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mu]ticast; hjgh_speed The demand for network bandwidth is growing much faster than the increase in
. . : . commercially available memory bandwidth, causing a growing interest in

S‘MtCh’ Tetris models, input-queued switches. Furthermore, an increase in the proportion of multicast

schedules traffic in today’s networks makes it important that they support such traffic
efficiently. This paper presents the design of the scheduler foran M x N
input-queued multicast switch. It is assumed that: (i) Each input maintains.a
single queue for arriving multicast cells, and (ii) Only the cell at the head of line
HOL can be observed and scheduled at one time. The scheduler is required to be:
(i) Work-conserving, which means that no output port may be idle as long as
there is an input cell destined to it, and (ii) Fair, which means that no input cell
may be held at HOL for more than a fixed number of cell times. The aim of
our work is to find a work-conserving, fair policy that delivers maximum
throughput and minimizes input queue latency, and yet is simple to implement in
hardware. When a scheduling policy decides which cells to schedule, contention
may require that it leave a {\em residue} of cells to be scheduled in the next
cell time. The selection of where to place the residue uniquely defines the
scheduling policy. Subject to a faimess constraint, it is demonstrated that a
policy which always concentrates the residue on as few inputs as possible
outperforms all other policies. There is a trade-off between concentration of
residue (for high throughput), strictness of faimess (to prevent
starvation), and implementationl simplicity (for the design of {\em high-speed}
switches). By mapping the general multicast switching problem onto a
variation of the popular block-packing game, Tetris, we are able to analyze, in
an intuitive and geometric fashion, various scheduling policies which possess
these attributes in different proportions. We present a novel scheduling
policy, called TATRA, which performs extremely well and is strict in
faimess. We also present a simple weight based algorithm, called WBA, that
is simple to implement in hardware, fair, and performs well when compared to a
concentrating algorithm.

! Department of EE & CS, Stanford University
? Department of Computer Science, Stanford University



.

v

ke




MULTICAST SCHEDULING FOR INPUT-QUEUED

SWITCHES
BALAJI PRABHAKAR Nick McKEoOwN RITESH AHUJA
BRIMS Departments of EE & CS Department of Computer Science
Hewlett-Packard Labs, Bristol. Stanford University. Stanford University.
Email: balaji@hplb.hpl.hp.com Email: nickm@ee.stanford.edu Email: ritesh@cs.stanford.edu
Abstract

The demand for network bandwidth is growing much faster than the increase in
commercially available memory bandwidth, causing a growing interest in input-queued
switches. Furthermore, an increase in the proportion of multicast traffic in today’s net-
works makes it important that they support such traffic efficiently. This paper presents
the design of the scheduler for an MxN input-queued multicast switch. It is assumed
that: (i) Each input maintains a single queue for arriving multicast cells, and (ii) Only
the cell at the head of line (HOL) can be observed and scheduled at one time. The
scheduler is required to be: (i) Work-conserving, which means that no output port may
be idle as long as there is an input cell destined to it, and (ii) Fair, which means that
no input cell may be held at HOL for more than a fixed number of cell times. The aim
of our work is to find a work-conserving, fair policy that delivers maximum throughput
and minimizes input queue latency, and yet is simple to implement in hardware. When
a scheduling policy decides which cells to schedule, contention may require that it leave
a residue of cells to be scheduled in the next cell time. The selection of where to place
the residue uniquely defines the scheduling policy. Subject to a fairness constraint, it
is demonstrated that a policy which always concentrates the residue on as few inputs
as possible outperforms all other policies. There is a tradeoff between concentration of
residue (for high throughput), strictness of fairness (to prevent starvation), and imple-
mentationl simplicity (for the design of high-speed switches). By mapping the general
multicast switching problem onto a variation of the popular block-packing game, Tetris,
we are able to analyze, in an intuitive and geometric fashion, various scheduling policies
which possess these attributes in different proportions. We present a novel scheduling
policy, called TATRA, which performs extremely well and is strict in fairness. We also
present a simple weight based algorithm, called WBA, that is simple to implement in
hardware, fair, and performs well when compared to a concentrating algorithm.

1 Imtroduction

Due to an enourmous growth in the use of Internet and an increasing need for the networking
of computers, the demand for network bandwidth has been growing at a phenomenal rate.
As a result, recent years have witnessed an increasing interest in high-speed, cell-based,
switched networks such as ATM. In order to build such networks, a high performance switch
is required to quickly deliver cells arriving on input links to the desired output links. A
switch consists of three parts: (i) Input queues to buffer cells arriving on input links,
(i) Output queues to buffer the cells going out on output links, and (iii) A switch fabric
to transfer cells from the inputs to the desired outputs. The switch fabric operates under



a scheduling algorithm which arbitrates among cells from different inputs destined to the
same output. A number of approaches have been taken in designing these three parts of a
switch [9, 20, 19, 17, 14, 16], each with its own set of advantages and disadvantages.

The longstanding view has been that input-queued switches are impractical because
of poor performance. It is well known that when FIFO queues are used, the throughput
of an input-queued switch with unicast traffic can be limited to just 58% under relatively
benign conditions due to HOL blocking [4]. When arrivals are correlated, the throughput
can be even lower [5]. So the standard approach has been to abandon input queueing and
instead to use output queueing - by increasing the bandwidth of the fabric, multiple cells
can be forwarded at the same time to the same output, and queued there for transmission
on the output link. However this approach requires that the output-queues and the internal
interconnect have a bandwidth equal to M times (for an MxN switch) the line rate. Since
memory bandwidth is not increasing as fast as the demand for network bandwidth, this
architecture becomes impractical for very high-speed switches. Moreover, numerous papers
have indicated that by using non-FIFO input queues and by using good scheduling policies,
much higher throughputs are possible [9, 10, 11, 12, 13, 14, 16, 17]. Therefore, input-queued
switches are finding a growing interest in the research and development community.

