
Application Level Interoperability between Clouds
and Grids

Andre Merzky1, Katerina Stamou2, Shantenu Jha123

1Center for Computation & Technology, Louisiana State University, USA
2Department of Computer Science, Louisiana State University, USA

3e-Science Institute, Edinburgh, UK

Abstract—SAGA is a high-level programming interface which
provides the ability to develop distributed applications in an
infrastructure independent way. In an earlier paper, we discussed
how SAGA was used to develop a version of MapReduce which
provided the user with the ability to control the relative placement
of compute and data, whilst utilizing different distributed infras-
tructure. In this paper, we use the SAGA-based implementation of
MapReduce, and demonstrate its interoperability across Clouds
and Grids. We discuss how a range of cloud adaptors have been
developed for SAGA. The major contribution of this paper is
the demonstration – possibly the first ever, of interoperability
between different Clouds and Grids, without any changes to the
application. We analyse the performance of SAGA-MapReduce
when using multiple, different, heterogeneous infrastructure
concurrently for the same problem instance; However, we do
not strive to provide a rigorous performance model, but to
provide a proof-of-concept of application-level interoperability
and illustrate its importance.

I. INTRODUCTION

Although Clouds are a nascent infrastructure, there is a
ground swell in interest to adapt these emerging powerful
infrastructure for large-scale scientific applications [5]. In-
evitably, and as with any emerging technology, the unified
concept of a Cloud – if ever there was one, is evolving
into different flavours and implementations, with distinct un-
derlying system interfaces, semantics and infrastructure. For
example, the operating environment of Amazon’s Cloud (EC2)
is very different from that of Google’s Cloud. Specifically
for the latter, there already exist multiple implementations
of Google’s Bigtable, such as HyberTable, Cassandra and
HBase. There is bound to be a continued proliferation of
such Cloud based infrastructure; this is reminiscent of the
plethora of Grid middleware distributions. Thus to safeguard
against the proliferation of Cloud infrastructure, application-
level support and interoperability for different applications
on different Clouds is critical if they are not have the same
limited impact on Scientific Computing of Grids. And issues of
scale aside, the transition of existing distributed programming
models and styles, must be as seamless and as least disruptive
as possible. A fundamental question at the heart of all these
important considerations, is the question of how scientific
applications can be developed so as to utilize as broad a range
of distributed systems as possible, without vendor lock-in, yet
with the flexibility and performance that scientific applications
demand?

Currently, it is unclear what kind of programming models
(PM) and programming systems (PS) will emerge for Clouds;
this in turn will depend, amongst other things, on the kinds of
applications that will come forward to try to utilise Clouds and
system-level interfaces that are exposed by Cloud providers.
Additionally, there are infrastructure specific features – techni-
cal and policy, that might influence the design of PM and PS.
For example, EC2 – the archetypal Cloud System, has a well-
defined cost model for data transfer across its network. Hence,
any PM for Clouds must be cognizant of the requirement to
programmatically control the placement of compute and data
relative to each other – both statically (pre-run time) and at
run-time. In general, for most Cloud applications the same
computational task can be priced very differently for possibly
the same performance; conversely, the same computational
task can have very different performance for the same price.
It is important for effective scientific application development
on Clouds that, any PM or PS should not be constrained
to a specific infrastructure, i.e., should support infrastructure
interoperability at the application-level.

In Ref [1], we established that the SAGA programming sys-
tem which provides a standard interface, can support simple,
yet powerful programming models. Specifically, we imple-
mented a simple data-parallel programming task (MapReduce)
using SAGA; this involved the concurrent execution of simple,
embarrassingly-parallel data-analysis tasks. We demonstrated
that the SAGA-based implementation is infrastructure inde-
pendent whilst still providing control over the deployment,
distribution and run-time decomposition. Work is underway
to extend our SAGA based approach in the near future to
involve tasks with complex and interrelated dependencies.
Using data-sets of size up to 10GB, and up to 10 workers,
we provided detailed performance analysis of the SAGA-
MapReduce implementation, and showed how controlling the
distribution of computation and the payload-per-worker helped
enhance performance.

Having thus established the effectiveness of SAGA, the pri-
mary focus of this paper is to use the SAGA-based MapReduce
as an exemplar to establish the interoperability aspects of the
SAGA programming system. Specifically, we will demonstrate
that SAGA-MapReduce is usable on traditional (Grids) and
emerging (Clouds) distributed infrastructure concurrently and
cooperatively towards a solution of the same problem instance.
Specifically, our approach is to take SAGA-MapReduce and to

2009 Workshops at the Grid and Pervasive Computing Conference

978-0-7695-3677-4/09 $25.00 © 2009 IEEE

DOI 10.1109/GPC.2009.17

122

2009 Workshops at the Grid and Pervasive Computing Conference

978-0-7695-3677-4/09 $25.00 © 2009 IEEE

DOI 10.1109/GPC.2009.17

137

2009 Workshops at the Grid and Pervasive Computing Conference

978-0-7695-3677-4/09 $25.00 © 2009 IEEE

DOI 10.1109/GPC.2009.17

143

Authorized licensed use limited to: The University of Edinburgh. Downloaded on July 21, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

use the same implementation of SAGA-MapReduce to solve
the same instance of the word counting problem, by using
different worker distributions over Clouds and Grid systems,
and thereby also test for interoperability between different
flavours of Clouds as well as between Clouds and Grids.

