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a b s t r a c t

We identify two biases in the traditional use of Bundesen’s Theory of Visual Attention (TVA) and show that
they can be substantially reduced by introducing trial-by-trial variability in themodel. We analyze whole
and partial report data from a comprehensive empirical study with 347 participants and elaborate on
Bayesian model selection theory for quantifying the advantage of trial-by-trial generalization in general.
The analysis provides strong evidence of trial-by-trial variation in both the VSTM capacity parameter and
perceptual threshold parameter of TVA. On average, the VSTM capacity bias was found to be at least half
an item, while the perceptual threshold parameter was found to be underestimated by about 2 ms.

© 2011 Elsevier Inc. All rights reserved.
1. Introduction

Most psychological experiments consist of a number of
experimental conditions, each represented by a certain number of
trials. The psychological state of a participant is normally assumed
to be constant across trials within a given condition, which is
sometimes a plausible simplifying assumption, but at other times a
rough simplification (Van Zandt &Ratcliff, 1995).Many parameters
are likely to show substantial variation from trial to trial, and such
variationmay induce a bias in the estimates for the mean values of
the parameters if the parameters are assumed to be constant. By
‘‘bias’’ we mean a systematic tendency to misestimate on average.
Two examples will clarify this issue: parameters t0, the threshold
of conscious perception, and K , the visual short-term memory
(VSTM) span, in the Theory of Visual Attention (TVA; Bundesen,
1990).

TVA has been widely applied to the processing of briefly
presented visual displays (for example, in whole and partial report
tasks). Consider the processing of an array of elements exposed for
a certain duration and then succeeded by an effective visual mask.
The task of the participant is to report asmany elements as possible
from the display (whole report). For simplicity we assume that
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the participant performs the task without guessing.1 Parameter
t0 is defined as the longest ineffective exposure duration of the
stimulus display (Shibuya & Bundesen, 1988). Thus, information
can be gained from the stimulus exposure if the exposure duration
t is longer than t0. At exposure durations shorter than t0, the
probability of reporting any element is zero. Parameter t0 is
normally assumed to be constant for any given stimulus. However,
it seems likely that t0 varies somewhat from trial to trial, rather
than being strictly constant. The effect of such variation will be
highly systematic. Correct reports will occur on some trials in
which t0 takes on a value which lies below its mean. Correct
reports on such trials will drive the estimate of t0 derived from the
traditional model (the model assuming that t0 is constant) down
below the truemean value of t0. Thus, themean value of parameter
t0 will be underestimated. When t0 is assumed to be constant, but

1 In typical experiments applying TVA, the participants are instructed to refrain
from blind guessing and report those targets, and only those targets, they are ‘‘fairly
certain’’ they have seen. The data analysis is based on the simplifying assumptions
that both blind guessing and perceptual confusions among stimuli (i.e., incorrect
perceptual categorizations of stimuli) can be neglected. How far these assumptions
are satisfied is sometimes evaluated by (a) use of catch trials onwhich the exposure
duration of the targets is zero (i.e., the targets are omitted and only the masks are
presented) and (b) analysis of the frequencies of erroneous reports. When both
blind guessing and perceptual confusions can be neglected, the probability that
an element x can be correctly reported equals the probability that (an appropriate
categorization of) the element is encoded in VSTM (for a TVA-based analysis
of processing of mutually confusable singly presented stimuli, see Kyllingsbæk,
Markussen, & Bundesen, in press).
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actually varies from trial to trial, estimates for t0 will tend to be
smaller than the real mean value of t0.

The storage capacity of VSTM is also an important characteristic
of the visual system. Traditionally, VSTM storage capacity in
humans has beenmeasured by asking the subject to report asmany
items as possible from a set of unrelated objects that are presented
briefly (whole report; Cattell, 1885). Using letters as stimuli,
Sperling (1960, 1963, 1967) found that the capacity was limited
to about four or five independent items (see also Bundesen, 1990;
Bundesen,Habekost, &Kyllingsbæk, 2005; Cowan, 2001; Shibuya&
Bundesen, 1988). Parameter K is a measure of the storage capacity
of visual short-term memory (VSTM): the maximum number of
items that can be retained at the same time in VSTM. Normally K is
assumed to vary only a little across trials. Non-integral values of K
are interpreted as probability mixtures between two neighboring
integers. For example, a value of 3.62 for K represents a mixture
of values of 3 and 4 such that, on any trial, K equals 4 with a
probability of 0.62. The variation of K is then given by the variation
of a Bernoulli random variable and thus equal to p(1− p) where p
is the non-integer remainder of K (e.g. p equals 0.62 in the example
where K equals 3.62). The variance of K is therefore minimal and
equal to zero when K is an integer, and maximal at 0.25 when K
has a non-integer remainder of 0.5.

However, K may possibly vary more strongly than this, and
again, the effect of such variation should be highly systematic.
In the traditional model, a participant with K = 3.62 cannot
report more than 4 items correct from a stimulus display without
guessing. If a participant obtains a score of 7 items correct just
once, the traditional model implies that K > 6, regardless of the
participant’s performance on any of the remaining trials. Thus, the
mean value of parameter K will be overestimated. Therefore, when
K is assumed to be nearly constant, but actually varies substantially
from trial to trial, estimates for K will tend to be greater than the
real mean value of K .

Introducing trial-by-trial variation in a certain parameter is
a way of generalizing a parametric model. The original model
is a special case of the generalized model, the case in which
the variance of the parameter in question is limited. If the
parameter varies substantially from trial to trial, the generalization
is likely to reduce the bias of the estimator for the parameter,
as illustrated above. Generalization by introducing parameter
variability can sometimes be referred to as construction of a
‘hierarchical Bayesianmodel’ (see e.g. Lee, 2011)whereparameters
of a ‘parent distribution’ are estimated, or as ‘mixed models’ in
the classical literature (e.g. McCulloch & Searle, 2001). Recently,
Rouder et al. (2008), Rouder, Morey, and Morey (2011) and Morey
(2011) gave a detailed account, in context of hierarchical Bayesian
models, of how estimates of VSTM capacity measured by Cowan’s
(2001) or Pashler’s (1988) formula of change detection may be
biased if trial-by-trial lapses in performance are not modeled.

We present computational formulas for fitting TVA to whole
and partial report data by maximum likelihood procedures, both
with and without assuming substantial trial-by-trial variation
in parameters K and t0. We give numerical examples by the
analysis of whole and partial report data from a comprehensive
empirical study (N = 347), and elaborate on the Bayesian model
selection theory for quantifying the advantage of trial-by-trial
generalization. Our results demonstrate the feasibility of obtaining
a ‘fine-grained view’ of trial-by-trial variability which Rouder et al.
(2008) suggested as a possible alternative to the all-or-nothing
modeling of lapses in change detection. We start out by giving an
introduction to TVA. For a more comprehensive introduction to
TVA, see Bundesen and Habekost (2008).
2. A Theory of Visual Attention (TVA)

TVA enables probabilistic modeling of a subject’s performance
in tasks involving the categorization of elements from brief visual
displays. Categorizations are defined as having the following form:
‘‘object x has a certain feature i’’, e.g., ‘x is red’ or ‘x is a car’. The rate
of processing, vx(i), of the categorization that an element x has a
certain feature i (or, equivalently, belongs to a certain category i) is
given by the rate equation

vx(i) = η(x, i)βi
wx∑

z∈S
wz

(1)

where η(x, i) is the strength of the sensory evidence that x belongs
to category i, βi is the perceptual decision bias associated with
category i, and the third term is the relative attentional weight
of object x, wx, divided by the sum of attentional weights across
the set of all objects in the visual field, S. The attentional weights
in the rate equation (1) are derived from pertinence values. Every
category j for which membership of j can be used as a criterion
for visual selection has a certain pertinence, πj. The pertinence of
category j is a measure of the importance of attending to objects
that belong to category j. The attentional weight of object x is given
by the weight equation

wx =
−
j∈G

η(x, j)πj (2)

where G is the set of visual categories that can be ascribed
pertinence, η(x, j) is the strength of sensory evidence that object
x belongs to category j, and πj is the pertinence of category j.
Thus, the pertinence of a given category j enters the sum with a
weight equal to the strength of the sensory evidence that the object
belongs to that category.