An increasing proportion of traffic on the Internet is multicast, with users distributing
a wide variety of audio and video material. This dramatic change in the use of the Inter-
net has been facilitated by the MBONE [1, 2, 3]. It seems inevitable that the volume of
multicast traffic will continue to grow for some time to come. So, if ATM switches are to
find widespread use in the Internet, either as standalone switches, or as the core of high
performance routers, it is important that they be able to handle multicast traffic efficiently.
A number of different architectures and implementations have been proposed for multicast
switches [6, 7, 8]. However, since we are interested in the design of very high-speed ATM
switches, we restrict our attention to input-queued architectures. This input-queued switch
should schedule multicast cells so as to maximize throughput and minimize latency. It is
also important that it be simple to implement in hardware. For example, a switch running
at a line rate of 2.4Gbps (0C48) must make 6 million scheduling decisions every second.

In this paper we consider the performance of different multicast scheduling policies.
Several researchers have studied the Random scheduling policy [9, 18, 21, 22] in which
each output selects an input at random from among those subscribing to it. But, as may
be expected, we find that the Random scheduling policy is not the optimum policy. We
introduce three new scheduling algorithms; the Concentrate algorithm, TATRA and WBA (a
weight based algorithm). The Concentrate algorithm, we believe, is the multicast scheduling
algorithm that maximizes throughput. It achieves this by concentrating the cells that it
leaves behind on as few inputs as possible. We show by way of simulation that Concentrate
achieves a high thoughput. Unfortunately, Concentrate has two drawbacks that make it
unsuitable for use in an ATM switch; it can starve input queues indefinitely, and is difficult
to implement in hardware. But Concentrate serves as a useful upper-bound on throughput
performance against which we can compare heuristic approximations. We introduce two
heuristic algorithms that compare favorably with the performance of Concentrate, and yet
do not lead to starvation. The first algorithm, TATRA, is motivated by Tetris, the popular
block-packing game. TATRA avoids starvation by using a strict definition of fairness, while
comparing well to the performance of Concentrate. The second algorithm, WBA is designed
to be very simple to implement in hardware, and allows the designer to balance the tradeoff
between fairness and throughput.



The rest of the paper is organized as follows. In Section 2 we introduce the basic model
and define various terms used throughout the paper. After a discussion of the requirements
of an algorithm, Section 3 introduces the heuristic of residue concentration. A proof of
the optimality of residue concentration for a 2xN switch is presented and the heuristic
is further strengthened with the aid of simulation results. In Section 4, we show how
the general MxN multicast problem can be described and analyzed with the aid of Tetris
models. Within this framework, Section 5 describes an efficient and fair scheduler, TATRA.
Some of the attractive salient features of TATRA are explored. A discussion of the tradeoff
between fairness, throughput and implementation simplicity then sets the stage for the
introduction, in Section 6, of the easily implementable WBA. Section 7 presents simulations
comparing the performance of various scheduling algorithms, and finally Section 8 discusses
the relative complexity involved in their hardware implementation.

2 Background

2.1 Assumed Architecture

It is assumed that the switch has M input and N output ports and that each input maintains
a single FIFO queue for arriving multicast cells. The input cells are assumed to contain a
vector indicating which outputs the cell is to be sent to. The assumption of a single FIFO
queue at each input introduces HOL blocking just as in the case of unicast traffic. For
an MxN switch, the destination vector of a multicast cell can be any of 2N — 1 possible
vectors. In order to completely eliminate HOL blocking, maintaining a separate queue for
each possible destination vector at each input is therefore impracticable!. In light of this,
we assume that each input has a single queue and that the scheduler only observes the first
cell in the queue.
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Figure 1: 2x N multicast crossbar switch with single FIFO queue at each input.

As a simple example of our architecture, consider the 2 input and N output switch
shown in Figure 1. Queue Q4 has an input cell destined for outputs {1,2,3,4} and queue
@p has an input cell destined for outputs {3,4,5,6}. The set of outputs to which an input
cell wishes to be copied will be referred to as the fanout of that input cell. In the literature
the term fanout is often also used to denote the cardinality of this set. We adopt this
and, for lack of better terminology, the term fanout will be used throughout this paper to
denote both the constitution and the cardinality of the input vector. For example, in the
figure, the input cell at the head of each queue is said to have a fanout of four. For clarity,
we distinguish an arriving input cell from its corresponding output cells. In the figure, the

1For example, to completely eliminate HOL blocking in a 32 x 32 switch more than 4 billion queues are
required at each input.



single input cell at the head of queue Q4 will generate four output cells.

The input queues are necessary because cells at different inputs may wish to be copied
to the same output port. At the end of each cell time, a scheduling policy decides which
input cells to copy to which output ports. The policy selects a conflict-free match between
input and output ports such that each output receives exactly one cell. Thus, at the end of
every cell time, the scheduling policy discharges some output cells, possibly leaving behind
some residual output cells at the head-of-line (HOL) of the input buffers. For example,
in the situation depicted in Figure 1 the discharge will consist of output cells for outputs
{1,2,3,4,5,6}, and the residue will consist of output cells for outputs {3,4}. Observe that
the decision of which inputs to serve is equivalent to the decision of which inputs not to
serve, making scheduling equivalent to deciding on residue placement. One can therefore
define a scheduling policy in terms of how it elects to place the residue on different inputs.
A scheduling policy may elect to place the residue on both inputs (i.e., it “distributes the
residue”), or it may place the residue on either Q 4 only or on @p only (i.e., it “concentrates
the residue”). It is the purpose of this paper to argue, based on theoretical results and
simulations, that a scheduling policy which always “concentrates the residue” performs
better (improves output utilization, reduces input queue latency, etc.) than one that does
not always concentrate residue.