The Case for Interoperabilty: Interoperability amongst
Clouds and Grids can be achieved at different levels. For
example, service-level interoperability amongst Grids has been
demonstrated by the OGF-GIN group; application-level inter-
operability (ALI) remains a harder goal to achieve. Clouds
provide services at different levels (Iaas, PaaS, SaaS); standard
interfaces to these different levels do not exist. With an
unsettled and rapidly changing Cloud Computing landscape,
it is unclear if the community is ready for standards-based
service-level interoperability at the moment. In addition, there
is little business motivation for Cloud providers to define,
implement and support new/standard interfaces, there is a
case to be made that applications would benefit from Cloud
interoperability. We argue that by addressing interoperability
at the application-level this can be easily achieved for both
scientific and enterprise applications. ALI arises when, say
other than compiling on a different or new platform, there are
no further changes required of the application. Also, ALI pro-
vides automated, generalized and extensible solutions to use
new resources; in some ways, ALI is strong interoperability,
whilst service-level interoperability is weak interoperability.
The complexity of providing ALI is non-uniform and depends
upon the application under consideration. For example, it is
somewhat easier for simple “execution unaware” applications
to utilize heterogeneous multiple distributed environments,
than for applications with multiple distinct and possibly dis-
tributed components. A pre-requisite for ALI is infrastructure
independent programming. Google’s MapReduce is tied to
Google’s file-system; Hadoop is intrinsically linked to Hadoop
file-system (HDFS), as is Pig.

It can be asked if the emphasis on utilising multiple Clouds
or Clouds and Grids concurrently is premature, given that
programming models/systems for Clouds are just emerging? In
many ways the emphasis on interoperability is an appreciation
and acknowledgement of an application-centric perspective
– that is, as infrastructure changes and evolves it is critical
to provide seamless transition and development pathways
for applications and application developers. In addition there
exist a wide range of applications that have decomposable
but heterogeneous computational tasks. It is conceivable, that
some of these tasks are better suited for traditional Grids,
whilst some are better placed in Cloud environments. Montage
– a very popular Astronomy application provides a prominent
example of such an application. Additionally, due to different
data-compute affinity requirement amongst the tasks, some
workers might be better placed on a Cloud [8], whilst some
may optimally be located on regular Grids. Complex depen-
dencies and inter-relationships between sub-tasks make this
often difficult to determine before run-time.

Effort directed towards ALI on Clouds/Grids in addition to
satisfying basic curiosity of “if and how to interoperate”, might

SAGA Runtime

Functional API Packages

Jobs Files Replicas CPR SD

Python API Wrapper C API Wrapper

File
Adaptors

File
Adaptors

File
Adaptors

File
Adaptors

File
Adaptors

Job
Adaptors

File
Adaptors

File
Adaptors

Replica
Adaptors

File
Adaptors

File
Adaptors

CPR
Adaptors

. . .

. . .

MIddleware / ServicesMIddleware / ServicesMIddleware / ServicesMIddleware / Services

Native C++ API

Fig. 1: In addition to the programmer’s interface, the other important
components of the landscape are the SAGA engine, and functional
adaptors.

also possibly provide different insight into the programming
challenges and requirements.

We focus on MapReduce, which is an application with
multiple homogeneous workers (although the data-load per
worker can vary); however, it is easy to conceive of an
application where workers (tasks) can be heterogeneous, i.e.,
each worker is different and may have different data-compute
ratios. It is worth mentioning that most data-intensive sci-
entific applications fall into this category e.g., high-energy
and LIGO data-analysis. Additionally, with different Clouds
providers, fronting different Economic Models of computing,
it is important to be able to utilise the “right resource”, in
the right way. We briefly discussed how moving prodigious
amounts of data across Cloud networks, as opposed to moving
the compute unit could be expensive. As current programming
models don’t provide explicit support or control for affinity [8],
and in the absence of autonomic performance models, the
end-user is left with performance management, and with
the responsibility of explicitly determining which resource is
optimal. Clearly interoperability between different flavours of
Clouds, and Clouds and Grids is an important pre-requisite.

II. SAGA

The SAGA [9] programming system contains a high level
API that provides a simple, standard and uniform interface for
the most commonly required distributed functionality. SAGA
can be used to encode distributed applications [6, 2], tool-
kits to manage distributed applications as well as implement
abstractions that support commonly occurring programming,
access and usage patterns.

Fig. 1 provides an overview of the SAGA programming
system and the main functional areas that SAGA provides a
standardized interface to. Based upon an analysis of more than
twenty applications, the most commonly required functionality
involve job submission across different distributed platforms,
support for file access and transfer, as well as logical file
support. Additionally there is support for Checkpoint and
Recovery (CPR) and Service Discovery (SD). The API is
written in C++, with Python, C and Java language support. The
engine is the main library, which provides dynamic support
for run-time environment decision making through loading
relevant adaptors. We will not discuss details of SAGA here;
details can be found elsewhere [3].