The subject is assumed to perceive a particular categorization if
and only if that categorization is encoded into VSTM. The VSTM
is assumed to be of limited storage capacity in the sense that it
can only hold categorizations of K elements at any given time.
Note that there is room for several categorizations of the same
object in VSTM, the limit is in the number of objects not in the
number of features (e.g. Bundesen, 1990; Luck & Vogel, 1997).
The duration of the display must exceed a temporal threshold,
t0, in order for any categorization to take place. The amount by
which the display duration must exceed the temporal threshold
in order for a particular element to reach VSTM is assumed to
be stochastic, and is traditionally modeled as coming from an
exponential distribution.

Let pE denote the probability that element x is encoded into
VSTM. This probability is zero when t ≤ t0, (the stimulus duration
does not exceed t0) and we need only derive it given t > t0. On
trials where the number of display elements does not exceed K ,
the storage capacity of VSTM is not a limiting factor. In that case
we can derive pE by simply considering the probability that the
exponentially distributed encoding time is smaller than t − t0

pE|K ≥ n(S), t > t0 = 1− exp(−vx[t − t0]) (3)

where n(S) is the number of elements of the set S of displayed el-
ements, and vx is the rate with which the particular categorization
takes place (or equivalently, vx is the reciprocal of the average time
it takes to encode the categorization). As an example, consider us-
ing single-element displays, where each trial shows an element at
a location enumerated by x. Then amap of the subject’s single-item
processing rate may be represented by the set of rate parameters
{vx} representing the different objects in the display. The rate pa-
rameters {vx} are fitted to the subject’s responses across trials (hit
versus miss trials) via (3).
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In multi-element displays where the number of elements
exceeds the VSTM storage capacity, there is a probability that the
VSTM is filled upbefore a categorization of x occurs. The probability
of encoding item x into VSTM is then derived by taking into account
the possible combinations of elements reaching the VSTM. The
notion of a ‘power set’, which is the set of all possible combinations
of elements of a set (see definition and algorithm in Appendix A),
can be used to express such combinatorics in a very elegant way:

pE|K < n(S), t > t0 = vx

K−1−
j=0

−
J∈Pj(S̃)

−
L∈P (J)

(−1)|L|

×
1− exp(−[t − t0]ν)

ν
(4)

where S̃ = S\x, P (J) is the power set of J, Pj(S̃) is the subset of the
power set of S̃ in which j elements of S̃ occur in each combination,
and

ν =
−
m∈S

vm −
−
l∈J

vl +
−
k∈L

vk (5)

see the derivation in Appendix B where multiple integrals over
products are made analytically tractable by using the notion of
power sets.

An essential assumption of TVA regarding the processing of
multi-element displays is that only limited resources are available
for processing and thus the processing rate vx of element x depends
on the other elements in the display. That is, vx becomes a fraction
of the total processing capacity such that the processing capacity is
distributed to all elements of the display according to their relative
attentional weights. Formally,

vx = C
wx∑

z∈S
wz

(6)

where wz is the attentional weight of element z, and C is the
fixed limited processing capacitymeasured in elements per second
or Hz. A typical maximum-likelihood fitting scenario involves
inserting (6) into a likelihood function involving expressions like
(3) and (4), then estimating (K , C, {wz}, t0) from the subject’s
responses given a set of stimuli (cf. Kyllingsbæk, 2006). This type of
analysis has been used in numerous patient studies based on TVA
(see Bublak et al., 2005; Bublak, Redel, & Finke, 2006; Bublak et al.,
2009; Duncan et al., 1999, 2003; Finke, Bublak, Dose, Müller, &
Schneider, 2006; Finke et al., 2005, 2010, 2007;Gerlach,Marstrand,
Habekost, & Gade, 2005; Habekost & Bundesen, 2003; Habekost
& Rostrup, 2006, 2007; Habekost & Starrfelt, 2006, 2009; Peers
et al., 2005; Redel et al., 2010; Starrfelt, Habekost, & Gerlach, 2010;
Starrfelt, Habekost, & Leff, 2009).

In Sections 3 and 4 we generalize the K and t0 parameters
of TVA by introducing trial-by-trial parameter variability. The
computational formulas for the first- and second order derivatives
of pE with respect to traditional and generalized TVA parameters
are given in Appendix C. Second order gradient based maximum-
likelihood fitting to whole and partial report data is completed
via Appendices D–F. We use these equations in gradient descent
optimization algorithms (Nielsen, 2006) which enable efficient
estimation of the parameters when the model is fitted to
experimental data. The equations have been implemented in a
MATLAB r⃝software packagewhich is available through thewebsite
at location http://zappa.psy.ku.dk/libtva. The numerical examples
that we provide in the following are reproducible via this software
package.

3. Generalizing the VSTM storage capacity parameter of TVA

As previouslymentioned, traditionally in TVA the VSTM storage
capacity estimated for a particular subject with a particular type of
stimulus material has been summarized by a single number K . The
number has been interpreted as a probability mixture such that,
for instance a value of 3.62 stands for a mixture of 3 and 4 with
probabilities of 1−0.62 and 0.62, respectively (see, e.g., Shibuya &
Bundesen, 1988). Following Hebb (1949), most researchers have
understood the distinction between short- and long-termmemory
in neural terms: Traces in short-term memory are patterns of
neural activation that may persist for a number of seconds due
to reverberation (positive feedback loops). Traces in long-term
memory are structural changes, such as long-lasting changes in
synaptic efficiency caused by the reverberating patterns of neural
activation. Given the Hebbian conception of short-term memory,
the storage capacity of VSTMmay be expected to vary considerably
over time (cf. Bundesen et al., 2005; Usher & Cohen, 1999).

To generalize the fixed VSTM storage capacity parameter K
we define a normalized histogram m such that the j’th element
mj represents the probability that K equals j on a given trial.
The normalized histogram m thus represents the trial-by-trial
probability mass function of K , and the model generalization is
made by letting the histogram m replace the parameter K via the
law of total probability

pE|m =
∞−

K=1

[pE|K ] ×mK (7)

where the sum runs from K = 1 because pE|K equals zero when
K is zero (m0 effectively represents the probability of a lapse).
Inserting the two cases (3) and (4) of pE into (7) we get a finite
sum index by K

pE|m =


n(S)−1−
K=1

vxΣp(K |m)


+ [1− exp(−vxτ)]p(K ≥ n(S)|m) (8)

where vxΣ equals the right hand side of (4)which can be computed
efficiently as described in Appendix G. Thus (8) now enables us to
compute the probability of a given item x entering VSTM given the
distribution m of VSTM capacity. We propose to estimate m in a
nonparametric manner using 5 degrees of freedom representing
the probability mass function given K ∈ [1, 6].

Although this generalized model is not parameterized by K , the
subject can be characterized with a mean K -value by the standard
formula for computing the mean of a discrete probability:

E[K |m] =
∞−
j=0

mj × j (9)

which computes the expected K on any trial given m. However,
it may also be relevant to determine the maximum capacity for
the subject as well as some characterization of the trial-by-trial
deviation from this maximum. Let (Kmin, Kmax) denote the bounds
of the substantialmass ofm. Then a shifted Binomialmass function
over the interval [Kmin, Kmax]with the probability parameter pinc =

(E[K ] − Kmin)/(Kmax − Kmin) offers a simple interpretation: the
VSTM of the subject has a maximum capacity of Kmax, and there
is an independent probability 1− pinc that each of Kmax− Kmin+ 1
VSTM slots is occupied by some task-irrelevant item. Sincewehave
assumed that the subjects perform the task without guessing, the
maximum likelihood estimate of Kmax will naturally be no less than
the maximum number of correct items reported by the subject on
any trial.

