities which
are present in the discretized map. Therefore, Dgk
saturates at a different number than Dk = N2rk,
which always reaches the total number of pixels,
N2, as k →∞.

The second set of experiments was performed
with the same ciphering keys, K1, K2, K3, for a real
test image shown in Fig. 6. Note that the number of
misplaced pixels with different gray levels, Dgk, is
slightly lower compared to the previous case, which
somewhat decreases the accuracy of Eq. (5). This is
caused by the finite number of gray levels (256) in
the image. Some misplaced pixels may accidentally
land on pixels with the same gray level. The fre-
quency of this happening depends on the histogram
of the image and on the total number of gray levels.
The more uniform the histogram is, or, the more
gray levels are in the image, the better the accu-
racy of Eq. (5).

K1K2 K1K3

k Dgk/N
2 rk = Dk/N

2 Dgk/N
2 rk = Dk/N

2

1 1.581e-2 1.695e-2 2.110e-3 4.237e-3

2 3.183e-2 3.361e-2 4.224e-3 8.457e-3

3 4.706e-2 4.999e-2 6.239e-2 1.266e-2

5 7.632e-2 8.192e-2 1.020e-2 2.100e-2

10 0.1410 0.1571 1.925e-2 4.157e-2

20 0.2408 0.2896 3.468e-2 8.142e-2

40 0.3619 0.4953 5.710e-2 0.1562

80 0.4628 0.7453 8.019e-2 0.2880

160 0.5035 0.9351 9.726e-2 0.4931

320 0.5067 0.9958 0.1003 0.7430

Set #2.

Both sets of experiments suggest that Dk forms an
upper bound on the number of pixels in which two
encrypted images differ. For a small number of iter-
ations k < 30, Eq. (5) gives an accurate estimate of
Dgk. The difference between Dgk and Dk is caused
by a small number of gray levels in the image (256)
compared to the total number of pixels (4722). Dk

will be a better estimate of Dgk for color images
which may have up to 2563 different colors. The ac-
curacy of Dk will clearly depend on the histogram
of the image. The disagreement between Dgk

and Dk in the second experiment of Set #2 for K1

K3 is caused by the fact that in the first iteration
a large portion of the misplaced pixels was acciden-
tally mapped to pixels with the same gray levels.
For the next iterations up to 30 Eq. (5) predicted
the correct trend, i.e. Dgk/Dgk−1 ≈ Dk/Dk−1,
k = 1, . . . , 30. As discussed before, the main rea-
son why Dgk/N

2 and rk deviate for k > 30 is the
discrete nature and periodicities of the discretized
Baker map.

The analysis above suggests that the formula
for Dk can be safely used for typical images for
k < 30. This value of k is more than enough to
guarantee a safe ciphering method.

6. Cryptographic Strength of the
Permutation Cipher Generated
by the Baker Map

In this section we study the cryptographic strength
of the permutations generated by the Baker map
for both known plain-text and cipher-text only at-
tacks. We emphasize that here we are investigating
the cipher based on the Baker map with the three-
dimensional mixing and the diffusion removed. The
most important question for the security of our sim-
plified cipher is: What size of d will guarantee that
two keys actually represent different keys and can-
not be used interchangeably to decipher a typical
image enciphered by the other key?

Equation (5) can be used for measuring the sim-
ilarity between keys. Suppose that two keys repre-
sented by unions of intervals, U1, U2 differ in inter-
vals of total length d. Formally, let

U1 = [0, N
(1)
1 ) ∪ [N

(1)
1 , N

(1)
2 )

∪ · · · ∪ [N
(1)
k−1, N

(1)
k ) .

U2 = [0, N
(2)
1 ) ∪ [N

(2)
1 , N

(2)
2 )

∪ · · · ∪ [N
(2)
m−1, N

(2)
m ) .

Then

d = N −
∑

[N
(1)
j−1,N

(1)
j ]∈U1∩U2

(N
(1)
j −N

(1)
j−1) .

If we want to break the permutation cipher us-
ing an intelligent direct search for key, we need to

1This set is shown after 320 iterations in Figs. 21 and 22 for K1 K2 and K1 K3, respectively.
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Fig. 21. Pixels with different gray levels after 320 iterations
of the Baker map with keys K1 and K2.

