
Preprint 

 

Information­Based Adaptive Fast­Forward for Visual Surveillance 
 

Benjamin Höferlin, Markus Höferlin, Daniel Weiskopf, and Gunther Heidemann 

In Multimedia Tools and Applications (2010), 1‐24, Springer Netherlands. 
 

DOI: http://dx.doi.org/10.1007/s11042‐010‐0606‐z 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
General Copyright Notice 

The documents distributed by this server have been provided by the contributing authors as a means to ensure 
timely dissemination of scholarly and technical work on a non‐commercial basis. Copyright and all rights 
therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered 
their works here electronically. It is understood that all persons copying this information will adhere to the 
terms and constraints invoked by each author's copyright. These works may not be reposted without the 
explicit permission of the copyright holder. 

 
This is the author’s personal copy of the final, accepted version of the paper, which slightly differs from the 
version published in Multimedia Tools and Applications by Springer. The final publication is available at 
www.springerlink.com. 
 

 

Copyright © Springer. 

http://dx.doi.org/10.1007/s11042-010-0606-z
http://www.springerlink.com/


Noname manuscript No.
(will be inserted by the editor)

Information-Based Adaptive Fast-Forward for Visual
Surveillance

Benjamin Höferlin · Markus Höferlin ·
Daniel Weiskopf · Gunther Heidemann

Received: date / Accepted: date

Abstract Automated video analysis lacks reliability when searching for unknown

events in video data. The practical approach is to watch all the recorded video data,

if applicable in fast-forward mode. In this paper we present a method to adapt the

playback velocity of the video to the temporal information density, so that the users

can explore the video under controlled cognitive load. The proposed approach can cope

with static changes and is robust to video noise. First, we formulate temporal informa-

tion as symmetrized Rényi divergence, deriving this measure from signal coding theory.

Further, we discuss the animated visualization of accelerated video sequences and pro-

pose a physiologically motivated blending approach to cope with arbitrary playback

velocities. Finally, we compare the proposed method with the current approaches in

this field by experiments and a qualitative user study, and show its advantages over

motion-based measures.

Keywords Information Theory · Adaptive Fast-Forward · Video Browsing · Video

Summarization · Visual Surveillance

1 Introduction

A recent challenge in video surveillance is the efficient analysis and browsing of recorded

video footage. Often the automatic analysis of the video data is not possible due to

missing assumptions and constraints to the search problem. An example of such an

ill-posed problem is the video analysis mini challenge of the IEEE VAST Challenge

20091. In this case ten hours of video surveillance footage were provided. The task was
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Markus Höferlin · Daniel Weiskopf
VISUS, Universität Stuttgart, Stuttgart, Germany

1 IEEE Symposium on Visual Analytics Science and Technology 2009 challenge,
http://hcil.cs.umd.edu/localphp/hcil/vast/index.php



2

Fig. 1 Difference between traditional cue-play (top) and adaptive fast-forward (bottom).
Both sequences are scaled to half the duration of the input sequence (mid). Fast-forward play
based on information theory emphasizes the parts of the sequence with high activity while the
conventional approach samples the sequence at a constant rate.

to search for suspicious events with the hint that one or more encounters of persons

involved in a criminal case took place at locations captured by the camera. Such a

problem is very hard to solve in an automatic manner, since the detection of suspicious

meetings by several persons is a task that requires analyzing the behavior and intent

of the persons. If even less information is provided (i.e. constraints/assumptions to the

problem), the issue will be increased further. Actually, there is no applicable solution to

such a problem, other than watching and browsing the video data manually. However,

this is annoying due to the often overwhelming amount of data and largely monotonous

sequences with short moments of activity. Finally, the problem may lead to a reduced

willingness of manually analyzing the sequences2. Hence, the recorded surveillance data

is often monitored in cue-play mode to reduce the time requirement. Here, the problem

arises that the playback speed is either low in scenes with little changes or too high

so that in periods with much activity important events might be missed. Finally, the

users are kept busy by manually rewinding and adapting the video playback speed.

In this paper, we propose a novel adaptive video fast-forward technique that cov-

ers the issues mentioned above. Our approach is to adapt the playback speed of the

video relative to the temporal information communicated to the viewers. This approach

could be deemed an animated video summarization enabling the users to adjust the

information load according to their personal abilities. For this reason, we accelerate the

video playback during periods of little temporal information, and decelerate it when

there are many changes. The resulting playback speeds do not necessarily relate to the

semantic relevance (e.g., suspicious event) of the surveillance video data but rather

support the visual analysis, by conveying a constant amount of information to the

users. The qualitative user study in Section 6.3 evaluates how strong the amount of

information correlates with the semantic relevance.

Note that in this paper we restrict the term “visual surveillance” not solely to

video data originating from CCTV cameras, but also consider sequences that come

from related domains like scientific video sequences, biological surveillance (e.g., ani-

mal studies), or digital life streams (e.g., webcams). These domains have to deal with

ill-posed search targets and therefore involve the user in the analysis (user in-the-loop).

2 “1,000 CCTV cameras to solve just one crime, Met Police admits”, 08/25/2009,
www.telegraph.co.uk/news/uknews/crime/6082530/1000-CCTV-cameras-to-solve-just-
one-crime-Met-Police-admits.html
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Applications that support such an analysis process have to cope with the typical is-

sues arising from imaging and storage limitations. These issues include sensor noise,

encoding noise, and time-lapse data. Additionally, surveillance video data offers some

properties that can be exploited by an analysis approach. On the one hand, the video

data is not artificially manipulated by the introduction of shot and scene changes or

transitions like cuts, cross-fades, and dissolves. On the other hand, frequent changes be-

tween periods of high and low activity are common, whereas the camera rarely moves.