3.1. Example: comparing the generalized K-model to the traditional
model

The two histograms shown in Fig. J.1 represent distributions
of estimated K values based on a sample of 347 subjects (see

http://zappa.psy.ku.dk/libtva
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Appendix H for demographic details) performing a mixture of
whole- and partial report trials (324 trials total). In each trial
a number of red and blue letters were shown briefly on a CRT
monitor running at 100 Hz. The letter displays were followed by
a display with six pattern masks covering the six possible stimulus
locations and exposed for 500 ms. The task of the subjects was to
report the red letters while ignoring the blue letters. Three types
of displays were used: (1) whole report displays of six red letters
with varying exposure duration ranging between 10 and 200 ms,
(2) whole report displays with 2 red letters and a fixed exposure
duration of 80 ms, and (3) partial report displays with 2 red letters
and four blue letters also with a fixed exposure duration of 80 ms
(for further details of the paradigm, see Vangkilde, Bundesen, &
Coull, 2009, in press).

The left histogram in Fig. J.1 was produced using a traditional
K -model, then forming the histogram of estimated K values,
whereas the generalized model was used to form the right
histogram of expected values E[K ]. The traditional histogram
reveals a peculiar pattern: subject frequency peaks right above
integer values of K . This multi-modal nature of the traditional
histogram to the left,with frequency peaks next to integer values of
K , affirms a systematic error: the traditional estimate of a subject’s
K must be so large as to include the subject’s best score (formally,
a subject with a best score of Y correct targets implies a K estimate
greater than Y minus one). Because the histogram to the right is
closer to Normal, it underlines the fact that generalized modeling
can help to eliminate such systematic errors, simply due to the
allowance of trial-by-trial parameter variability. A likelihood ratio
test on the sample confirms our rejection of the traditional model
in favor of the generalized K -model (χ2(1388) = 4380.85 ∼
z = (4380.85 − 1388)/

√
2× 1388 = 56.80, p ≪ 0.0001). The

systematic error of the traditionalmodel is an upward bias. It yields
a higher estimate (mean 3.45, SEM = 0.06) than the generalized
model (which has mean = 2.97, SEM = 0.05) which puts the bias
of traditional estimation around the order of 0.5, assuming that the
generalized estimates are unbiased. We cannot be sure that the
generalized model is unbiased, but on the other hand we do not
expect it to be biased in the opposite direction because it contains
the traditional model as a special case, and hence the order of the
traditional bias of 0.5 is likely to be a conservative estimate. In
other words, it seems that traditional modeling of this type of data
leads to estimates ofK which on average are at least 0.5 higher than
the true value.

Fig. J.2 shows the estimated trial-by-trial VSTM storage capacity
histograms (each a generalizedmodel vectorm) for the first twelve
subjects. It is very intriguing to observe that thehistograms are uni-
modal and sparse.

4. Generalizing the threshold for visual perception parameter
of TVA

Traditionally in TVA, the threshold for visual perception for
a particular subject with a particular type of stimulus material
has been summarized by a single number t0. If we instead
assume that t0 is distributed across trials according to a pdf with
mean parameter µ0 = E[t0] and deviation parameter σ0 =
E[(t0 − µ0)2], then the generalization is made by substituting

pE|µ0, σ0 =

∫ t

−∞

[pE|t0] × p(t0|µ0, σ0)dt0 (10)

where the integration stops at t since if t0 > t then pE|t0 is zero.
The integral (10) is a convolution integral,2and assuming that the

2
[pE|t0] is a function of t − t0 .
prior p(t0|µ0, σ0) is Gaussian, the exponential processing assump-
tion described above consequently becomes an ex-Gaussian pro-
cessing assumption instead (named ex-Gaussian because it is an
exponential convolved with a Gaussian; Luce, 1986, pp. 34–36).
We assume the Gaussian prior because it is the most objective as-
sumption when nothing but mean and variance are specified (cf.
the MaxEnt principle, see Jaynes, 1957; Sivia, 1996), and it allows
for the analytical solution of the convolution integral. The resulting
pE, now conditioned on µ0 and σ0 instead of t0, is given by

∀t : pE|µ0, σ0

=


erfc(d)/2− h× erfc(d+ vxσ0/

√
2), dim(S) ≤ K

vxΣ |µ0, σ0, dim(S) > K
(11)

where d ≡ (µ0 − t)/

2σ 2

0 , and vxΣ |µ0, σ0 is given by

vxΣ |µ0, σ0 = vx

K−1−
j=0

−
J∈Pj(S̃)

−
L∈P (J)

(−1)|L|

×
erfc(d)/2− h× erfc(d+ νσ0/

√
2)

ν
(12)

erfc(·) is the ‘complementary error function’ defined by the in-
tegral 2

√
π


∞

·
exp(−t2)dt which has a well-known Taylor series

expansion, and h = 1
2 exp(ν[µ0 − t] + ν2σ 2

0 /2). Thus again, the
generalized pE may be computed efficiently. The derivations are
trivial using the rule derived in Appendix I; note the simple rela-
tionships between (12) and (4), and between (11) and (3).

The Gaussian prior is convenient in the way that it leads to
the ex-Gaussian model. However, the theoretically unbounded
support of the Gaussian speaks against the ex-Gaussian because
it predicts a non-zero probability of encoding even in the exposure
duration limit toward zero. Such misprediction may be negligible
for small values of σ0 (relative to µ0), but a bounded prior is in
principle desired. However, such extremum statistic may be very
sensitive to guessing and we therefore defer investigations of the
exact shape of the trial-by-trial distribution of t0 to future context
in which explicit guessing strategy modeling is taken into account.

4.1. Example: comparing the ex-Gaussian with the traditional model

As in the previous example, we consider the data from the 347
subjects performing a mixture of whole- and partial report trials.
The data are analyzedwith both the traditional and the generalized
t0-model and the two corresponding histograms are shown in
Fig. J.3. For both models the VSTM capacity was modeled with the
traditional K -model. The histograms reveal a significant difference
between the traditional and the generalized t0-estimation: the
traditional estimation yields a bimodal histogram, while the
generalizedmodel yields a more normal looking histogram. Fig. J.4
shows a scatter plot of the generalized estimates versus traditional
estimates. It is clear that the generalized estimates deviate for
subjects that have a traditional estimate just below10, 20, or 50ms.
These numbers happen to be the three lowest exposure durations
in the stimulus material. The phenomenon can be explained as a
systematic error in the traditional model: if the subject has a mean
t0 above a certain stimulus duration, but sometimes perceives a
stimulus at that duration due to trial-by-trial variability, then the
traditional estimate will be driven below the stimulus duration.
From Figs. J.3 and J.4 it is clear that the generalized t0 model
is better than the traditional TVA model for many subjects of
our sample. The traditional TVA model yields a lower temporal
threshold (mean = 14.3 ms, SEM = 0.7) compared to the ex-
Gaussian TVA model (mean = 16.4 ms, SEM = 0.8), which puts
the bias of the traditional estimator on the order of 2 ms on



420 M. Dyrholm et al. / Journal of Mathematical Psychology 55 (2011) 416–429
average, depending on the particular exposure durations chosen
in the paradigm in the present paper. A likelihood ratio test
was in favor of the ex-Gaussian model (χ2(347) = 463.59 ∼
z = (463.59 − 347)/

√
2× 347 = 4.43, p < 0.0001). The

scatter plot in Fig. J.4 indicates that the small difference in the
average t0 estimates between the traditional and the generalized
t0-model is driven only by a subset of the subjects. It is likely
that a finer experimental sampling of the t axis will increase
the significance as the generalized estimates versus traditional
estimates are expected to diverge.