Fig. 22. Pixels with different gray levels after 320 iterations
of the Baker map with keys K1 and K3.

distinguish two cases: (a) The plain-text is avail-
able to the cryptanalyst, and (b) the plain-text is
not available.

6.1. Known plain-text type of attack

In this case, two keys as said to be different, or
dissimilar, if after 30 iterations the encrypted im-

ages differ by the same margin as two randomly
chosen images. Since the expected number of the
same pixels for two random images is N2/L with
the standard deviation equal to N/

√
L, two ci-

phers will be considered different if at least (1 −
1/L ± 1/N

√
L) × 100% of pixels are misplaced.

Taking the midpoint of this interval, the following
equation for d needs to be satisfied (for 256 gray
levels)

1− (1− d/N)30 = 1− 1/256 .

By solving the equation, d ≈ 0.17 × N . In other
words, when two ciphering keys differ by more than
17%, they are considered to be dissimilar for a
known plain-text type of attack. The ratio d/N
can be taken as a measure of similarity between two
keys. When d/N < 0.17, the two keys are said to be
similar and can be used for ciphering/deciphering
phase interchangeably.

Now that a criteria for determining whether
or not two keys are similar has been developed,
it is possible to estimate the maximal number of
keys which are similar to a given key. Two similar
keys may differ in intervals of length at most 17%.
Therefore, the number of keys similar to the key
K = (n1, . . . , nk) is equal to

Kmax =
∑

ni≤N×0.17

K(ni) ,

where K(ni) is the number of all ciphering keys
of length ni. The summation will be maximal
when all ni are equal to 0.17 × N . Consequently,
Kmax ≤ 100/17 × 20.17×N , and the total num-
ber of different clusters for an N × N image is at
least

K(N)

100/17 × 20.17×N =
17

100
2N−1−0.17×N .

This lower estimate for the number of different clus-
ters for Version B of the Baker map is calculated in
the table below.

# of keys # of clusters

N k(N) Cipher-text only Known plain-text

64 1.8e19 1.0922e16 8.3202e14

128 3.4e38 2.3858e33 8.1441e30

256 1.2e77 1.1384e68 7.8032e62

512 1.4e154 2.5917e137 7.1635e126

1024 1.8e308 1.3434e276 6.0372e254
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The results clearly suggest that the number of
dissimilar ciphering keys is still very large in spite of
the presence of clusters of similar keys. Therefore, it
can be concluded that the proposed ciphering tech-
nique is secure with respect to a known plain-text
type of attack.

6.2. Cipher-text only type of attack

In the second case, when the plain-text is not avail-
able, pattern recognition analysis and high level im-
age understanding tasks have to be performed to
determine if there is some pattern in the decrypted
image. For this problem, a similarity between keys
can be defined with less severe restrictions. Namely,
one could probably safely assume that just 90% of
differently placed pixels would prevent one from be-
ing able to recognize a pattern in the decrypted im-
age. Similar arguments as before will demonstrate
that two keys can be considered dissimilar (for the
cipher-text only type of attack) if they differ in just
10% of their length. The number of clusters in this
case increases as 0.1×2N−1−0.1×10. This calculation
is based on performing just 20 iterations. Specific
numbers for selected values of N are shown in the
table above.

We close this section devoted to security is-
sues by a few remarks on diffusion. The clusters
of similar keys are caused by nondiffusive proper-
ties of the cipher. This means that changes to one
pixel level do not spread to neighboring pixels, and
small changes in encryption keys do not drastically
change the cipher-text. This is highly undesirable
from the security point of view. The cipher would
fall to a chosen plain-text type of attack. As indi-
cated by computer experiments, when the diffusion
is brought in, there are no clusters of similar keys
— the “clusters” will contain just one key.