123138144

Authorized licensed use limited to: The University of Edinburgh. Downloaded on July 21, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

III. INTERFACING SAGA TO GRIDS AND CLOUDS

SAGA was originally developed primarily for compute-
intensive Grids. This was a user-driven design decision, i.e.,
the majority of applications that motivated the design and
formulation of version 1.0 of the API were HPC applications
attempting to utilize distributed resources. Ref [1] demon-
strated that in spite of its original design constraints, SAGA
can be used to develop data-intensive applications in diverse
distributed environments, including Clouds. This in part is
due to the fact that much of the “distributed functionality”
required for data-intensive applications remains the same –
namely the ability to submit jobs to different back-ends,
the ability to move files between distributed resources etc.
Admittedly, and as we will discuss, the semantics of, say
the basic job submit() changes in going from Grid envi-
ronments to Cloud environments. So how, in spite of such
significant changes in the semantics does SAGA keep the
application immune to change? The basic feature that enables
this capability is a context-aware adaptor that is dynamically
loaded. In the remainder of this section, we will describe how,
through the creation of a set of simple adaptors, the primary
functionality of most applications is supported and on which
the interoperability is predicated.

A. Adaptors: Design and Implementation

1) Local Adaptors: Although SAGA’s default local adap-
tors do not have much to do with interoperability, their
importance for the implementation of other remote adaptors
will become clear later on. The local job adaptor utilizes
boost::process (on Windows) and plain fork/exec
(on Unix derivatives) to spawn, control and watch local job
instances. The local file adaptor uses boost::filesystem
classes for filesystem navigation, and std::fstream for
local file I/O.

2) SSH adaptors: The SSH adaptors are based on three
different command line tools, namely ssh, scp and sshfs.
Further, all ssh adaptors rely on the availability of SSH security
credentials for remote operations. The SSH context adaptor
implements some mechanisms to (a) discover available key-
pairs automatically, and (b) to verify the validity and usability
of the found and otherwise specified credentials.
ssh is used to spawn remote job instances, for

which the SSH job adaptor instantiates a local
saga::job::service instance, and submits the
respective SSH command lines to it. The local job adaptor
described above then takes care of process I/O, detachment,
etc. A significant drawback of this approach is that several
SAGA methods act upon the local ssh process instead of the
remote application instance, which is far from ideal. Some
of these operations can be migrated to the remote hosts, via
separate ssh calls, but that process is complicated due to the
fact that ssh does not report the remote process ID back to
the local job adaptor. We circumvent this problem by setting
a uniquely identifying environment variable for the remote
process, which allows us to identify the process.

sshfs is used to access remote files via ssh services.
sshfs is a user space file system driver which uses FUSE,
and is available for MacOS, Linux, and some other Unix
derivatives. It enables a remote file system to be mounted into
the local namespace, and transparently forwards all file access
operations via ssh to the remote host. The ssh file adaptor uses
the local job adaptor to call the sshfs process, to mount the
remote filesystem, and then forward all file access requests to
the local file adaptor, which operates on the locally mounted
file system. The ssh adaptor thus translates URLs from the ssh
namespace into the local namespace, and back.
scp is used by both the ssh job and file adaptor to transfer

utility scripts to the remote host, e.g. to check for remote
system configuration, or to distribute ssh credentials.

3) SSH/SSHFS credential management: When starting a
remote application via ssh, we assume valid SSH creden-
tials (i.e. private/public key pairs, or gsi credentials etc.)
are available. The type and location of these credentials is
specified by the local application, by using the respective
saga::context instances. In order to facilitate home-
calling, i.e. the ability of the remotely started application to
use the same ssh infrastructure to call back to the original
host, e.g. by spawning jobs in the opposite direction, or by
accessing the original host’s file system via sshfs, we install
the originally used ssh credential in a temporary location on
the remote host. The remote application is informed about
these credentials, and the ssh context adaptor picks them up
by default, so that home-calling is available without the need
for any application level intervention. Also, a respective entry
to the local authorized_keys file is added.

4) AWS adaptors: SAGA’s AWS (Amazon Web Service)
adaptor suite is an interface to services which implement
the cloud web service interfaces as specified by Amazon.
These interfaces are not only used by Amazon to allow
programmatic access to their Cloud infrastructures – EC2 and
S3, amongst others, but are also used by several other Cloud
service providers, such as Eucalyptus[7] and Nimbus. The
AWS job adaptor is thus able to interface to a variety of Cloud
infrastructures, as long as they adhere to the AWS interfaces.

The AWS adaptors do not directly communicate with the
remote services, but instead rely on Amazon’s set of java
based command line tools. Those are able to access the
different infrastructures, when configured correctly via specific
environment variables. The AWS job adaptor uses the local
job adaptor to manage the invocation of the command line
tools, e.g. to spawn new virtual machine (VM) instances, to
search for existing VM instances, etc. Once a VM instance
is found to be available and ready to accept jobs, a ssh job
service instance for that VM is created, and henceforth takes
care of all job management operations. The AWS job adaptor
is thus only responsible for VM discovery and management
– the actual job creation and operations are performed by the
ssh job adaptor (which in turn utilizes the local job adaptor).

The security credentials used by the internal ssh job service
instance are derived from the credentials used to create the
VM instance; upon VM instance creation, an AWS keypair is

124139145

Authorized licensed use limited to: The University of Edinburgh. Downloaded on July 21, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

used to authenticate the user against her ’cloud account’. That
keypair is automatically registered at the new VM instance to
allow for remote ssh access. The AWS context adaptor collects
both the public and private AWS keys1, creates a respective
ssh context, and thus allows the ssh adaptors to perform job
and file based SAGA operations on the VM instance.