5. Selecting level of generalization

In our previous exampleswe used likelihood ratio tests to quan-
tify the evidence of each individual trial-by-trial generalization as
an alternative to the traditional TVAmodel. In this section, we con-
sider the more general question of which parameter combination
is the best. In the case of TVAwemay ask: Should only t0 be gener-
alized? Should only K be generalized? Or, should both K and t0 be
generalized simultaneously? A likelihood ratio test will not suffice
since it requires the null hypothesis to be a restricted version of the
alternative (see for example McCulloch & Searle, 2001), which is
not the case under this more general question. Instead we address
the question quantitatively via Bayesian model selection. The Ock-
ham’s razor principle of Bayesian model selection trades off close-
ness of fit in favor of parsimony, and one of two competing models
need not be a restricted version of the other.

To illustrate, let p(data|θ, M) denote the likelihood function
of a parametric model that associates data with the parameter
set θ . The symbol M represents all modeling assumptions except
the actual values of the parameter vector θ . The Bayes factor
for a model against another is defined as the ratio of marginal
likelihoods where the marginal likelihood for model M is given by
the integral

p(data|M) =

∫
p(data|θ, M)pA(θ |M)dθ (13)

which can be approximated by the Laplace approximation (Kass &
Raftery, 1995; Raftery, 1996). The Laplace approximation assumes
that the mode of the likelihood function is sharply peaked
compared with pA (i.e. our prior knowledge is diffuse compared to
the information gathered by the likelihood). The next assumption
required by the Laplace approximation is that the mode of the
likelihood function is Gaussian in shape, the analytical result is
then obtained as

p(data|M) ≈ l∗pA(θ
∗
|M)(2π)dim(θ)/2 det(H∗)−1/2 (14)

where dim(θ) is the number of parameters, l∗ is the value of
the likelihood at the mode, and H∗ is the Hessian matrix of
second order derivatives of the negative log-likelihood function
− log p(data|θ, M) with respect to θ evaluated at the mode (see
also Bishop, 1996; Raftery, 1996; Sivia, 1996). In fact, assuming
that the mode of the likelihood function is shaped like a Gaussian
with covariance matrix C, then H∗ will be symmetric and positive
definite with the correspondence H∗ = C−1 (McCulloch & Searle,
2001; Sivia, 1996). That is, the det(H∗) term in (14) may be used as
an estimate of the precision of the likelihood mode.

Without specifying the exact value of pA(·|M) we note that it
depends on the number of parameters (the dimension of θ ) and the
ranges of individual parameters in θ ; see for example Sivia (1996).
Also note that pA(·|M) does not scale with the number of trials
and becomes increasingly negligible with an increasing number
of trials. To conclude our illustration we consider the scenario of
comparing two models (denoted by subscripts 0 and 1) with an
Table 1
The number of subjects for which the combination of K -model (column) and t0-
model (row) is the best.

Traditional K Generalized K Total

Traditional t0 29 62 91
Generalized t0 88 168 256

Total 117 230 347

equal number of parameters and pA(θ
∗

0 |M0) = pA(θ
∗

1 |M1). The
Bayes factor for M1 against M0 reduces to

p(data|M1)

p(data|M0)
=

l∗1
l∗0
×


det(H∗0)
det(H∗1)

1/2

(15)

from which we see that the preference tends toward the model of
greater likelihood (l∗1 vs. l∗0), but due to the precision ratio (det(H∗0)
vs. det(H∗1)), this will only suffice if the precision of the likelihood
mode is not too high (relative to the other model). If the likelihood
precision is too high, the value of the likelihood is too sensitive
to perturbation of parameter values in which case the model is
expected to perform poorly on another data sample from the
same population: the estimator variance is too high. Generalizing
a parametricmodel by introducing trial-by-trial variability is likely
to increase the estimator variance (increased mode precision)
because, other things equal, an increase in the number of model
parameters makes it possible to fit the observed data by a larger
number of combinations of the model parameters. Thus, in order
to lower the bias of an estimator working on a given sample,
one must generally accept an increased variance. This dilemma
is known as the bias–variance dilemma (Geman et al., 1992), and
the Bayesian model selection strategy offers a principled balance
between parsimony and closeness of fit to the particular data
instance. Note that the determinant scales exponentially with
dim(θ), and the (2π)dim(θ)/2 term in (14) represents robustness
of the Bayesian model selection when comparing models with
different numbers of parameters.

Further approximation can be made by considering the limit as
the number of trials tends toward infinity. This leads to the Bayes
Information Criterion (BIC)

l∗ det(H∗)−1/2 ≈ l∗N− dim(θ)/2
= BIC (16)

which is identical to the Schwarz (1978) criterion (see also Kass
& Raftery, 1995; Raftery, 1996). The BIC is a convenient choice
when the Hessian matrix is not available, but other alternatives
exist, such as numerical integration via Markov Chain Monte Carlo
(MCMC) procedures (see e.g. Ruanaidh & Fitzgerald, 1996), which
may be more appropriate when it is hard to justify the assumption
of an infinite number of trials.

5.1. Example: generalizing multiple parameters

In this example, we quantify which generalization of TVA
parameters t0 and K is the best by evaluating the integral in
(13) on each of the 347 subjects performing a mixture of whole-
and partial report trials. The Hessian matrix, H∗, given by the
second order derivatives of the likelihood function with respect
to t0, µ0, C , and {wx} in Appendices C–E enable the use of the
Laplace approximation for integrating the continuous parameters
of the traditional TVA model and also for µ0. However, Hessian
entries involving K ,m or σ0 are not available and we use an
MCMC procedure to integrate those dimensions numerically (see
Appendix J for details about the MCMC procedure).

Table 1 shows the number of subjects for which each combi-
nation of K -model and t0-model is best. About half of the subjects
show evidence in favor of generalizing both K and t0. About 40%
of subjects benefit from generalizing only one or the other and
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the traditional version of TVA was only favored for very few sub-
jects (8%). Therefore, generalizing both TVA parameters K and t0
by including the possibility of trial-by-trial variation of the param-
eters in the model, greatly improved the feasibility of the model in
terms of both reduction of the bias of the parameter estimates and
Bayesian selection criteria.

Fig. J.5 shows observed mean scores and model predictions for
a subject for which the evidence is in favor of generalizing both t0
andK . As canbe seen, the generalization ofK reduces the overshoot
at the longest exposure, while the t0 generalization adjusts for the
observed S-shape around the shortest exposures.

6. Discussion and conclusions

We used the Theory of Visual Attention (TVA; Bundesen,
1990) as an example of a parametric model in which the major
parameters are assumed to be nearly constant across trials. We
tested the assumption for two parameters in TVA, the threshold
for conscious perception, t0, and VSTM capacity, K . The data
from 347 subjects enabled us to investigate the distribution of
parameter estimates in detail for patterns of biases. We found
two distinct patterns for the two parameters: For parameter K ,
we found frequency peaks next to integer values of K , indicating
systematic upward bias where K was erroneously pulled up to
the highest number of letters reported by the subject, minus one.
Furthermore, we found that parameter t0 was underestimated by
a downward bias toward values just below one of the shortest
exposure durations used in the particular paradigm.

As expected, introducing random trial-by-trial variation of the
two parameters significantly reduced both types of biases. For
parameter K we introduced trial-by-trial variance by allowing K
to vary freely, parameterized by a normalized histogram. The trial-
by-trial variance for parameter t0 was introduced by exchanging
the single constant parameter by a normal distribution, given
by its mean value and variance. Our results strongly support
the principle of generalization by introduction of trial-by-trial
parameter variability resulting in significantly reduced estimation
bias (Morey, 2011). Specifically, in whole and partial report trials,
the traditionally overestimated VSTM capacity was significantly
reduced. The Gaussian trial-by-trial generalization that we applied
to t0 was modest on average, but it made a significant difference
for many of the tested subjects. We do, however, expect a finer
experimental resolution of the stimulus duration to yield unbiased
estimation in subjects in general.