7. Pseudo-Random Number
Generator Based on Chaotic Maps

Since an encrypted image resembles an uncorrelated
random static on a TV monitor, one may try to gen-
erate a sequence of pseudo-random numbers {xi}i
by reading the gray levels of pixels in a row-by-row
manner or some other scanning pattern. Starting
with an M ×N image with L gray levels (one could
start, for example, with the image consisting of a
black square) after performing k iterations, one ob-
tains M ×N pseudo-random integers in the range
[0, L − 1]. Majority of traditional pseudo-random

number generators (PRNG) generate the next num-
ber in the sequence by following certain determin-
istic rule, i.e. there is a deterministic relationship
between xi and xi+1. The PRNG based on three-
dimensional maps is nontraditional because it does
not have this property. If more than M×N pseudo-
random numbers are needed, another k iterations of
the chaotic map can be performed to obtain another
set of M ×N pseudo-random numbers, etc.

The basic two requirements for any PRNG con-
cern the statistical properties of the stream of num-
bers produced. First, the pseudo-random sequence
should satisfy all known statistical tests for random-
ness. Second, the period of the PRNG should be as
large as possible. We subjected our PRNG based
on discretized chaotic maps to several statistical
tests including the uniformity of distribution test,
the coupon collector’s test, the permutation test,
the poker test, and the serial pairs test. Detailed
description of these statistical tests can be found
in [Karian, 1991]. The tests were performed on a
472× 472 image with 256 gray levels. All five tests
were satisfied by the sequence of pseudo-random
numbers obtained from an image of a black square
encrypted using the Baker map with 9 iterations.
The numbers were read in a row-by-row manner.
Computer experiments done with other scanning
patterns suggest that the properties of the pseudo-
random sequence do not depend on the scanning
pattern.

To calculate the period of the PRNG, we write
the permutation P induced by the Baker map as a
collection of r cycles P = {C1, C2, . . . , Cr}. The
length of the ith cycle will be denoted as |Ci|. Re-
calling Eq. (4) for the three-dimensional chaotic
map, we further define a phase of the ith cycle as

Ph(Ci) =
∑

(p, q)∈Ci
h(p, q) mod L .

The gray level increases by Ph(Ci) in each cycle
during which a pixel from that cycle returns to its
original position. Therefore, the ith cycle will start
repeating after wi|Ci| iterations, where wi is the
smallest number such that wiPh(Ci) ≡ 0 mod L,
or

wi =
LCM(Ph(Ci), L)

Ph(Ci)
.

The order of the permutation P (or the period of
the random number generator) is

Period = M ×N

× LCM{w1|C1|, w2|C2|, . . . , wr|Cr|} .
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When the complete cipher with diffusion is used in-
stead of Eq. (4), the period is expected to be much
larger. Estimates of the period for this case are
subject of future research.

Not every PRNG is suitable for encryption pur-
poses in spite of the fact that it satisfies all known
statistical tests. The third important requirement
is that it should be computationally hard to deter-
mine the key and the seed based on the knowledge of
a finite segment of pseudo-random numbers. This is
equivalent to breaking the cipher using cipher-text
only type of attack. As described in Sec. 6, the com-
plexity of a direct key search increases exponentially
with N as 20.9×N−1. This indicates that the seed
and the key cannot be recovered by an exhaustive
search.

8. Examples of Other Chaotic Maps

8.1. The Cat map

One very well-studied two-dimensional chaotic map
is the Cat map introduced by Arnold and Avez
[1968]. The action of the map on the unit square
is often explained with a picture of a cat, which
gave the map its name. The mathematical formula
is:

C(x, y) = (x+ y mod 1, x+ 2y mod 1)

=

(
1 1

1 2

)(
x

y

)
mod 1 ,

where a mod 1 means the fractional part of a for any
real a. Denoting the square 2× 2 matrix as A, the
map can be written simply as C(x, y) = A(x, y)T

mod 1, where ( )T stands for a vector transpose.
The Cat map is most easily described in geometric

Fig. 23. The Cat map.

terms. The unit squareABCD, is linearly stretched
so that the point C = (1, 1) is moved to (2, 3), and
B is moved to (1, 1). This stretching phase is de-
scribed by the matrix A. After applying the mod
operator, the pieces of the image lying in squares
other than the unit square are cut and shifted back
to the unit square (see Fig. 23). Similar to the Baker
map, the Cat map is discontinuous along the lines
of cutting.