Note that there is an important semantic difference between
’normal’ (e.g. Grid based) and ’Cloud’ job services in SAGA:
a normal job service is assumed to have a lifetime which is
completely independent from the application which accesses
that service. For example, a GRAM gatekeeper has a lifetime
of days and weeks, and allows a large number of applications
to utilize it. An AWS job service however points to a po-
tentially volatile resource, or even to a non-existing resource
– the resource needs then to be created on the fly. There
are two important implications. Firstly, the startup time for
a AWS job service is typically much larger than other remote
job service, at least in the case where a VM is created on
the fly: the VM image needs to be deployed to some remote
resource, the image must be booted, and potentially needs to be
configured to enable the hosting of custom applications2. The
second implication is that the end of the job service lifetime is
usually of no consequence for normal remote job services. For
a dynamically provisioned VM instance, however, it raises the
question if that instance should be closed down, or if it should
automatically shut down after all remote applications finish,
or even if it should survive for a specific time, or forever.
Ultimately, it is not possible to control these VM lifetime
attributes via the current SAGA API (by design). Instead, we
allow one of these policies to be chosen either implicitly (e.g.
by using special URLs to request dynamic provisioning), or
explicitly over SAGA config files or environment variables3.
Future SAGA extensions, in particular Resource Discovery
and Resource Reservation extensions, may have a more direct
and explicit notion of resource lifetime management.

SAGA Job Launch via GRAM gatekeeper
{ // contact a GRAM gatekeeper 1

saga::job::service js; 2

saga::job::description jd; 3

jd.set_attribute (‘‘Executable’’, ‘‘/tmp/my_prog’’); 4

// translate job description to RSL 5

// submit RSL to gatekeeper, and obtain job handle 6

saga:job::job j = js.create_job (jd); 7

j.run (): 8

// watch handle until job is finished 9

j.wait (); 10

} // break contact to GRAM 11

Fig. 2: Job launch on a Grid via GRAM
B. Globus Adaptors

SAGA’s Globus adaptor suite is amongst the most-utilized
adaptors. As with SSH, security credentials are expected to be

1The public key needs to be collected from the remote instance.
2The AWS job adaptor allows the execution of custom startup scripts on

newly instantiated VMs, to allow for example, the installation of additional
software packages, or to test for the availability of certain resources.

3only some of these policies are implemented at the moment.

SAGA create a VM instance on a Cloud
{// create a VM instance on Eucalyptus/Nimbus/EC2 1

saga::job::service js; 2

saga::job::description jd; 3

jd.set_attribute (‘‘Executable’’, ‘‘/tmp/my_prog’’); 4

// translate job description to ssh command 5

// run the ssh command on the VM 6

saga:job::job j = js.create_job (jd); 7

j.run (): 8

// watch command until done 9

j.wait (); 10

} // shut down VM instance 11

Fig. 3: Job launch on a VM via ssh

managed out-of-bound, but different credentials can be utilized
by pointing saga::context instances to them as needed.
Other than the AWS and ssh adaptors, the Globus adaptors do
not rely on command line tools, but rather link directly against
the respective Globus libraries: the Globus job adaptor is thus
a GRAM client, the Globus file adaptor a GridFTP client. In
experiments, non-Cloud jobs were started using either GRAM
or SSH. In either case, file I/O was performed either via ssh,
or via a shared Lustre filesystem – the GridFTP functionality
were not used for experiments in this paper.

IV. SAGA-BASED MAPREDUCE

After SAGA-MapReduce we have also developed real sci-
entific applications using SAGA based implementations of
patterns for data-intensive computing: multiple sequence align-
ment can be orchestrated using the SAGA-All-pairs imple-
mentation, and genome searching can be implemented using
SAGA-MapReduce (see Ref. [1]).
A. SAGA-MapReduce Implementation

Our implementation of SAGA-MapReduce interleaves the
core logic with explicit instructions on where processes are
to be scheduled. The advantage of this approach is that
our implementation is no longer bound to run on a system
providing the appropriate semantics originally required by
MapReduce, and is portable to a broader range of generic
systems as well. The drawback is that it is relatively more
complicated to extract performance.The fact that the current
implementation is single-threaded currently is a primary factor
for slowdown. Critically, however, none of these complexities
are transferred to the end-user, and they remain hidden within
the framework. Also many of these are due to the early-stages
of SAGA and incomplete implementation of features, and not a
fundamental limitation of the design or concept of the interface
or programming models that it supports.

This simple interface provides the complete functionality
needed by any MapReduce algorithm, while hiding the more
complex functionality, such as chunking of the input, sort-
ing the intermediate results, launching and coordinating the
workers, etc. as these are implemented by the framework. The
application consists of two independent processes, a master
and worker processes. The master process is responsible for:

• Launching all workers for the map and reduce steps as
described in a configuration file provided by the user

• Coordinating the executed workers, including the chunk-
ing of the data, assigning the input data to the workers
of the map step, handling the intermediate data files

125140146

Authorized licensed use limited to: The University of Edinburgh. Downloaded on July 21, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

produced by the map step and passing the names of the
sorted output files to the workers of the reduce step, and
collecting the generated outputs from the reduce steps and
relaunching single worker instances in case of failures,

The master process is readily available to the user and needs
no modification for different Map and Reduce functions to
execute. The worker processes get assigned work either from
the map or the reduce step. The functionality for the different
steps have to be provided by the user, which means the
user has to write 2 C++ functions implementing the required
MapReduce algorithm.