To reduce implementation complexity, we assume that an input cell must wait in line
until all of the cells ahead of it have gained access to all of the outputs that they have
requested. Perhaps the simplest way to service the input queues is to replicate the input
cell over multiple cell times, generating one output cell per cell time. However, this service
discipline does not take advantage of the multicast properties of the crossbar switch. So
instead, we assume that one input cell can be copied to any number of outputs in a single
cell time for which there is no conflict.

There are two different service disciplines that can be used. Following the description
in [18], the first is no fanout-splitting in which all of the copies of a cell must be sent in the
same cell time. If any of the output cells loses contention for an output port, none of the
output cells are transmitted and the cell must try again in the next cell time. The second
discipline is fanout-splitting, in which output cells may be delivered to output ports over
any number of cell times. Only those output cells that are unsuccessful in one cell time
continue to contend for output ports in the next cell time?.

Because fanout-splitting is work conserving, it enables a higher switch throughput [21]
for little increase in implementation complexity. For example, Figure 2 compares the average
cell latency (via simulations) with and without fanout-splitting of the Random scheduling
policy for an 8x8 switch under uniform loading on all inputs and an average fanout of 4. It
is clear from the figure that the Random policy with no fanout-splitting fares much worse
than the same policy with fanout-splitting.

2.2 Definition of Terms

Here we make precise some of the terminology used throughout the paper. Some terms
have already been loosely defined, but a few new ones are introduced.

It might appear that fanout-splitting is much more difficult to implement than no fanout-splitting.
However this is not the case. In order to support fanout-splitting, we need one extra signal from the
scheduler to inform each input port when a cell at its HOL is completely served.
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Figure 2: Graph of average cell latency as a function of offered load for an 8x 8 switch (with
uniform input traffic and average fanout of 4). The graph compares Random scheduling
policy with and without fanout-splitting.

Definition 1 (Residue): The residue is the set of all output cells that lose contention for
output ports and remain at the HOL of the input queues at the end of each cell time. The
residue at an input port is the set of output cells that originated from this input port and

have lost contention for output ports.

It is important to note that given a set of requests, every work-conserving policy will
leave the same residue. However, it is up to the policy to determine how the residue is

distributed over the inputs.

Definition 2 (Concentrating Policy): A multicast scheduling policy is said to be con-
centrating if, at the end of every cell time, it leaves the residue on the smallest possible

number of input ports.

Definition 3 (Distributing Policy): A multicast scheduling policy is said to be distribut-
ing if, at the end of every cell time, it leaves the residue on the largest possible number of

input ports.

Definition 4 (A Non-concentrating Policy): A multicast scheduling policy is said to
be non-concentrating if it does not always concentrate the residue.

Definition 5 (Fairness Constraint): A multicast scheduling policy is said to be fair if
each input cell is held at the HOL for no more than a fired number of cell times (this
number can be different for different inputs). The fairness constraint ensures that inputs do
not starve, and occassionally we refer to it as a “starvation constraint”.



For an MxN switch, it is not possible for the above bound to be less than M (simply
consider the case where all new cells at HOL contend for the same set of outputs). However,
it is possible that some input cells may be “opportunistically served” in less than M cell
times because they do not contend with other input cells for outputs. In the case of a 2xN
switch, if we require that each input cell be held at HOL for no more than two cell times,
then this definition of fairness means that the residue alternates between the two inputs.

2.3 Requirements of an Algorithm

Before describing the details of various scheduling algorithms, we first look at some require-
ments.

1. Work conservation: The algorithm must be work conserving, which means that no
output port may be idle as long as it can serve some input cell destined to it. This
property is necessary for an algorithm to provide maximum throughput.

2. Fairness: The algorithm must meet the fairness constraint defined above, i.e. it must
not lead to the starvation of any input.

3 The Heuristic of Residue Concentration

In this section, we describe two algorithms - the Concentrate algorithm and the Distribute
algorithm, which represent the two extremes of residue placement. We present an intutive
explanation for why it is best to concentrate residue in order to achieve a high through-
put. Following this, we present a proof of the optimality of residue-concentration for 2xN
switches.

Algorithm: Concentrate. Concentrate always concentrates the residue onto as few in-
puts as possible. This is achieved by performing the following steps at the beginning of
each cell time.

1. Determine the residue.

2. Find the input with the most in common with the residue. If there is a choice of inputs,
select the one with the input cell that has been at the HOL for the shortest time. This
ensures some fairness, though not in the sense of the definition in Section 2.2 (see
remark below).

3. Concentrate as much residue onto this input as possible.

4. Remove the input from further consideration.

5. Repeat steps (2)-(4) until no residue remains.

Remark: Since an input cell can remain at HOL indefinitely, this algorithm does not meet
the fairness constraint. The purpose of this algorithm is to provide us with a basis for
comparing the performance of other algorithms, since it achieves the highest throughput.
This is demonstrated by our simulation results in Section 7.
Algorithm: Distribute. Distribute always distributes the residue onto as many inputs
as possible.
1. Determine the residue. :
2. Find the input with at least one cell but otherwise the least in common with the
residue. If there is a choice of inputs, select the one with the input cell that has been
at the HOL for the shortest time.