When comparing generalization of the K and t0 parameters
individually, we used likelihood ratio tests. However, this is not
possible when comparing the effects mutually because one of
these parameters is not a restricted version of the other. We
instead used the Bayesian model selection theory to compare the
significance of trial-by-trial parameter generalization in general.
In Bayesian model selection a number of different parameters,
and combinations hereof, can be generalized and the mutual
significance of doing so can be compared. The analysis favored the
generalization of both parameters K and t0 for nearly half of the
subjects. In contrast, the traditional model where the perceptual
threshold, t0, is constant andVSTMcapacity,K , only varies between
two neighboring integer valueswas favored for less than 10% of the
subjects.

As advocated by Morey (2011) and Rouder et al. (2008),
ignoring possible variance on a trial-by-trial basis such as lapses
in change detection may significantly bias parameter estimates
of VSTM capacity, K . In contrast to estimation of K from change-
detection experiments using either Pashler’s (1988) or Cowan’s
(2001) formula, the use ofwhole- andpartial report in combination
with Bundesen’s (1990) TVA enables the simultaneous estimation
of several important and interacting visual parameters such as
threshold for conscious perception, t0, processing capacity, C , and
VSTM capacity, K . The introduction of trial-by-trial variance in
central parameters of the model (here t0 and K ) greatly improves
the validity of the parameter estimates as measured by Bayesian
model selection. That is not to say that alternative improvements
may not lead to even better models. For example, we have
dismissed the role of guessing, and we have also focused on only
two parameters of the TVA model namely K and t0. Therefore an
untested alternative hypothesis is that instead of generalizing K
and t0, the data can be explained better by extending the model
with a guessing strategy or by generalizing other TVA parameters
such as C or w. However, in whole- and partial report as we have
analyzed, the incremental hit-rate of a subject due to guessing can
be approximated roughly as the product of three probabilities: p1,
the probability that the subject is unable to report a target via
nonguessing; p2, the probability that the subject chooses to guess;
and p3, the probability that the subject guesses correctly when he
or she chooses to guess. This principle may serve as a route to
modeling guessing, but we note that the functional form of p1p2p3
may not be trivial (see for example Kyllingsbæk et al., in press).
In our case we have told the subjects to refrain from guessing,
and hence probability p2 is small. Furthermore, the alphabet is
relatively large, and hence p3 is small. We therefore consider the
combined probability negligible. While TVA parameters C and w
could potentially benefit from generalization, we have focused
on TVA parameters K and t0 based on the histograms from 347
subjects that revealed t0-oddities directly related to exposure
duration and K -oddities related to integer values.
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Appendix A. Power sets

Given a set S, the power set of S, denoted P (S), is the set of all
possible subsets of S. For example,

S = {A, B, C} ⇔
P (S) = {∅, {A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A, B, C}}.

Let Pj(S) denote the power set with elemental cardinality-j
constraint, that is Pj(S) is the largest subset of P(S) in which all
elements (each being a subset of S) have cardinality equal to j.
Clearly,Pj(S) can be obtained by formingP (S) and then filtering it,
but since P (S) can be enormous compared to Pj(S), such filtering
can demand a significant overhead. The online appendix contains
an algorithm for running through Pj(S) efficiently.

Appendix B. Derivation of pE, the probability that item x is
encoded in VSTM

Let pE denote the probability that a particular element is
encoded into VSTM. In the following, x denotes the element in
question. Let τ denote the effective stimulus duration t − t0. Note
that S = ST ∪ SD, that is the set of all stimuli presented is the union
of target stimuli and distractor stimuli. The following derivation is
adapted from Kyllingsbæk and Habekost (2001).

pE|K =
K−1−
j=0

−
J∈Pj(S\x)

∫ τ

0
vx exp(−vxt)

∏
k∈J

× [1− exp(−vkt)]
∏

l∈S\x\J

exp(−vlt)dt. (B.1)
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The term with products of the exponential functions can be
collapsed into a single exponential function of the summed v
values. Further, the term including

∏
1−exp(−vxt) is transformed

into a sum using the method of power sets
∏

i∈A[1 − xi] =∑
J∈P (A)(−1)

n(J)∏
i∈J xi

pE|K = vx

K−1−
j=0

−
J∈Pj(S\x)

∫ τ

0
exp


−

−
l∈S−J

vlt



×

−
L∈P (J)

(−1)n(L) exp


−

−
k∈L

vkt


dt. (B.2)

The single term with exponential function is moved inside the
∑

operator.

pE|K = vx

K−1−
j=0

−
J∈Pj(S\x)

−
L∈P (J)

(−1)n(L)

×

∫ τ

0
exp


−

−
l∈S\J

vlt


exp


−

−
k∈L

vkt


dt. (B.3)

Again the resulting product of the exponential functions is trans-
formed into a single exponential function. Finally the expression is
integrated yielding (4); see Appendix A for an algorithm for run-
ning through power sets Pj.

Appendix C. Derivatives involving pE

Recall that pE is the probability that a particular element is
encoded into VSTM. In the following, x denotes the element in
question, and z is used to denote arbitrary elements. Let τ denote
the effective stimulus duration t − t0.

C.1. General formof derivatives ofpE with respect to vwhenn(S) > K

When n(S) > K , differentiating pE once with respect to the
processing rates v follows the general form

∂pE

∂vz
= δ(z − x)Σ + vxΓz where Γz ≡

∂Σ

∂vz
(C.1)

where δ(·) is the Dirac delta function which equals one when the
argument is zero and equals zero when the argument is non-zero.
Similarly for the second order derivative

∂2pE

∂vz∂vz′
= δ(z − x)Γz′ + δ(z ′ − x)Γz + vxΞz,z′ (C.2)

where Γ and Ξ will be given in sections below.

C.2. Derivatives of pE when n(S) ≤ K and assuming exponential
processing

Assuming exponential processing, and that the number of
stimuli does not exceed K , the first order derivatives of pE with
respect to the processing rates and temporal threshold are given
by

∂pE

∂vz
= δ(x− z)τ exp(−vxτ) (C.3)

∂pE

∂t0
= −vx exp(−vxτ). (C.4)

Similarly, the second order derivatives are given by
∂2pE

∂vz∂vz′
= −δ(x− z)δ(x− z ′)τ 2 exp(−vxτ) (C.5)

∂2pE

∂t0∂t0
= −v2

x exp(−vxτ) (C.6)

∂2pE

∂t0∂vz
= δ(x− z)[vxτ − 1] exp(−vxτ). (C.7)

C.3. Derivatives of pE when n(S) > K and assuming exponential
processing

Assuming exponential processing, and that the number of
stimuli does exceed K , the first and second order derivatives of pE
with respect to the processing rates are given by the general form
in Appendix C.1 using the following Γ and Ξ

Γz =
−
j,J,L

Λz∉J\L(−1)|L|
[

τ exp(−τν)

ν
−

1− exp(−τν)

ν2

]
(C.8)

and

Ξz,z′ ≡
∂Γz

∂vz′
=

−
j,J,L

Λz∉J\LΛz′∉J\L(−1)|L|
[
−

τ 2 exp(−τν)

ν

−
2τ exp(−τν)

ν2
+

2− 2 exp(−τν)

ν3

]
(C.9)

whereΛz∉J\L = 1 unless z ∈ J \L ⇐⇒ Λz∉J\L = 0. The first order
derivative of pE with respect to t0 is given by

∂pE

∂t0
= vx

∂Σ

∂t0
where

∂Σ

∂t0
= −

−
j,J,L

(−1)|L| exp(−τν). (C.10)