Both the master and the worker processes use the SAGA-
API as an abstract interface to the used infrastructure, making
the application portable between different architectures and
systems. The worker processes are launched using the SAGA
job package, allowing the jobs to launch either locally, using
Globus/GRAM, Amazon Web Services, or on a Condor pool.
The communication between the master and the worker pro-
cesses is ensured by using the SAGA advert package, abstract-
ing an information database in a platform independent way
(this can also be achieved through SAGA-Bigtable adaptors).
The Master process creates partitions of data (referred to as
chunking, analogous to Google’s MapReduce), so the data-set
does not have to be on one machine and can be distributed;
this is an important mechanism to avoid limitations in network
bandwidth and data distribution. These files could then be
recognized by a distributed File-System, such as HDFS.

B. SAGA-MapReduce Set-Up

When deploying compute clients on a diverse set of re-
sources, the question arises if and how these clients need to
be configured to function properly in the overall application
scheme. SAGA-MapReduce compute clients (workers) require
two pieces of information to function: (a) the contact address
of the advert service used for coordinating the clients, and for
distributing work items to them; and (b) a unique worker ID
to register with in that advert service, so that the master can
start to assign work items. Both information are provided via
command line parameters to the worker, at startup time.

The master application requires the following additional
information: i) a set of resources where the workers can
execute, ii) location of the input data, iii) the location of the
output data, and iv) the contact point for the advert service for
coordination and communication.

In a typical configuration file, for example, three worker
instances could be started; the first could be started via gram
and PBS on qb1.loni.org, second started on a pre-instantiated
EC2 image (instance-id i-760c8c1f), and finally will be
running on a dynamically deployed EC2 instance (no instance
id given). Note that the startup times for the individual workers
may vary over several orders of magnitudes, depending on the
PBS queue waiting time and VM startup time. The mapreduce
master will start to utilize workers as soon as they are able
to register themselves, so will not wait until all workers are
available. That mechanism both minimizes time-to-solution,
and maximizes resilience against worker loss.

The scheme any acts here as a placeholder for SAGA, so
that the SAGA engine can choose an appropriate adaptor. The
master would access the file via the default local file adaptor.
The Globus clients may use either the GridFTP or SSH adaptor
for remote file success (but in our experimental setup would
also succeed using the local file adaptor, as the Lustre FS is
mounted on the cluster nodes), and the EC2 workers would
use the ssh file adaptor for remote access. Thus, the use of the
placeholder scheme frees us from specifying and maintaining
a concise list of remote data access mechanisms per worker.
Also, it facilitates additional resilience against service errors
and changing configurations, as it leaves it up to the SAGA
engine’s adaptor selection mechanism to find a suitable access
mechanism at runtime. A simple parameter can control the
number of workers created on each compute node; as we
will see by varying this parameter, the chances are good that
compute and communication times can be interleaved, and that
the overall system utilization can increase (especially in the
absence of precise knowledge of the execution system).

V. SAGA-MAPREDUCE ON CLOUDS AND GRIDS

There are several aspects to interoperability. A simple form
of interoperability is that any application can use any Clouds
systems without changes to the application: the application
simply needs to instantiate a different set of security creden-
tials for the respective runtime environment. We refer to this
as Cloud-Cloud interoperability. By almost trivial extension,
SAGA also provides Grid-Cloud interoperability, as shown in
Fig. 2 and 3, where exactly the same interface and functional
calls lead to job submission on Grids or on Clouds. Although
syntactically identical, the semantics of the calls and back-
end management are somewhat different. As discussed, SAGA
provides interoperability quite trivially thanks to the dynamic
loading of adaptors. Thanks to the low overhead of developing
adaptors, SAGA has been deployed on three Cloud Systems
– Amazon, Eucalyptus [7] (we have a local installation of
Eucalyptus at LSU – GumboCloud) and Nimbus. In this paper,
we focus on EC2, Eucalyptus and the TeraGrid (TG).
A. Deployment Details

In order to fully utilize cloud infrastructures for SAGA
applications, the VM instances need to fulfill a couple of
prerequisites: the SAGA libraries and its dependencies need
to be deployed, need some external tools which are used by
the SAGA adaptors at runtime – such as ssh, SCP, and sshfs.
The latter needs the FUSE kernel module to function – so
if remote access to the cloud compute node’s file system is
wanted, the respective kernel module needs to be installed as
well. There are two basic options to achieve the above, either
a customized VM image which includes all the software that
is used, or the respective packages that are installed after VM
instantiation (on the fly). Hybrid approaches are possible too.

We support the runtime configuration of VM instances by
staging a preparation script to the VM after its creation, and
executing it with root permissions. In particular for apt-get
linux distribution, the post-instantiation software deployment
is actually fairly painless, but naturally adds a significant

126141147

Authorized licensed use limited to: The University of Edinburgh. Downloaded on July 21, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

amount of time to the overall VM startup (which encourages
the use of asynchronous operations). For experiments in this
paper, we prepared custom VM images with all prerequisites
pre-installed. We utilize the preparation script solely for some
fine tuning of parameters: for example, we are able to deploy
custom saga.ini files, or ensure the finalization of service
startups before application deployment4.

Eucalyptus VM images are basically customized Xen hy-
pervisor images, as are EC2 VM images. Customized in this
context means that the images are accompanied by a set of
metadata which tie it to a specific kernel and ramdisk images.
Also, the images contain specific configurations and startup
services which allow the VM to bootstrap cleanly in the
respective Cloud environment, e.g. to obtain the necessary user
credentials, and to perform the wanted firewall setup etc. As
these systems all use Xen based images, a conversion of these
images for the different cloud systems is in principle straight-
forward. But sparse documentation and lack of automatic tools
however, make it challenging, at least to the average end user.
Compared to that, the derivation of customized images from
existing images is well documented with well supported tools
– as long as the target image is to be used on the same Cloud
system as the original one.