It seems natural to use the elements of the ma-
trix A as the parameters for the generalized version
of the Cat map. A general matrix A,

A =

(
t u

v w

)

with integer elements will be denoted A(t, u, v, w).
Not all choices of the parameters will produce a
correct generalization of the Cat map. In particu-
lar, to make sure that the map is one-to-one, the
determinant of A, |A| = tw−uv, has to be equal to
1. We note that the four tuple (t, u, v, w) produces
the same cipher as the four-tuple (t mod N , u mod
N , v mod N , w mod N).

The discretized version of the Cat map is
obtained simply by changing the range of (x, y)
from the unit square I × I to the discrete lattice
NN

0 ×NN
0

A(t, u, v, w)(r, s)
T mod N .

The map A(t, u, v, w) transforms the square lattice of

points NN
0 ×NN

0 onto itself in a one-to-one man-
ner. The results of applying the discretized Cat
map with the matrix A(1, 1, 1, 2) to the same test im-
age once and nine times are shown in Figs. 24 and
25.

To complete the construction of a symmetric ci-
pher based on the Cat map, the extension method
of Sec. 3.5 and methods of Sec. 3.6 can be di-
rectly applied to the generalized discretized Cat
map.

The study of the cipher based on the Cat
map is not pursued further in this paper because
the map does not lead to ciphers with sufficiently
many keys (permutations). Since the four-tuple
(t + k1N, u + k2N, v + k3N,w + k4N) generates
the same cipher as the four-tuple (t, u, v, w) for
any k1, k2, k3, k4 ∈ Z, the values of t, u, v, w can
be restricted to the set NN

0 . The total number of



Symmetric Ciphers Based on Two-Dimensional Chaotic Maps 1279

Fig. 24. The test image after applying the Cat map once.

Fig. 25. The test image after applying the Cat map nine
times.

ciphering keys for the Cat map is therefore smaller2

than N4. For a 512 × 512 image, this number is
approximately 6 × 1010. This number is unaccept-
ably low and makes the direct search for the key to
a viable attack.

8.2. The Standard map

The Standard map is described with the following
formula:

S(x, y) = (S1, S2) = (x+ y mod 2π ,

y − k sin(x+ y) mod 2π) ,

(6)

where k is a positive constant. The Standard map
can be easily generalized to the following form while
keeping its invertibility:

S1(x, y) = x+ F (y) mod 2π

S2(x, y) = y +G(S1) mod 2π

and

y = S2 −G(S1) mod 2π

x = S1 − F (y) mod 2π ,

where F and G are arbitrary functions contain-
ing parameters (the key). The structure of the
Standard map strongly resembles Feistel networks
[Schneier, 1996] so commonly used in the design
of almost all block symmetric ciphers. The Stan-
dard map can be discretized in a straightforward
manner by substituting S1 = xN/2π, S2 = yN/2π,
K = kN/2π into Eq. (6) for the Standard map

(i, j)→ S(i, j) = (S1(i, j), S2(i, j))

S1(i, j) = i+ j mod N

S2(i, j) = j +K sin

(
S1N

2π

)
mod N ,

whereK is a positive constant, and N is the number
of pixels in each row of a square image. An example
of the test image encrypted using this map is shown
in Figs. 26 and 27. The Standard map can be easily
generalized to the following form while keeping its
invertibility:

S1(i, j) = i+ Ψ(j) mod N

S2(i, j) = j + Φ(S1) mod N

and

j = S2 − Φ(S1) mod N

i = S1 −Ψ(j) mod N ,

2Since a four tuple is a cipher if it satisfies the additional condition |tw − uv| = 1, the total number of keys is expected to
grow with the third power only.
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Fig. 26. The test image after one iteration of the Standard
map.

Fig. 27. The test image after nine iterations of the Standard
map.

where Φ and Ψ are arbitrary functions contain-
ing parameters (the key). It has been shown by
Rannou [1974] that the discretized Standard map
does not behave as a typical random permuta-
tion. She attributed this to the symmetries of the

Standard map (6). Once those symmetries were
broken the average length cycles and the average
number of cycles were close to those of a typical
random map. Detailed study of the applicability
of the generalized Standard map to encryption will
be a part of the future research. In the remainder
of the paper, we concentrate on important security
issues and on the structure of the permutations in-
duced by the Baker map.