3. Place one output cell of residue onto that input.

4. Remove the input from further consideration.

5. Repeat steps (2)-(4) until no inputs remain.

6. If residue remains, consider all the inputs again and start at step (2).

Let us look at an example to see how these two algorithms work. Referring to Figure 1,
consider the options faced by a work-conserving scheduling algorithm at this time (¢,). Note
that whatever decision the algorithm makes, the residue will be the same. The scheduling
algorithm just determines where to place the residue. If at time ¢;, the algorithm concen-
trates the residue on Qp then all of ay’s output cells will be sent and cell a; will be brought
forward at time t5. At time %3, the algorithm selects between as and the residue left over
from ¢;. If, on the other hand, the algorithm distributes the residue over both input queues
at t;, then at ¢y the algorithm can only schedule the residue left over from ¢;. No new cells
can be brought forward.

From the example above, we can make the following intuitive argument: it is more likely
that Concentrate will bring new work forward sooner, thus increasing the diversity of its
choice. This enables more output cells to be scheduled in the following cell time. For the
case of a 2xN switch, the previous argument can be rigorously proved.

3.1 Proof of Optimality for 2xIN Switches

We now present a proof to show that for a 2xN switch a residue concentrating algorithm,
subject to a fairness constraint, outperforms all other fair algorithms. We use the following
class of inputs for comparing scheduling policies.

Definition 6 (Static Input Assumption): Following (23], we make the “static input
assumption” for switches. That 1s, it is assumed that at time 0 an infinity of cells has been
placed in each input buffer according to some (possibly random) configuration.

The next two definitions give a fairness constraint for 2xN switches and a criterion used
to judge the performance of two scheduling policies.

Definition 7 (Fairness Constraint for 2xN Switches): A scheduling policy 7 for a
2% N switch 1is said to be fair if no cell, from either of the two inputs, is held at HOL for
more than one cell time.

Definition 8 (Performance Criterion): A fair scheduling policy ! for a 2x N multicast
switch is said to perform better than another fair policy w2 if every input cell, belonging to
either input, departs no later under 7' than under n2.

Given the conditions stated above, the following result concerning the optimality of
the fair residue concentrating policy for 2xN switches was proved in [23]. For the sake of
completeness, a brief sketch of the proof is included here.

Theorem 1 A scheduling policy for a 2x N multicast switch that always concentrates residue
at every possible instant subject to the fairness condition of Definition 7, performs better
than any other fair policy when subjected to static inputs.
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Figure 3: 2xN multicast crossbar switch. The links show the order in which cells are
released.

Sketch of Proof: At time 0 we are given an infinity of packets in each input queue, placed
according to some configuration. Fix one such configuration and label the cells at inputs 1
and 2 as {a;}i=1,2,.. and {b;};=1,2,.. respectively (Figure 3).

As a consequence of Definition 7, every fair scheduling policy discharges the cell {or
residue) at the HOL of each input buffer alternately. This orders all input cells according to
their departure times as follows: (1) a; <4 b; <gag <g bz --- if a; is the first cell to depart,
and (2) b; <ga; <gby <gap---if by is the first cell to depart. Here a <; b is to be read as
“a departs no later than b”.

Without loss of generality, we assume the first ordering for cells and link them in a
vertical or oblique fashjon as shown in Figure 3. The directions of the arrows on the
links denote where the residue is to be concentrated, should a policy choose to concentrate
residue at some time. The vertical link between a; and b; is labelled I5;_, and the oblique
link between b; and a;4, is labelled la;. The following facts now follow easily.

Fact 1 All scheduling policies work their way through links ly,l9,13,... in that order. In
one cell time, the policies release no links when there is contention between cells at HOL and
residue s distributed, one link when there is contention between cells at HOL and residue is
concentrated, or two links when there is no contention between cells at HOL.

Fact 2 The time at which an input cell is completely served is ezactly equal to the time at
which the link emanating from it is released.

Time

Link #

Figure 4: Time-link graphs of a non-concentrating policy, =, and the concentrating palicy,

™.

In light of Fact 2, Theorem 1 is proved if we show that the fair concentrating policy =*
releases each link ¢ no later than any other fair policy w. To this end, consider the plots



in Figure 4. Each plot is a “time-link graph” showing the time a policy releases a certain
link. Note that in Figure 4 the diagonal line (of slope 1) is the time-link graph of the worst
policy - that is, this policy releases precisely one link per unit time. Similarly, the line of
slope 1/2 is the time-link graph of the best policy - one that always releases 2 links per unit
time (this is only possible if there is no contention at all). Clearly, the time-link graphs of
all policies lie between these two extremes.

Thus, proving Theorem 1 is equivalent to showing that the time-link graph of the residue
concentrating policy n* lies below that of any non-concentrating policy. In other words, it
is sufficient to prove the following assertion.

Assertion 1 The time-link graph of the optimal scheduling policy ©* is never above that of
any other scheduling policy.

A proof of the above assertion (and a complete proof of Theorem 1) may be found in
[23).

4 Tetris Models for M xIN Switches

This section presents a unified approach to the design and analysis of schedulers for an
MxN multicast switch. It is shown that the general multicast scheduling problem can be
mapped onto a variation of the popular block-packing game Tetris. Within this common
framework, one is able to describe and analyze any multicast scheduling policy in an intuitive
and geometric fashion. The presentation in this section follows earlier work presented in
[24] and [25].

Before intuitively motivating the connection between Tetris models and multicast schedul-
ing, we first describe the class of scheduling policies to be considered in this section. The
policies will be required to satisfy the following fairness constraint.

Definition 9 (Fairness Constraint for MxN Switches): A scheduling policy m for a
Mx N switch is said to be fair if no cell, from any input, is held at HOL for more than M
cell times.

The class of policies considered: In addition to requiring that policies be fair and work-
conserving, we also require that they assign departure dates to input cells once the cells
advance to HOL. This departure date (DD) is some number between 1 and M specifying how
long, from the current cell time, the input cell will be held at HOL before being discharged.
Once assigned, the DD of a cell cannot be increased, and is decremented by 1 at the end
of each cell time. Clearly, this class of policies is smaller than the class of fair and work-
conserving policies, since fairness allows one to reassign departure dates to input cells at
HOL (but not beyond M cell times).