In executing SAGA-MapReduce on different Clouds, the
change lies in the run-time system and deployment architec-
ture. For example, when running SAGA-MapReduce on EC2,
the master process resides on one VM, while workers reside
on different VMs. Depending on the available adaptors, Master
and Worker can either perform local I/O on a global/distributed
file system, or remote I/O on a remote, non-shared file sys-
tem. Application deployment and configuration (as discussed
above) are also performed via sshfs. On EC2, we created a
custom virtual machine (VM) image with pre-installed SAGA.
For Eucalyptus, a boot strapping script equips a standard
VM instance with SAGA, and SAGA’s prerequisites (mainly
boost). To us, a mixed approach seemed most favourable,
where the bulk software installation is statically done via a
custom VM image, but software configuration and application
deployment are done dynamically during VM startup.

B. Experiments

In an earlier paper (Ref [1]), we performed tests to demon-
strate how SAGA-MapReduce utilizes different infrastructures
and provides control over task-data placement; this led to
insight into performance on “vanilla” Grids. The primary
aim of this work is to establish, via well-structured and
designed experiments, the fact that SAGA-MapReduce has
been used to demonstrate Cloud-Cloud interoperability and
Cloud-Grid interoperability. In this paper, we perform the
following experiments:

1) We compare the performance of SAGA-MapReduce
when exclusively running on a Cloud platform to that

4For example, when starting SAGA applications are started before the VM’s
random generator is initialized, our current uuid generator failed to function
properly – the preparation script checks for the availability of proper uuids,
and delays the application deployment as needed.

when on Grids. We vary the number of workers (1 to 10)
and the data-set sizes varying from 10MB to 1GB.

2) For Clouds, we then vary the number of workers per VM,
such that the ratio is 1:2; we repeat with the ratio at 1:4
– that is the number of workers per VM is 4.

3) We then distribute the same number of workers across
two different Clouds - EC2 and Eucalyptus.

4) Finally, for a single master, we distribute workers across
Grids (QueenBee on the TG) and Clouds (EC2 and
Eucalyptus) with one job per VM.

It is worth reiterating, that although we have captured concrete
performance figures, it is not the aim of this work to analyze
the data and provide a performance model. In fact it is difficult
to understand performance implications, as a detailed analysis
of the data and understanding the performance will involve the
generation of “system probes”, as there are differences in the
specific Cloud system implementation and deployment. For
example, in EC2 Clouds there exists the notion of availability
zone, which is really just a control on which data-center/cluster
the VM is placed. In the absence of explicit mention of the
availabilty zone, it is difficult to determine or assume that
the availability zones for multiple, distributed workers are
the same. However, for GumboCloud, it can be established
that the same cluster is used and thus it is fair to assume
that the VMs are local with respect to each other. Similarly,
without explicit tests, it is often unclear whether data is local
or distributed. It should also be assumed that for Eucalpytus
based Clouds, data is also locally distributed (i.e. same cluster
with respect to a VM), whereas for EC2 Clouds this cannot
be assumed to be true for every experiment/test. In a nutshell
without adjusting for different system implementations, it
is difficult to rigorously compare performance figures for
different configurations on different machines. At best we can
currently derive trends and qualitative information.

It takes SAGA about 45s to instantiate a VM on Eucalyptus
and about 200s on average on EC2. We find that the size
of the image (say 5GB versus 10GB) influences the time to
instantiate an image, but is within image-to-image instantiation
time fluctuation. Once instantiated, it takes from 1-10s to
assign a job to an existing VM on Eucalyptus, or EC2. The
option to tie the VM lifetime to the job_service object
lifetime is a configurable option. It is also a matter of simple
configuration to vary how many jobs (in this case workers)
are assigned to a single VM. The default case is 1 worker per
VM; the ability to vary this number is important – as details
of actual VMs can differ as well as useful for our experiments.

C. Results and Analysis

The total time to solution (Ts) of a SAGA-MapReduce job,
can be decomposed as the sum of three primary components
– tover, tcomp and tcoord. The first term tover, is defined as
the time for pre-processing – which is the time to chunk into
fixed size data units, to distribute them and also to spawn the
job. This is in some ways the overhead of the process (hence

127142148

Authorized licensed use limited to: The University of Edinburgh. Downloaded on July 21, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

Number-of-Workers Data size Ts Tspawn Ts − Tspawn

TeraGrid AWS (MB) (sec) (sec) (sec)
4 - 10 8.8 6.8 2.0
- 1 10 4.3 2.8 1.5
- 2 10 7.8 5.3 2.5
- 3 10 8.7 7.7 1.0
- 4 10 13.0 10.3 2.7
- 4 (1) 10 11.3 8.6 2.7
- 4 (2) 10 11.6 9.5 2.1
- 2 100 7.9 5.3 2.6
- 4 100 12.4 9.2 3.2
- 10 100 29.0 25.1 3.9
- 4 (1) 100 16.2 8.7 7.5
- 4 (2) 100 12.3 8.5 3.8
- 6 (3) 100 18.7 13.5 5.2
- 8 (1) 100 31.1 18.3 12.8
- 8 (2) 100 27.9 19.8 8.1
- 8 (4) 100 27.4 19.9 7.5

TABLE I: Performance data for different configurations of worker
placements. The master places the workers on either Clouds or on
the TeraGrid (TG). The configurations – separated by horizontal lines,
are classified as either all workers on the TG or having all workers on
EC2. For the latter, unless otherwise explicitly indicated by a number
in parenthesis, every worker is assigned to a unique VM. In the final
set of rows, the number in parenthesis indicates the number of VMs
used. It is interesting to note the significant spawning times, and its
dependence on the number of VM, which typically increase with the
number of VMs. Tspawn does not include instantiation of the VM.