9. Relationship Between Chaos
and Cryptosystems

Chua and Brown [1996] pointed out a similarity be-
tween pseudo-random number generators used in
stream ciphers3 and one-dimensional chaotic sys-
tems constrained to periodic invariant sets. In this
paper, we argue that there is a relationship be-
tween two-dimensional chaotic systems and sym-
metric block cryptosystems. Among other things,
any good cryptosystem should:

1. Map plain-text to a random cipher-text. There
should not be any patterns in the cipher-text, if
the cryptosystem is good.

2. Be sensitive with respect to plain-text. This
means that flipping one bit in the plain-text cre-
ates completely different cipher-text.

3. Be sensitive with respect to keys. This means
that flipping one bit in a key creates completely
different cipher-text when applied to the same
plain-text.

In addition to these requirements, it is a well-known
fact that virtually all symmetric block encryption
methods are iterative schemes and work by iterating
some basic encryption function several times. DES
has 16 rounds, IDEA 8 rounds, LOKI 16 rounds,
Blowfish 16 rounds, GOST 32, Khufu and Khafre
24. A large number of symmetric ciphers are based
on an iterative scheme called Feistel network. Feis-
tel network transforms a block (L, R) according to
the following invertible formula

Li+1 = Ri

Ri+1 = Li ⊕ f(Ri, Ki) ,

where f(. , .) is an arbitrary function of two
bit strings and Ki is the subkey derived from
a passphrase for the ith iterative step. The

3Example of such ciphers are the Blum-Micali encryption scheme or the BBS scheme [Schneier, 1996]
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operation ⊕ is usually the bitwise XOR but could
be some other operation. It is worth mentioning
that many chaotic maps expressed in the form of
a discrete mapping have the same structure as the
Feistel network. For example, the Standard map
and the Hénon map can be put into this form.

Although the notion of chaos has not been sat-
isfactorily defined (see the discussion by Brown and
Chua [1996]), on a heuristic level some properties of
chaotic system can be related to the basic proper-
ties of ciphering systems. Two important properties
of chaotic systems are defined below.

Topological transitivity. Given a metric space X
and a mapping f : X → X, we say that f is topo-
logically transitive on X if for any two open sets U ,
V ⊂ X, there is n ≥ 0 such that fn(U) ∩ V 6= ∅.

Sensitivity to initial conditions. The map f is
said to be sensitive to initial conditions if there
is a δ > 0 such that for any x ∈ X and for any
neighborhood Hx of x there is y ∈ Hx such that
|fn(x)− fn(y)| > δ.

Devaney [1989] defined chaos as a system sat-
isfying both properties above together with the re-
quirement that the set of periodic points of f be
dense in X. Banks et al. [1992] have shown
that the topological transitivity combined with the
density of periodic points already implies sensitiv-
ity to initial conditions. Consequently, Ingraham
[1992] requires topological transitivity and sensitiv-
ity to initial conditions as the defining properties of
chaos.

Topological transitivity together with the sensi-
tivity to initial conditions cause that the state space
X is “mixed” with the action of the map f . This
can be related to the requirement No. 1 for cipher-
ing systems. Sensitivity to initial conditions heuris-
tically corresponds to the sensitivity of ciphering
systems with respect to the plain-text if we sub-
stitute the plain-text for the initial condition. Fi-
nally, most chaotic systems exhibit sensitive depen-
dency on control parameters. This in turn nicely
corresponds to the requirement of sensitivity with
respect to the key if we consider the key as a pa-
rameter for the ciphering transformation.

However, there is one important difference be-
tween chaos and encryption. Cryptosystems work
on finite sets, while chaotic systems have meaning
only on a continuum, an infinite set. One of the
goals of our future research is to establish a formal

relationship between chaos and cryptosystems, and
use this connection to enrich both fields. Encryp-
tion would readily benefit because one could use a
large number of powerful mathematical tools pre-
viously developed for nonlinear dynamic systems.
For example, we could use the concept of Lya-
punov number to quantify diffusion in cryptosys-
tems. The minimal number of iterations for any
given cryptosystem is usually estimated by the de-
signers and there is no general method which would
guide us as to how many iterations are actually
needed to guarantee a secure cipher. For example,
IDEA has 8 rounds, but it is generally accepted
that as few as 6 or even 4 produce a safe cipher
as well. Why the designers have chosen 8 and not
6? How can we justify the number of iterations in
an encryption scheme? How many iterations are
necessary for our chaos-based encryption method?
The concept of Kolmogoroff entropy from the the-
ory of dynamic systems might help us to answer
these questions. Kolmogoroff entropy measures the
rate with which information about initial condi-
tions is lost in the course of iterations. In addition
to the applications stated above, we expect that a
successful connection between encryption and dis-
cretized chaos would lead to new attacks for break-
ing symmetric ciphers and to new cryptanalytic
techniques.