The second order derivative of pE with respect to t0 twice is given
by

∂2pE

∂t0∂t0
= −vx

−
j,J,L

(−1)|L|ν exp(−τν). (C.11)

The second order derivatives of pE with respect to v and t0 are given
by

∂2pE

∂vz∂t0
= δ(z − x)

∂Σ

∂t0
+ vx

∂Γz

∂t0
where

∂Γz

∂t0

=

−
j,J,L

Λz∉J\L(−1)|L|τ exp(−τν). (C.12)

C.4. Derivatives of pE when n(S) ≤ K and assuming ex-Gaussian
processing

Assuming ex-Gaussian processing, and that the number of
stimuli does not exceed K , the first order derivatives of pE with
respect to the processing rates are given by

∂pE|µ0

∂vz
= δ(z − x)

∂ − herfc(−c)
∂vx

= δ(z − x)
[
−

∂h
∂vx

erfc(−c)− h×
∂erfc(−c)

∂vx

]
(C.13)

where
∂h
∂vx
= h× [µ0 − t + vxσ

2
] and

∂erfc(−c)
∂vx

= −
2σ0
√
2π

exp(−c2). (C.14)
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The second order derivatives with respect to the processing rates
are given by

∂2pE|µ0

∂vz∂vz′
= δ(x− z)δ(z ′ − x)


−

∂2h
∂vx∂vx

erfc(−c)

− 2
∂h
∂vx

∂erfc(−c)
∂vx

− h
∂2erfc(−c)

∂vx∂vx


(C.15)

where

∂2h
∂vx∂vx

=
∂h
∂vx
[µ0 − t + vxσ

2
] + hσ 2 and

∂2erfc(−c)
∂vx∂vx

= −2c
σ0
√
2

∂erfc(−c)
∂vx

. (C.16)

The derivative with respect to µ0 is given by

∂pE|µ0

∂µ0
=

1
2

∂erfc(d)
∂µ0

− h
∂erfc(−c)

∂µ0
−

∂h
∂µ0

erfc(−c) (C.17)

where

∂erfc(d)
∂µ0

= −
2

2πσ 2
0

exp(−d2) and

∂erfc(−c)
∂µ0

= −
2

2πσ 2
0

exp(−c2) and
∂h
∂µ0
= hvx. (C.18)

The second order derivative with respect to µ0 is given by

∂2pE|µ0

∂µ0∂µ0
=

1
2

∂2erfc(d)
∂µ0∂µ0

− 2
∂h
∂µ0

∂erfc(−c)
∂µ0

− h
∂2erfc(−c)
∂µ0∂µ0

−
∂2h

∂µ0∂µ0
erfc(−c) (C.19)

where

∂2erfc(d)
∂µ0∂µ0

=
−2d
2σ 2

0

∂erfc(d)
∂µ0

and

∂2erfc(−c)
∂µ0∂µ0

=
−2c
2σ 2

0

∂erfc(−c)
∂µ0

and

∂2h
∂µ0∂µ0

= vx
∂h
∂µ0

. (C.20)

The second order derivatives with respect to processing rates and
µ0 are given by

∂2pE|µ0

∂vz∂µ0
= δ(z − x)


−

∂2h
∂vx∂µ0

erfc(−c)−
∂h
∂vx

∂erfc(−c)
∂µ0

−
∂h
∂µ0

∂erfc(−c)
∂vx

− h
∂2erfc(−c)

∂vx∂µ0


(C.21)

where

∂2h
∂vx∂µ0

= h+
∂h
∂vx

vx and

∂2erfc(−c)
∂vx∂µ0

=
2cσ0
√
2

∂erfc(−c)
∂µ0

(C.22)
C.5. Derivatives of pE when n(S) > K and assuming ex-Gaussian
processing

Assuming ex-Gaussian processing, and that the number of
stimuli does exceed K , the first and second order derivatives of pE
with respect to the processing rates are given by the general form
in Appendix C.1 using the following Γ and Ξ

Γz |µ0, σ0 =
−
j,J,L

Λz∉J\L(−1)|L|

Y/ν − I/ν2 (C.23)

where I is given in (I.1) and

Y =
∂ − h× erfc(−c)

∂ν
= −

∂h
∂ν

erfc(−c)− h×
∂erfc(−c)

∂ν
(C.24)

where
∂h
∂ν
= h× [µ0 − t + νσ 2

] and

∂erfc(−c)
∂ν

= −
2σ0
√
2π

exp(−c2). (C.25)

Further,

Ξz,z′ |µ0, σ0 =
−
j,J,L

Λz∉J\LΛz′∉J\L(−1)|L|

1
ν

∂Y
∂ν

−
2Y
ν2
+

erfc(d)− 2h× erfc(−c)
ν3


(C.26)

where

∂Y
∂ν
= −

∂2h
∂ν∂ν

erfc(−c)− 2
∂h
∂ν

∂erfc(−c)
∂ν

− h
∂2erfc(−c)

∂ν∂ν
(C.27)

where

∂2h
∂ν∂ν

=
∂h
∂ν
[µ0 − t + νσ 2

] + hσ 2 and

∂2erfc(−c)
∂ν∂ν

= −2c
σ0
√
2

∂erf(−c)
∂ν

. (C.28)

The first order derivative with respect to µ0 is given by

∂pE|µ0

∂µ0
= vx

−
j,J,L

(−1)|L|
W
ν

(C.29)

where

W =
∂ I

∂µ0
=

1
2

∂erfc(d)
∂µ0

− h
∂erfc(−c)

∂µ0
−

∂h
∂µ0

erfc(−c) (C.30)

where

∂erfc(d)
∂µ0

= −
2

2πσ 2
0

exp(−d2) and

∂erfc(−c)
∂µ0

= −
2

2πσ 2
0

exp(−c2) and

∂h
∂µ0
= hν. (C.31)

The second order derivative with respect to µ0 twice is given by

∂2pE|µ0

∂µ0∂µ0
= vx

−
j,J,L

(−1)|L|
∂W
∂µ0


ν (C.32)
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where
∂W
∂µ0
=

1
2

∂2erfc(d)
∂µ0∂µ0

− 2
∂h
∂µ0

∂erfc(−c)
∂µ0

− h
∂2erfc(−c)
∂µ0∂µ0

−
∂2h

∂µ0∂µ0
erfc(−c). (C.33)

The second order derivative with respect to processing rates and
µ0 are given by

∂2pE|µ0

∂vz∂µ0
= δ(x− z)

−
j,J,L

(−1)|L|
W
ν

+ vx

−
j,J,L

Λz∉J\L(−1)|L|
[

∂W
∂ν


ν −

W
ν2

]
(C.34)

where
∂W
∂ν
= −

∂2h
∂ν∂µ0

erfc(−c)−
∂h
∂ν

∂erfc(−c)
∂µ0

−
∂h
∂µ0

∂erfc(−c)
∂ν

− h
∂2erfc(−c)

∂ν∂µ0
(C.35)

where
∂2h

∂ν∂µ0
= h+

∂h
∂ν

ν and

∂2erfc(−c)
∂ν∂µ0

=
2cσ0
√
2

∂erfc(−c)
∂µ0

. (C.36)

C.6. Derivatives of pE with respect to C and w

Derivatives of pE with respect to C andw are obtained via chain
rules which can be found in the online appendix.

Appendix D. Whole report equations

This section contains equations for computing the likelihood
function and its derivatives assuming a trial of the whole report
paradigm. The report set R contains the items from the stimulus
set which the subject reported. Notation n(·) is used to denote the
cardinality of a set.