We use the “static input assumption” to describe the Tetris models. As will become
clear, this description holds equally well for “dynamic inputs” since scheduling is based only
on cells at HOL and there is no look-ahead.

4.1 Tetris models: a sketch

We map the operation of an MxN multicast switch onto a Tetris-like game in the following
fashion. It is imagined that every input cell is constituted of a number of identical copies



of itself, each of these copies is thought of as an output cell. This allows us to map input
cells onto Tetris blocks, each block will then be an amalgamation of smaller blocks, one
per output cell. Upon assignment of DDs, the input cells at HOL will be dropped into a
compartmentalized box of size MxN - each compartment or slot capable of holding one
output cell. Each of the N columns of the box holds cells destined to a specific output; i.e.,
column j holds cells destined to output 7. Refer to the example of a 5x5 switch shown in
Figure 5. The labels on the cells denote the input port from which the cell has arrived;
all output cells with same label have resulted from the same input cell. The cells in the
bottom-most row of the box in Figure 5 at columns 1, 3 and 5 are all identical copies of a
cell from input 1 destined to outputs 1, 3 and 5 (note that this input cell has a fanout of
3). Similarly, the cell at the HOL of input 2 wishes to access outputs 2, 3, 4 and 5.

Input ports

5] 4

3430314
Jjfdf29s5)2
1f241f2)1
1 2 3 4 5

Qutput ports

Figure 5: An ezample. Cells from inputs 1, 2, 3, 4 are assigned DDs 1, 2, 3, { respectively,
while the cell from input 5 is assigned a DD of 4.

Suppose that, at time n, the switch is to schedule & input cells which have advanced
to HOL; i.e., there have been precisely & departures in the previous cell time. After the
scheduler has assigned DDs to these input cells, they are dropped into the box which
currently holds the cells or residues at the HOL of the other (M - k) inputs®. Each new
output cell may occupy any position in its appropriate output slot as long as (1) it does not
alter the DD of any other cell, and (2) it does not leave any slots beneath it unoccupied.
Again, referring to Figure 5, note that there are no unoccupied slots between cells in any
output column. The reason for this will become clear momentarily.

At the end of time n, all output cells at the bottom-most layer of the box are discharged
and are assumed to be served. For the example in Figure 5, input 1 is completely served
and can advance a new cell to HOL at time 2. Input 2 discharges cells to outputs 2 and 4
and is left with a residue for outputs 3 and 5. Note that the discharge at any time is the
set of output cells in the bottom-most layer and the residue is everything that’s left behind.
It should now be clear that we do not allow unoccupied slots in output columns because of
the restriction to policies which are work-conserving; i.e., these gaps may lead to an idling
of the output in the future.

At the beginning of time n + 1, all residue cells drop down one level and their DDs are
decremented by one. Those inputs which have been completely served in the previous cell

3The order in which the scheduler assigns DDs to the k new cells is important, because if the cells contend
for the same outputs it may not be possible to assign them DDs in parallel. For example, suppose that two
of the new cells have a fanout of 1 and are the only cells contending for a specific output. Then, deciding
who goes first is important since no two cells in an output column can have the same DD. In general, the
order of assignment of DDs can either be pre-fixed or made to depend upon some criterion (e.g., size of
fanout). However, for ease of exposition, we will assume a pre-fixed ordering.

1N



time advance a new cell to the HOL. These cells are assigned DDs, and the cycle continues.

This is reminiscent of Tetris where blocks are dropped into a bin and the aim is to
achieve maximum packing. The main difference here is that whereas Tetris blocks are rigid
and cannot be decomposed, work-conservation will at times require that the various output
cells constituting an input cell depart at different cell times. Note also that there are never
more than M input cells in the boz. Thus when an input cell is dropped into the box, it
is guaranteed to depart within M cell times, since input cells arriving in the future do not
alter its departure date. This automatically ensures fairness.

4.2 Tetris models: the details

‘We now make the description of Tetris models mathematically precise. As mentioned earlier,
if a plurality of cells advance to HOL at the beginning of a cell time, it is important to
determine the order in which they are assigned DDs. In general, it is better to allow this
ordering to depend on the constitution of the current residue and of the new cells. However,
for simplicity, we choose the following fixed ordering: for 7 < j the new cell at input 7 will
be assigned its DD before the new cell at input j. Before proceeding to define a scheduling
algorithm, we make the following definitions.

Definition 10 (Tetris Box): The Tetris box is specified by a matriz T; j,1 <1 < M,1 <
j < N, where the rows are numbered from bottom to top and the columns are numbered
from left to right. Thus Ty is the bottom-left slot of the box and Ty n is the top-right slot.

Definition 11 (Occupancy Set): The occupancy set of the cell or residue at the HOL of
input | at time n is given by Oy(n) = {T;; : an output cell of | resides at T;; at time n.}

Definition 12 (Peak Cell and Departure Date): An output cell belonging to input |
15 said to be a peak cell at ttme n if it occupies a slot in the row whose number is given by
max{i : T;j € Oi(n)}. The corresponding row number is the departure date (DD) of the
input cell at time n.

That is, the peak cell of an input is one which is furthest from the bottom of the box
and the distance from the bottom is its departure date. Note that there may be more than
one peak cell for a given input.

Definition 13 (Scheduling Policy): Given k < M new cells ¢),cs, -, cr at the HOL
of inputs 11 < i3 < --- < iy at time n, a scheduling policy II is given by a sequence of
decisions {n(n),n € Z*}, where n(n) associates to each of c1,c2, " ,ck (in that order) the
corresponding occupancy sets O, (n), Oc,(n),- -+, Oc, (n) subject to the following rules.