Number-of-Workers Size Ts Tspawn Ts − Tspawn

TG AWS Eucalyptus (MB) (sec) (sec) (sec)
- 1 1 10 5.3 3.8 1.5
- 2 2 10 10.7 8.8 1.9
- 1 1 100 6.7 3.8 2.9
- 2 2 100 10.3 7.3 3.0
1 - 1 10 4.7 3.3 1.4
1 - 1 100 6.4 3.4 3.0
2 2 - 10 7.4 5.9 1.5
3 3 - 10 11.6 10.3 1.6
4 4 - 10 13.7 11.6 2.1
5 5 - 10 33.2 29.4 3.8
10 10 - 10 32.2 28.8 2.4

TABLE II: Performance data for different configurations of worker
placements on TG, Eucalyptus-Cloud and EC2. The first set of
data establishes Cloud-Cloud interoperability. The second set (rows
5- 11) shows interoperability between Grids-Clouds (EC2). The
experimental conditions and measurements are similar to Table 1.

the subscript). Another component of the overhead is the time
it takes to instantiate a VM (Tspawn). Our performance figures
take the net instantiation time into account and thus normalize
for multiple VM instantiation – whether serial or concurrent
started-up. In fact, for data we report in Table 1 and 2, the
spawning time does not consider instantiation, i.e., the job is
dynamically assigned an existing VM; thus numbers indicate
relative performance and are amenable to direct comparison
irrespective of the number of VMs. tcomp is the time to
actually compute the map and reduce function on a given
worker, whilst tcoord is the time taken to assign the payload
to a worker, update records and to possibly move workers to
a destination resource; in general, tcoord scales as the number
of workers increases.

We find that tcomp is typically greater than tcoord, but when
the number of workers gets large, and/or the computational
load per worker small, tcoord can dominate (internet-scale
communication) and increase faster than tcomp decreases, thus
overall Ts can increase for the same data-set size, even though

the number of independent workers increases. The number of
workers associated with a VM also influences the performance,
as well as the time to spawn; for example – as shown by the
three lower boldface entries in Table 1, although 4 identical
workers are used depending upon the number of VMs used,
Tc (defined as TS − Tspawn) can be different. In this case,
when 4 workers are spread across 4 VMs (i.e. default case),
Tc is lowest, even though Tspawn is the highest; Tc is highest
when all four are clustered onto 1 VM. When exactly the
same experiment is performed using data-set of size 10MB,
it is interesting to observe that Tc is the same for 4 workers
distributed over 1 VM as it is for 4 VMs, whilst when the
performance for the case when 4 workers are spread-over 2
VMs out-perform both (2.1s).

Table 2 shows performance figures when equal number of
workers are spread across two different systems; for the first
set of rows, workers are distributed on EC2 and Eucalyptus.
For the next set of rows, workers are distributed over the
TG and Eucalyptus, and in the final set of rows, workers
are distributed between the TG and EC2. Given the ability to
distribute at will, we compare performance for the following
scenarios: (i) when 4 workers are distributed equally (i.e.,
2 each) across a TG machine and on EC2 (1.5s), with the
scenarios when, (ii) all 4 workers are either exclusively on
EC2 (2.7s), (iii) or all workers are on the TG machine (2.0s)
(see Table 1, boldface entries on the first and fifth line). It is
interesting that in this case Tc is lower in the distributed case
than when all workers are executed locally on either EC2 or
TG; we urge that not too much be read into this, as it is just
a coincidence that a sweet spot was found where on EC2, 4
workers had a large spawning overhead compared to spawning
2 workers, and an increase was in place for 2 workers on the
TG. Also it is worth reiterating that for the same configuration
there are experiment-to-experiment fluctuations (typically less
than 1s). The ability to enhance performance by distributed
(heterogeneous) work-loads across different systems remains
a distinct possibility, however, we believe more systematic
studies are required.

VI. DISCUSSION

Experience: In addition to problems alluded to in earlier
footnotes, we mention two challenges faced. We found that
the VM images get corrupted, if for some reason SAGA-
MapReduce does not terminate properly. Also given local
firewall and networking policies, we encountered problems in
initially accessing/addressing the VMs directly.

Programming Models for Clouds: We began this paper with
a discussion of programming systems/model for Clouds, and
the importance of support for relative data-compute placement.
Ref [8] introduced the notion of affinity for Clouds; it is
imperative that any programming model/system be cognizant
of the notion of affinity. We have implemented the first steps in
a PM which provides easy control over relative data-compute
placement; a possible next step would be to extend SAGA to
support affinity (data-data, data-compute). There exist other
emerging programming systems like Dryad, Sawzall and Pig,

128143149

Authorized licensed use limited to: The University of Edinburgh. Downloaded on July 21, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

which could be used in principle to support the notion of
affinity as well as develop/use MapReduce; however we re-
emphasise that the primary strength of SAGA in addition to
supporting affinity is, i) infrastructure independence, ii) it is
general-purpose and extensible, iii) provides greater control to
the end-user if required. Distinguish the infrastructure inde-
pendence of SAGA-MapReduce with the reliance of Google’s
MapReduce [4] on a number of capabilities of the underlying
system – mostly related to file operations, but including system
features related to process/data allocation. Google use their
distributed file system (Google File System) to keep track of
where each file is located. Additionally, they coordinate this
effort with Bigtable.