D.1. Likelihood function

Assuming exponential processing, the likelihood function is
given by
p(R|S)

=



p1p(K ≥ n(R)|m),
0 < n(R) = n(S), t > t0

p1p(K > n(R)|m)+ p2p(K = n(R)|m),
0 < n(R) < n(S), t > t0

p1p(K > 0|m)+ p(K = 0|m),
0 = n(R) < n(S), t > t0

1, 0 = n(R) < n(S), t < t0
0, 0 < n(R) ≤ n(S), t < t0

(D.1)

where p1 and p2 are given below. For the ex-Gaussian model we
get the likelihood function
p(R|S)

=


p̃1p(K ≥ n(R)|m),
0 < n(R) = n(S)

p̃1p(K > n(R)|m)+ p̃2p(K = n(R)|m),
0 < n(R) < n(S)

(p̃1 + p0)p(K > 0|m)+ p(K = 0|m),
0 = n(R) < n(S)

(D.2)
where p̃ denotes convolution of p with a Gaussian. The contribu-
tion of the p0 term to the gradient and Hessian is trivial to derive.

D.2. Details of p1

Assuming that K is not a limiting factor, the joint probability
that R is encoded into VSTM while S \ R is not, is given by

p1 =
−

J∈P (R)

(−1)n(J) exp(−ν[t − t0]) (D.3)

where

ν =
−
i∈J

vi +
−
j∈S\R

vj. (D.4)

The first order derivatives with respect to processing rates and
temporal threshold are given by
∂p1

∂t0
=

−
J

(−1)n(J) exp(−ν[t − t0])ν (D.5)

∂p1

∂vx
= −

−
J

(−1)n(J)φx exp(−ν[t − t0])[t − t0] (D.6)

where
φz = (1z∈J + 1z∈S\R). (D.7)
The second order derivatives are given by

∂2p1

∂vx∂vz
=

−
J

(−1)n(J)φxφz exp(−ν[t − t0])[t − t0]2 (D.8)

∂2p1

∂vx∂t0
=

−
J

(−1)n(J)φx exp(−ν[t − t0])(1− [t − t0]ν) (D.9)

∂2p1

∂t0∂t0
=

−
J

(−1)n(J) exp(−ν[t − t0])ν2. (D.10)

Derivatives with respect to processing capacity and attentional
weights are obtained via chain rules identical to those in
Appendix C.6.

D.3. Convolution of p1 with a Gaussian

The convolution is a trivial variation of the integral in Appendix I∫ t

−∞

p1dt0 =
−

J∈P (R)

(−1)n(J)h× erfc(−c) (D.11)

where h and c are given in Appendix I. The convolution modifies
the derivatives, the first order derivatives are obtained via
∂h× erfc(−c)

∂µ0
=

∂h
∂µ0

erfc(−c)+ h
∂erfc(−c)

∂µ0
(D.12)

∂h× erfc(−c)
∂vx

= −Y
∂ν

∂vx
= −Yφx (D.13)

where Y is given in (C.24). The second order derivatives are
obtained via
∂2h× erfc(−c)

∂vx∂vz
= −φxφz

∂Y
∂ν

(D.14)

∂2h× erfc(−c)
∂µ0∂µ0

=
∂2h

∂µ0∂µ0
erfc(−c)

+ 2
∂h
∂µ0

∂erfc(−c)
∂µ0

+ h
∂2erfc(−c)
∂µ0∂µ0

(D.15)

∂2h× erfc(−c)
∂vx∂µ0

= −φx
∂W
∂ν

(D.16)

where ∂W , and ∂Y are given in Appendix C.5.
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D.4. Details of p2

When K is a limiting factor, the probability of R is derived by
considering the probability given each element of R in turn closing
the race

p2(R) =
−
i∈R

vi

−
J∈P (R\i)

(−1)n(J) 1− exp(−ντ)

ν
(D.17)

where

ν = vi +
−
k∈S\R

vk +
−
j∈J

vj. (D.18)

The structure of this is identical to a case of pE and the convolution
and derivatives are thus trivially given.

Appendix E. Partial report equations

This section contains equations for computing the likelihood
function and its derivatives assuming a trial of the partial report
paradigm. Let RT denote the report set. Let subscript T denote
targets, and subscript D denote distractors.

E.1. Likelihood function

Assuming exponential processing, the likelihood function is
given by

p(RT |S) =

p1 + p2 + p3, t > t0
1, 0 = n(R) < n(S), t < t0
0, 0 < n(R) ≤ n(S), t < t0

(E.1)

where p1, p2, and p3 are given below.

E.2. Details of p1

p1 is the probability of the report and that VSTM does not get
filled. To derive it for generalized modeling, first the probability of
encoding exactly the responded subset of the target stimuli is given
by

f1 =
∏
i∈RT

[1− exp(−viτ)]
∏

j∈ST \RT

exp(−vjτ). (E.2)

All combinations of distractors, up to filling the VSTM capacity
minus 1, or up to all distractors encoded, are considered in f2

f2 =
min[K−n(RT )−1,nD]−

k=0

−
J∈Pk(SD)

×

∏
l∈J

[1− exp(−vlτ)]
∏

m∈SD\J

exp(−vmτ) (E.3)

then by the product of f1 and f2 (set to zero when n(RT ) ≥ K ) we
get the traditional p1 derived in Kyllingsbæk (2006). To generalize
it, we transform f1 and f2 to sum form

f1 =
−

G∈P (RT )

(−1)n(G) exp(−ν1τ) (E.4)

where

ν1 =
−

j∈ST \RT

vj +
−
g∈G

vg (E.5)

and

f2 =
min[K−n(RT )−1,nD]−

k=0

−
J∈Pk(SD)

−
L∈P (J)

(−1)n(L) exp(−ν2τ) (E.6)
where

ν2 =
−

m∈SD\J

vm +
−
l∈L

vl. (E.7)

The product of f1 and f2 is then transformed to a sum

f1 × f2 =
min[K−n(RT )−1,nD]−

k=0

−
J∈Pk(SD)

×

−
L′∈P (J∪RT )

(−1)n(L′) exp(−ν×τ) (E.8)

where

ν× =
−

j∈ST \RT ,SD

vj −
−
m∈J

vm +
−
l∈L′

vl. (E.9)

Finally we get the generalized p1 conditioned onm by marginaliz-
ing K

p1|m =
∞−

K=n(RT )+1

p(K |m)× f1 × f2

=

nD−
k=0

{1− c[n(RT )+ k]}
−

J∈Pk(SD)

×

−
L′∈P (J∪RT )

(−1)n(L′) exp(−ν×τ) (E.10)

where c is the cumulative sum vector of m. Convolution of the
above sum form is trivial by Appendix I. Gradient and Hessian
entries are trivial.

E.3. Details of p2

p2 is the joint probability of the report and the VSTM gets filled
and the last item is a target. For the traditional TVAmodel p2 is zero
if n(RT ) = 0 or if n(RT ) < K − n(SD), otherwise

p2|K =
−
i∈RT

vi

−
L∈P (RT \i)

−
J∈PK−n(RT )(SD)

×

−
M∈P (J)

(−1)n(L)+n(M) 1− exp(−ντ)

ν
(E.11)

where

ν = vi +
−

k∈ST \RT

vk +
−
j∈L

vj +
−

m∈SD\J

vm +
−
l∈M

vl (E.12)

as derived in Kyllingsbæk (2006). Here we derive it for generalized
K modeling: n(RT ) = 0⇒ p2|m = 0, otherwise

p2|m =
n(R)+n(D)−
K=n(R)

p(K |m)[p2|K ]

=

−
i∈RT

vi

n(D)−
q=0

p(K = q+ n(R)|m)

×

−
J∈Pq(SD)

−
Q∈P (J∪RT \i)

(−1)n(Q ) 1− exp(−ν̃τ )

ν̃
(E.13)

where

ν̃ = vi +
−

k∈ST \RT

vk +
−

k∈SD\J

vk +
−
l∈Q

vl (E.14)