1) No cell should change the DD of a cell that is already scheduled. This means that no
peak cells should be raised or lowered.

2) For every i and j, if T;; and Tj42; are occupied, then so is Tiy1j; i.e., there should be
no gaps in the output columns.

Algorithm for II. Given the above definitions, the algorithm for implementing a policy II
just requires a specification for transitioning from one cell time to the next. The following

steps enumerate the procedure.
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a) At the end of time n, all output cells occupying slots in the set {7} ;,1 < 7 < N} are
discharged. In particular, input cells (or residues thereof) with DDs = 1 are completely
served.

b) Each output cell occupying slot T; ; for i and j in theset {2 < i< M,1 <j < N}is
assigned to the slot T;_; ;. The occupancy set, peak cell(s), and the departure dates of the
residue are recomputed. For example, the occupancy set of the residue at input [ is given
by Oi(n+ 1) = {T;; : Tiy1,; € Oi(n)}. From this peak cells and DDs are easily computed.

c) New cells advancing to HOL are then scheduled according to n(n + 1).

4.3 An Example

Consider the example of Figure 5 again. The input cells are scheduled in the order 1, 2,
3, 4 and 5. The occupancy sets, peak cells and departure dates at time 1 are given in the
table below.

Input Port Occupancy Set Peak Cells Departure Date
! O(1) PCi(1) DD(1)
1 {T11,T13,Th 5} O1(1) 1
2 {T12, 723,114, T25} | {T23,Tos} 2
3 {T21,T32,T33, T34} | O3(1) ~ {T21} 3
4 {T22,T43, T35} {Ts3} 4
5 {T42,To4} {Ty2} 4

At the end of cell time 1, input 1 is completely served and advances a new cell to HOL.
Suppose that this new cell wishes to access outputs 1 and 5. Figure 6 shows two different
ways of scheduling the new cell.

[ Input ports I I Input ports l
1 ] 1 1 . ] 1 i i
514 4 514 1
11313131 383138314
3j412f512 11412512
1 2 3 4 5 1 2 3 4 5
Qutput ports QOutput ports

(a) (b)

Figure 6: Two ways of scheduling a new cell at input 1.

5 TATRA: A multicast scheduling algorithm

Motivated by the Tetris models of the previous section, we now describe a specific multicast
scheduling algorithm, TATRA, first introduced in [24] and discuss some of its salient features.

Again we assume that the switch has been idle prior to time 0 and that the “static input
assumption” holds. We denote by IT* = {n*(n),n € Z*} the policy TATRA. Since TATRA
schedules input cells solely based on their DDs, we assume that this number is stamped
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upon all the output cells belonging to a specific input cell (both peak and non-peak cells).
For time n > 1, the algorithm is specified by the following steps.

(1) At the beginning of time n, n*(n) assigns a DD to each new cell at HOL according to
the formula given in Equation 1 below. The order in which the DD is assigned when there
is a plurality of new cells is in increasing order of their input port numbers.

(2) Each new output cell is dropped to the lowest possible level in the appropriate output
slot, without getting ahead of another cell whose DD is less than or equal to its own.
Remark: It follows that a non-peak cell cannot be ahead of a peak cell unless it has the
same DD as the peak cell. If such a non-peak cell exists, we call it a pseudo-peak cell (an
example of a pseudo-peak cell is given below). Corresponding to each output slot, there is
thus a (possibly empty) column of peak/pseudo-peak cells. This column is called the peak
column.

(3) Cells in the bottom-most row are discharged. New DDs are computed for the residue
cells. Time is advanced to n + 1.

Using the terminology introduced in the remark above, and from the constitution of a
new input cell its DD is computed as follows

DD = max{height of peak columns across fanout} + 1 (1)

5.1 An Example

By applying the above algorithm to the example of Figure 5, it is fairly easy to see that
TATRA schedules the cells as shown in Figure 7a below. Assuming that at the end of time
1 the two new cells at inputs 1 and 5 wish to access ouputs {1,5} and {2} respectively,
Figure 7b shows how TATRA schedules them. Observe that in Figure 7b the cell from input
3 at position T ; is a pseudo-peak cell because this cell has a DD equal to 2, which is the
same as the DD of the cell from input 1 at position T} . Therefore, the height of the peak
column corresponding to output 1 in Figure 7b is equal to 2.

I Input ports I I Input ports ]

al4 s
3[3]a]4 afa] [a]
3j2f21292 13§3f13f1
14541151 321212142
1 2 3 4 5 1 2 3 4 5
Qutput ports Output ports
(a ®)

Figure 7: TATRA schedules: (a) the cells of Figure 5, (b) the new cells from inputs 1 and
5 at time 2.

5.2 Properties of TATRA

In this subsection we discuss some desirable properties of TATRA. For brevity, the properties
are stated and only briefly explored.

Property 1: Under TATRA there is guaranteed to be a discharge every cell time. This
is equivalent to the statement that there is a peak cell in every row of the Tetris box.
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To see this, merely observe that (1) under every peak cell there is a column of peak (or
pseudo-peak) cells, and (2) the cell furthest from the bottom of the box must be a peak
cell.

Property 2: Residue Concentration. Suppose that we are given the occupancy sets, O;(n)
and O (n), of two input cells | and m. If T;; € Oi(n) and Tik; € Om(n) for some j
and for some k > 0, then it is impossible that there exists an output j' # j such that
Ty jo € Oi(n) and Ty_gr j» € Omm(n), where k' > 0. That is occupancy sets cannot “criss-
cross”. This follows from the fact that output cells are arranged in output columns according
to a monotonic increase of DDs. The “no criss-crossing” property corresponds to residue
concentration. To see this, note that for the example of Figure 6a, cells from inputs 4 and
5 are criss-crossing each other. At the end of the current cell time, one output cell from
each of inputs 4 and 5 is discharged leaving a residue on both. This distribution of residue
can be prevented by avoiding criss-cross; i.e., by simply swapping the positions of cells from
inputs 4 and 5 in output column 2.