Simplicity versus Completeness: There exist both technical
reasons and social engineering problems responsible for low
uptake of Grids. One universally accepted reason is the com-
plexity of Grid systems – the interface, software stack and un-
derlying complexity of deploying distributed application. But
this is also a consequence of the fact that Grid interfaces tend
to be “complete” or very close thereof. For example, while
certainly not true of all cases, consider the following numbers,
which we believe represent the above points well: Globus
4.2 provides, in its Java version, approximately 2,000 distinct
method calls. The complete SAGA Core API [9] provides
roughly 200 distinct method calls. The SOAP rendering of
the Amazon EC2 cloud interface provides, approximately 30
method calls (and similar for other Amazon Cloud interfaces,
such as Eucalyptus [7]). The number of calls provided by these
interfaces is no guarantee of simplicity of use, but is a strong
indicator of the extent of system semantics exposed. But to
a first approximation, (simplicity of) interface determines the
programming models that can be supported. Thus there is the
classical trade-off between simplicity and completeness.

VII. CONCLUSION AND SOME FUTURE DIRECTIONS

SAGA-MapReduce demonstrates how to decouple the de-
velopment of applications from the deployment and details
of the run-time environment. It is critical to reiterate that
using this approach applications remain insulated from any
underlying changes in the infrastructure – not just Grids
and different middleware layers, but also different systems
with very different semantics and characteristics, whilst being
exposed to the important distributed functionality. MapRe-
duce has trivial data-parallelism, so in the near future we
will develop applications with non-trivial data-access, transfer
and scheduling characteristics and requirements, and deploy
different parts on different underlying infrastructure guided by
optimal performance. EC2 and Eucalyptus although distinct
systems have similar interfaces; we will work towards devel-
oping SAGA based applications that can use very different
infrastructures, e.g., Google’s AppEngine, such that SAGA-
MapReduce uses Google’s Cloud infrastructure. Finally, it is
worth mentioning that computing in the Clouds for this project
cost us upwards of $300 to perform these experiments on EC2.

VIII. ACKNOWLEDGMENTS

SJ acknowledges UK EPSRC grant number
GR/D0766171/1 for supporting SAGA and the e-Science
Institute, Edinburgh for the research theme, “Distributed
Programming Abstractions”. SJ also acknowledges financial
support from NSF-Cybertools and NIH-INBRE Grants. This
work would not have been possible without the efforts and
support of other members of the SAGA team. In particular,
SAGA-MapReduce was originally written by Chris and
Michael Miceli, as part of a Google Summer of Code
Project, with assistance from Hartmut Kaiser. We also thank
Hartmut for great support during the testing and deployment
phases of this project. We are greatful to Dmitrii Zagorodnov
(UCSB) and Archit Kulshrestha (CyD group, CCT) for
the support in deployment with Eucalyptus. KS would
like to acknowledge the LSU Networking Infrastructure &
Research IT Enablement team for their help and support.
We also acknowledge internal resources of the Center for
Computation & Technology (CCT) at LSU and computer
resources provided by LONI/TeraGrid for QueenBee.

REFERENCES

[1] C. Miceli et al, Programming Abstractions for Data-
Intensive Computing on Clouds and Grids, submit-
ted to International Workshop on Cloud Computing
(Cloud 2009) held in conjunction with CCGrid 2009,
Shangai. Draft available at http://www.cct.lsu.edu/∼sjha/
publications/saga data intensive.pdf.

[2] S. Jha et al Developing Large-Scale Adaptive Scientific
Applications with Hard to Predict Runtime Resource
Requirements, Proceedings of TeraGrid08, available at
http://tinyurl.com/5du32j.

[3] SAGA Web-Page: http://saga.cct.lsu.edu.
[4] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-

plified Data Processing on Large Clusters. In OSDI’04:
Proceedings of the 6th conference on Symposium on
Operating Systems Design & Implementation, pages 137–
150, Berkeley, CA, USA, 2004. USENIX Association.

[5] Ewa Deelman, Gurmeet Singh, Miron Livny, Bruce Ber-
riman, and John Good. The cost of doing science on the
cloud: the montage example. In SC ’08: Proceedings of
the 2008 ACM/IEEE conference on Supercomputing, pages
1–12, Piscataway, NJ, USA, 2008. IEEE Press.

[6] S Jha et al. Design and Implementation of Network Per-
formance Aware Applications Using SAGA and Cactus.
In Accepted for 3rd IEEE Conference on eScience2007
and Grid Computing, Bangalore, India., 2007.

[7] Daniel Nurmi et al. The Eucalyptus Open-source Cloud-
computing System. October 2008.

[8] S. Jha, A. Merzky, and G. Fox. Using Clouds to Provide
Grids Higher-Levels of Abstraction and Explicit Support
for Usage Modes. Accepted in Concurrency and Compu-
tation: Practice and Experience, 2009.

[9] T Goodale et al . A Simple API for Grid Applications
(SAGA). http://www.ogf.org/documents/GFD.90.pdf.

129144150

Authorized licensed use limited to: The University of Edinburgh. Downloaded on July 21, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