Convolution of the above sum form is trivial by Appendix I. Gradi-
ent and Hessian entries are trivial.
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E.4. Details of p3

p3 is the joint probability of the report and that VSTM gets filled
and the last item entering VSTM is a distractor. For the traditional
TVA model p3 is zero if n(RT ) = K or if n(RT ) < K − n(SD),
otherwise

p3|K =
−
i∈SD

vi

−
L∈P (RT )

−
J∈PK−n(RT )−1(SD\i)

×

−
M∈P (J)

(−1)n(L)+n(M) 1− exp(−ντ)

ν
(E.15)

where

ν = vi +
−

k∈ST \RT

vk +
−
j∈L

vj +
−

m∈(SD\i)\J

vm +
−
l∈M

vl (E.16)

as derived in Kyllingsbæk (2006). Here we derive it for generalized
K modeling:

p3|m =
n(R)+n(D)−
K=n(R)+1

ΛK≠n(R) × p(K |m)× [p3|K ]

=

−
i∈SD

vi

nD−1−
q=0

p(K = q+ n(R)+ 1|m)
−

J∈Pq(SD\i)

×

−
Q∈P (J∪RT )

(−1)n(Q ) 1− exp(−ντ)

ν
(E.17)

where

ν =
−

k∈ST \RT

vk +
−

m∈SD\J

vm +
−
l∈Q

vl. (E.18)

Convolution of the above sum form is trivial by Appendix I.
Gradient and Hessian entries are trivial.

Appendix F. Optimization and error-bars

If the mode of the likelihood is approximately Gaussian, then
the logarithm of the likelihood will be approximately quadratic.
Assuming that the mode of the likelihood function p(data|θ) is
Gaussian shapedwith covariancematrixC, then theHessianmatrix
H∗ of second order derivatives of the negative log-likelihood
function− log p(data|θ) with respect to θ , evaluated at the mode,
will be symmetric and positive definitewith the correspondence of
H∗ = C−1 (McCulloch & Searle, 2001). This means that estimation
variances are provided on the diagonal of (H∗)−1. By taking the
square root, one can obtain the standard-error of estimate (‘error-
bars’; see also Sivia, 1996) which follows the N−1/2 scaling of the
standard-error of the mean in the conventional statistics due to H
being a sum of single-trial contributions.

We use a ‘damped Newton’ method for robust optimization
even when the Hessian is not positive definite (Nielsen, 2006). The
damped Newton step regulates the search direction so that it is
always within ninety degrees of the gradient descend direction.
Continuous and positive parameters, C, w, and α are optimized
in the domain of their logarithms. Optimization of parameters for
which we do not have second order log-likelihood derivatives, is
simply done by sweeping the space of possible combinations in a
joint manner. For each point of the sweep, the before mentioned
second order optimization procedure takes place. Optimization of
the generalized K -model m is not done by sweeping. Instead we
use a ‘shaving’ procedure, initialized with a uniform m which is
then shaped iteratively by trimming individual elements. Again,
this is done in joint optimization with all other parameters.
Fig. J.1. Estimated VSTM storage capacity for 347 subjects. Left: Using a traditional
K -model. Right: Using a generalized K -model with trial-by-trial variability.

Appendix G. Efficient computation of sum over K

By noting that the upper limit of the sum index j inside Σ is
dependent on the sum indexK , the sumoverK can bemoved inside
the sum over j as a cumulative scaling yielding the efficient result

pE|m = vxΣ + [1− exp(−vxτ)]p(K ≥ n(S)|m) (G.1)

where

Σ = n(S)−2−
j=0

p(j < K < n(S)|m)

−
J∈Pj(S̃)

−
L∈P (J)

(−1)|L|
1− exp(−τν)

ν
(G.2)

where the scaling p(j < K < n(S)|m) is readily given from the
cumulative equivalent ofm. Furthermore, if there exists a number
j∗ such that p(j∗ < K |m) = 0, that is, if all probability mass is
assumed K ≤ j∗, the summation over j can be terminated early
by checking that p(j < K ≤ n(S) − 1|m) goes to zero. Hence, for
example, when computing pE for the traditional integer mixture,
due to early termination, the number of terms in the sum of Σ is
exactly the same as hadpE been computedusing the less generalΣ .

Appendix H. Demographics for TVA sample from Norwegian
Cognitive NeuroGenetics (NCNG) sample

All participants read an information sheet and signed a state-
ment of informed consent approved by the Regional Committee for
Medical and Health Research Ethics (South–East Norway) (Project
ID: S-03116). Three hundred and forty seven persons (234 females)
in the age range 19–81 (Mean= 50.4, SD= 17.1) participated. All
participants were recruited by advertisements in a local newspa-
per to take part in a larger community based study on the genetics
of cognition. All subjectswere interviewed and screened for neuro-
logical or psychiatric diseases known to affect the central nervous
system, and history of substance abuse. Any person with a history
of treatment for any of the above was excluded from further par-
ticipation. The participants were administered the Vocabulary and
Matrix reasoning subscales of the Wechsler Abbreviated Scale of
Intelligence (Wechsler, 1999) to estimate general cognitive abil-
ities. Participants included in the study performed within an esti-
mated full scale IQ range of 88–148 (Mean= 120.3, SD= 10.4). The
participants had 14.5 years of education on average (Range= 9–22,
SD= 2.3) and 320 were right handed.

Appendix I. The convolution integral

The convolution integral is evaluated



M. Dyrholm et al. / Journal of Mathematical Psychology 55 (2011) 416–429 427
Fig. J.2. Estimated single-trial VSTM storage capacity density function for the first 12 subjects. The probabilities are estimated via the generalized VSTM storage capacity
model having four degrees of freedom over the traditional VSTM storage capacity model.
Fig. J.3. Estimated threshold for visual perception for 347 subjects. Left: Using
a traditional t0-model. Right: Using a generalized t0-model with trial-by-trial
variability.

I =
∫ t

−∞

[1− exp(−[t − t0]ν)]N(t0|µ0, σ0)dt0

= erfc(d)/2− h× erfc(d+ νσ0/
√
2),

d = −τµ/


2σ 2

0 , τµ = t − µ0 (I.1)
Fig. J.4. Traditional versus generalized estimation of the threshold for visual
perception for 347 subjects. For most subjects the generalized estimate equals
that of the traditional model. The deviations are structured in clusters displayed
vertically just below 10, 20, 50 ms.

where d = (µ0 − t)/

2σ 2

0 . Thus, convolution of 1 − exp(−τν)

yields the substitution rule

1− exp(−τν)← I = erfc(d)/2− h× erfc(d+ νσ0/
√
2). (I.2)
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A B

C D

Fig. J.5. Mean score over the whole-report trials (6 elements in the stimulus display) for a single subject for which the evidence is in favor of both K and t0 generalization.
Observed data are plotted as ‘◦’. Model predictions are shown as ‘∗’ connected with straight lines. (A) The traditional TVA model can be seen to not follow the S-shape of the
observations at the shortest exposures, while the predicted mean score is too high at the longest exposure. (B) The generalized t0 model does a better job of S-shaping at
the rise of the curve. (C) The generalized K model corrects the prediction at the longest exposure. (D) Generalizing both t0 and K yields an S-shape at the shortest exposures
and better prediction at the longest exposure.
Appendix J. Numerical integration by Markov Chain Monte
Carlo method

We use a Markov Chain Monte Carlo (MCMC) procedure for
numerical integration (a good introduction is given in Ruanaidh
& Fitzgerald, 1996). Our procedure is initialized by maximizing
the likelihood, then 1000 MCMC samples are drawn using the
Metropolis–Hastings accept/reject rule (Hastings, 1970; Metropo-
lis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953). For each MCMC
sample, a feasible proposal is generated by rejection-sampling. The
first 500 MCMC samples are discarded to erase the memory of ini-
tialization, the integral is then computed as the average of the re-
maining 500 samples.
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