On the other hand, the impact of cryptanalytic
theoretical tools in chaos theory can only be guessed
right now. It seems that symbolic dynamics [Hao,
1990] would be the candidate number one for this
type of application.

The main problem that needs to be solved is
a correct generalization of chaos from a continuum
to finite sets. Although the size of the sets will
usually be of the order of 264 or 2128 (the typical
size of all possible encryption blocks), the sets are
nevertheless finite. Any definition of chaos on fi-
nite sets should merge with the classical definition
as the number of elements tends to infinity. This
correspondence principle will be the guide of our
research. One possible approach towards the defi-
nition of chaos on finite sets is using symbolic dy-
namics and the concept of randomness on finite sets.
The latter topic has been extensively and success-
fully studied in the past [Knuth, 1991].

10. Conclusion and Future Directions

In this paper, it is shown how to adapt invertible
chaotic two-dimensional maps on a torus or on a
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rectangle for the purpose of encryption. The map
is first generalized by introducing parameters and
then discretized to a finite rectangular lattice of
points. Then the map is extended to three di-
mensions to obtain a more complicated substitu-
tion cipher. This cipher alone can turn an arbi-
trary plain-text into random looking cipher-text.
This is utilized for constructing a nontraditional
random number generator. Since the substitution
cipher has no diffusion properties with respect to
plain-text, it is finally composed with a simple dif-
fusion mechanism. The resulting cipher appears
to have good diffusion properties with respect to
both the key and the plain-text. The properties
of the permutations induced by the Baker map are
shown to correspond to a typical random permu-
tation. In particular, computer experiments done
for the Baker map with many different ciphering
keys demonstrate that the average length of cycles
and the average number of different cycles have
values similar to those for random permutation.
The paper closes with some general remarks on the
similarity between discretized chaos and encryption
schemes.

The main features of the encryption scheme
studied in this paper are a variable key length,
a relatively large block size (several kB or more),
and a high encryption rate (1 Mb unoptimized
C code on a 60 MHz Pentium). The cipher is
based on two-dimensional chaotic maps, which are
used for creating complex, key-dependent permu-
tations. Unlike most of today’s symmetric encryp-
tion schemes, which rely on complex substitution
rules while somewhat neglecting the role of permu-
tations, the new cipher is based on complex permu-
tations composed with a relatively simple diffusion
mechanism.

Advantages

• The method is a private key, symmetric block
product cipher.
• It is simple, fast, and lends itself for efficient soft-

ware implementation.
• Unoptimized C code achieved an encryption rate

of 1 Mbit per second on a 66 MHz Pentium com-
puter.
• Variable key length and variable block size.
• The encrypted file has the same size as the origi-

nal file.
• The time to perform encryption and decryption

is the same.

Disadvantages

• The choices for the ciphering key depend on the
block size. Files smaller than 10 kB would have
to be padded a lot to guarantee sufficiently many
encryption keys. This will, however, increase the
size of the data to be transmitted.

The future research directions will be directed
to a more detailed study of security analysis of the
proposed cipher. We plan to use standard crypt-
analytic tools, such as differential and linear cryp-
tography to further assure the safety and robustness
of the cipher. Also, we intend to study other maps
and their discretized forms. The generalized Stan-
dard map, for example, provides a general frame-
work for a whole new class of encryption schemes
resembling in structure Feistel networks. One of
the major goals of our future effort is establishing
a connection between discretized chaotic systems
and encryption schemes. This would enable us to
quantify diffusion and sensitivity with respect to
key and the plain-text using concepts, such as en-
tropy or Lyapunov exponents. In order to do that,
an appropriate framework and definition of chaos
on finite metric spaces needs to be established.
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