6 WBA

Although it performs well and is simple to describe, there are two disadvantages to TATRA.
First, it is difficult to implement, since the assignment of DDs at inputs requires a collective
effort and this process cannot be parallelized by distributing it over different inputs. Second,
the definition of fairness is both rigid (i.e., no input cell should be held at HOL for more
than M cell times), and uniformly the same for all inputs. Treating all inputs uniformly
does not help when the inputs are non-uniformly loaded or when some inputs request a
higher priority.

These issues motivate us to look for an algorithm that (i) is simple to implement in
hardware, (ii) is fair and achieves a high throughput, and (iii) is able to cope with non-
uniform loading and/or provide different priorities to inputs. A weight based algorithm,
called WBA, is introduced in this section and is shown to meet the above requirements.

Throughput vs Fairness: a discussion

An algorithm that maximizes residue concentration, without regard to fairness, may achieve
a high throughput but it can lead to the starvation of some inputs. For example, in the
Concentrate algorithm, an input requesting all the outputs may wait for ever without being
served. Conversely, if an algorithm aims to be fair, it may not achieve the best possible
residue concentration and therefore sacrifices throughput. For example, TATRA has to
sacrifice some throughput in order to meet its very strict fairness constraint. The more an
algorithm tries to concentrate the residue, the less strict it becomes in terms of fairness.

WBA: The Weight Based Algorithm

The above discussion of the tradeoff between throughput and fairness suggests that, in order
to choose the desired operating point between the two extremes of residue concentration
and strict fairness, an algorithm needs to decide on their relative importance. This leads
us to a simple weight based algorithm, WBA.

This algorithm works by assigning weights to input cells based on their age and fanout
at the beginning of every cell time. Once the weights are assigned, each output chooses



the heaviest input from among those subscribing to it. It is clear that, in the interests of
achieving fairness, a positive weight should be given to age. We claim that to maximize
throughput, fanout should be weighted negatively. To see this, recall that at the end of each
cell time, the output cells in the bottom-most row of the Tetris box are discharged and all
other cells are left behind as residue. To improve residue-concentration we must therefore
ensure that as many input cells as possible can be placed in the bottom-most row at every
cell time. In other words, by discharging more inputs one automatically ensures that the
residue is concentrated on few inputs. Since the bottom-most row can only take N output
cells, to accomodate the maximum number of input cells in this row one must choose those
input cells which have the least fanout. That is, the lower the fanout, the heavier the input
cell.

Algorithm: WBA.

1. At the beginning of every cell time, each input calculates the weight of the new
cell/residue at its HOL based on:
(a) The age of the cell/residue: The older, the heavier.
(b) The fanout of the cell/residue: The larger, the lighter.
2. Each input then submits this weight to all the outputs that the cell/residue at its
HOL wishes to access.
3. Each output grants to the input with the highest weight, independently of other
outputs, ties being broken randomly.

By making a suitable choice of weights based on these two quantities (age and fanout),
one arrives at a compromise between the extremes of pure residue concentration and of
strict fairness. Simple calculations show that if we give weight a to the age of the cell,
and weight (—f) to the fanout, the bound on the time for which a cell has to wait at HOL
is simply (M + £N — 1) cell times. In particular, if we give equal weight to age and to
fanout, no cell waits at the HOL for longer than (M + N —1) cell times. And if the negative
weight of fanout is twice the weight of the age then one increases residue concentration and
decreases fairness, allowing a cell to wait at the HOL upto (M + 2N — 1) cell times.

Many variations of the WBA are possible, allowing one to use other features to assign
weights to cells. For example, one can take into account input queue occupancy while
computing weights, or keep track of the utilization of each output link and use negative
weight to discourage inputs subscribing to heavily loaded outputs. When dealing with non-
uniform loading or when offering different priorities to different inputs, one can use different
formulae to compute weights at different inputs. However, these weights should be within
the proper range to ensure stability.

7 Simulation Results

7.1  Traffic Types

We compare each scheduling policy for two different arrival processes:

Uncorrelated Arrivals: At the beginning of each cell time, a cell arrives at each input
with probability p independently of whether a cell arrived during the previous cell time.
Correlated Arrivals: Cells are generated using a 2-state Markov process which alternates
between BUSY and IDLE states. The process remains in each period for a geometrically
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Figure 8: Graph of average cell latency as a function of offered load for a 2x 8 switch
(Uncorrelated arrivals with an average fanout of 4).

distributed number of cell times. The expected duration of the BUSY state is fixed at 16
cells!. When in this state, cells arrive at the beginning of every cell time and all with the
same set of destinations. No cells arrive during the IDLE state.

For both types of traffic, each arriving multicast cell has a multicast vector that is
uniformly distributed over all possible multicast vectors. However, the destination vector
of all zeroes is not allowed. As a result, for an MxN switch, the average fanout is slightly
larger than N/2.

For comparison, we also plot the performance of the algorithm Random, in which each
output randomly selects one input from among those requesting it. This algorithm is
motivated by the work of Hayes et al. in [18], which is the multicast version of the unicast
algorithm described in {4]. The WBA plots are obtained by using twice the negative weight
for fanout as for the age of the cell at HOL.

7.2 2x8 Switch

Figures 8 and 9 compare the different scheduling policies for a 2x8 switch with uncorrelated
and correlated arrivals, respectively. As predicted by Theorem 1, the Concentrate algorithm
leads to an average cell latency that is much lower than for the Distribute algorithm. Note
that TATRA performs identically to Concentrate, as expected for a 2x8 switch. This is
because, for a 2xN switch, the residue of each input is the same and in every cell time the
scheduling algorithm decides which input to place this residue on. Placing the residue on
the younger cell (one which has been at HOL for the shortest period of time), as is done by

4The choice of an expected duration of 16 cells per burst is arbitrary, but is representative. The same
qualitative results are obtained for different burst lengths.
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(Correlated arrivals with an average fanout of 4).

Concentrate, is same as allowing the older cell to go first, as is done by TATRA. Note also
from the figures that WBA also performs very well, whereas Random performs much worse.

7.3 8x8 Switch

Figures 10 and 11 compare the different scheduling policies for an 8x8 switch with uncorre-
lated and correlated arrivals, respectively. Once again, the Concentrate algorithin leads to
an average cell latency that is lower than that of other algorithms, supporting our argument
that the Concentrate algorithm outperforms other algorithms.

Note that for an 8x8 switch TATRA performs worse than Concentrate. This is because
it does not necessarily concentrate the residue on the minimum number of inputs. WBA
performs a little worse than TATRA for uncorrelated arrivals even though TATRA provides
a stricter bound on the HOL latency. The reason for this relatively poor performance of
WBA is that the outputs make their decision independently, without any communication
with other outputs. So, when two or more inputs have the same weight, different outputs
may grant requests to different inputs, causing a distribution of residue. Therefore, WBA
is not as effective in concentrating the residue as TATRA. If all the outputs were able
to communicate with each other, and make an collective decision, WBA would perform
better than TATRA because it has a less restrictive starvation constraint. However, that
would increase the complexity of the algorithm making it impracticable to implement in
hardware. Thus WBA sacrifices some residue concentration for simplicity. Note that for
correlated arrivals, the performance of WBA is almost indistinguishable from TATRA (see
Figure 11).
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8 Implementation Complexity

Since input-queueing architectures are interesting only at very high bandwidths, it is very
important that the scheduling algorithm for an input-queued switch be simple enough to
implement in hardware. Here, we compare the implementation complexity of the various
scheduling algorithms we have considered.

8.1 Concentrate

Even though the Concentrate algorithm provides the best throughput performance, it is not
a practicable algorithm. First of all, it violates our starvation contraint; and in every cell
time, the algorithm requires M iterations in the worst case, leaving a part of the residue on
one cell in each iteration. Because of its O(M) complexity this algorithm is very difficult
to implement at high speeds.

8.2 TATRA

The TATRA algorithm is simpler to implement than the Concentrate algorithm, but still
has a time complexity O(M). To understand why this is so, consider a newly arriving
input cell. Scheduling the cell is equivalent to determining the position of its peak cell(s),
and its non-peak cells. If only one input cell is scheduled per cell time, the scheduling
decision can be broken down into two stages: (1) peak cells are scheduled by examining
the current profile (that is, their DDs are determined), and (2) non-peak cells can then be
scheduled independently by each output. Unfortunately, up to M new input cells may need
to be scheduled in a cell time. The positions of their non-peak cells are dependent on the
non-peak cells at other outputs. This results in an algorithm of complexity O(M)3.

8.3 WBA

This algorithm can be divided into two main parts: (1) Every input computes its weight,
with which it will request each of the outputs in its destination vector, and (2) Every output
chooses the input making request with the highest weight. Since the weight computation of
an input does not depend on the weight of any other input, this part can be done separately
at each input in parallel. Similarly, each output just chooses the input with the highest
weight independently, and this part of the algorithm can be performed in parallel at each
output. Hence the complexity of WBA is O(1). Not only is WBA well suited for parallel
implementation, the logic required at each input (for part 1), and each output (for part 2)
is relatively simple. An input just needs to subtract the fanout of the cell at HOL from
its age, in order to compute its weight (Figure 12), and an output just needs a magnitude
comparator (an M input magnitude comparator) to find the input with the highest weight
(Figure 13). A WBA scheduler for an NxN switch can be constructed by using N input
blocks and N output blocks as shown in Figure 14.

SHowever, we have an approzimation to TATRA, in which the input cells can be dropped in parallel,
leading to O(1) complexity.
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Figure 14: Connecting N input blocks and N output blocks to form an Nx N WBA scheduler.

9 Conclusion

The increase in demand for network bandwidth creates a need for high-speed input-queued
multicast switches. To help the designer of such switches, we have studied multicast schedul-
ing policies. Our work leads to an understanding of the maximum achievable throughput
for multicast switches, and introduces high-performance algorithms that are simple to im-
plement in hardware.

In particular, we have observed that when designing a multicast scheduler, it is impor-
tant to determine the placement of residue. This lead to the development of the following
“residue-concentration heuristic”: To achieve a high throughput, a scheduler should al-
ways concentrate the residue onto as few inputs as possible. The heuristic was supported
by simulations and, for 2xN switches, a proof established the optimality of the residue-
concentrating policy. However, concentrating residue at all times can be unfair and lead
to the starvation of some inputs. We therefore concluded that designing a simple, fast
and efficient multicast scheduler is an exercise in balancing the conflicting requirements of
throughput maximization, ensuring fairness, and implementational simplicity.

We then imposed a fairness constraint on our scheduling policies and used Tetris models
to study the general MxN multicast scheduling problem. This led to the development of
a fair and efficient scheduling policy — TATRA, and some salient features of TATRA were
explored. Though fair and efficient (in terms of high throughput and low latency), TATRA
was found to be implementationally complex. To remedy this, we developed and studied
a weight based algorithm called WBA which is easily implemented in hardware, ensures
fairness and achieves good throughput.
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