Additionally, audio tracks are in general not recorded, hence issues such as how to

handle them when changing the playback speed do not arise. This makes adaptive

video fast-forward a suitable approach to support the user-centered video analysis.

In contrast to surveillance video sequences, common movies or TV broadcasts do not

usually meet these criteria, since they are largely edited to appropriately condense the

content, for example for the narration of a story. Hence, watching such video data in

fast-forward mode is uncommon, and neither suitable nor intended by the author of

the material, even if it is possible.

Our first contribution is the formulation of the temporal information of a video

sequence as symmetrized Rényi divergence between the temporal noise distribution

and the frame difference distribution. Thus, the proposed approach is able to handle

static changes and video noise. Therefore, the playback speed is adapted correctly even

in cases of video footage with poor temporal resolution or large video noise, where

other approaches become incorrect. By deriving the temporal information from Rényi

divergence we are able to provide an additional parameter to the user that steers the in-

formation measure by emphasizing certain parts of the distribution ratios. As a second

contribution, we adapt the playback duration of every frame and visualize it according

to the human visual system. This way, we meet the requirement of visual surveillance

that relevant information must not be discarded. Since the proposed technique is com-

putationally cheap, real-time calculation can be achieved. Hence, we are independent

of the choice of video compression contrary to other approaches.

The remainder of this paper is organized as follows. First a brief overview of related

approaches is provided. In Section 3, we derive the temporal information of a video

sequence as symmetric relative entropy between the noise distribution and the frame

difference distribution based on Rényi’s entropy measure. In Section 4, we discuss how

the temporal noise distribution can be estimated. According to the temporal informa-

tion measure of a video sequence, an appropriate method for fast-forward visualization

of surveillance videos is proposed in Section 5. Finally, we evaluate our method in Sec-

tion 6 and compare the results to other adaptive fast-forward measures. This section

also provides a qualitative user study by means of expert interviews to investigate the

applicability of playback speed adaption in video surveillance.

2 Previous Work

Three different classes of approaches are known from the literature to facilitate the fast

analysis of unconstraint video data: video abstraction, video browsing, and adaptive

video fast-forward.

Video abstraction techniques aim at the creation of short and meaningful video

summaries. These methods can be further distinguished by the form of output they

generate: still image abstraction techniques provide images while video skimming meth-

ods produce summarized sequences of shorter duration than the input video. Common
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to video skimming techniques is the selection of important temporal parts, while the

others are skipped. Often the selected parts are further condensed [28]. Such abstrac-

tion techniques cannot guarantee that suspicious events are always detectable. Video

abstraction methods that retain all important information rearrange spatio-temporal

parts of the sequence temporally [23,19,20] or spatio-temporally [10] to condense the

information and decrease the video duration. Hence, several events are displayed at

once, even if they occur at different times. This complicates the identification of the

chronological context, which is important for surveillance applications.

Video browsing techniques ease fast video exploration by enabling the user to seek

for distinct events. Almost every video player contains video browsing controls. For

example, the common seek bar in the Windows Media Player allows the user to drag

the current time marker to explore the video. Such standard controls can also be

adopted to improve video navigation. In the case of seek bars, possible enhancements

include the twist lens [22] or navigation summaries [25].

Adaptive video fast-forward techniques accelerate the playback speed of the video

somehow related to the content. In contrast, the conventional video fast-forward tech-

nique just plays the video sequence multiple times faster than normal. In Figure 1, an

exemplary comparison is depicted between traditional cue-play and information-based

adaptive fast-forward.

Peker et al. proposed an adaptive video fast-forward technique that adapts the

playback speed of the video sequence relative to the present motion [16] and the visual

complexity [15] (as combination of the spatial complexity and the motion) of the scene.

The idea is to watch the video at a constant pace. Another method by Petrovic et al.

[17] is to adapt the playback speed with respect to a similarity measure between the

video footage and a provided target clip. Cheng et al. [3] designed an adaptive video

player called SmartPlayer which adjusts the playback speed according to three factors:

motion, manually defined semantic rules, and former playback preferences of the user.

If we take a closer look at the requirements of surveillance applications, it becomes

obvious that surveillance systems have to enable the detection of suspicious events.

Since the system does not know what to search for, it is not possible to adapt the play-

back speed according to the similarity to target clips [17] or previous user preferences

[3]. Manually defined semantic rules and temporal regions of interest [3] are also only

feasible if interesting events have already been detected. These adaptive fast-forward

schemes were proposed for other domains than visual surveillance.

So far, the adaption of the playback speed according to the motion magnitude best

meets the needs of visual surveillance. Nevertheless, the use of motion features cannot

satisfy all needs of surveillance applications. For example, motion features do not cover

static changes like blinking lights. A big problem is that CCTV is often recorded at low

frame rates. Gill and Spriggs report [7] that 9 of 13 evaluated control rooms capture

their video footage with less than 1.5 fps. Two of the control rooms even have a frame

rate of 0.2 to 0.33 fps (that is one frame every 3 to 5 seconds). These frame rates

inhibit the calculation of reliable motion features and lead to static changes between

frames. Static changes are scene changes that are uncorrelated with any motion and

often cause change blindness (cf. Section 5). Another issue arises with temporal noise

in video sequences, which occurs especially in badly illuminated scenes or due to video

coding artifacts. The video noise induces wrong motion vectors and thus reduces the

reliability of such a measure.
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3 Temporal Information of Videos

The goal of our approach is to adapt the playback speed to the temporal information

of a video. Therefore, we need an appropriate measure for the temporal information

provided by video data. To meet the users’ expectation we demand the information

measure to correlate with the magnitude of changes, but to be independent of the

level of noise. Additionally, we want to enable the users to control the measure by

emphasizing the type of change they are interested in, for example to accentuate strong

changes. In this section, we develop such a measure based on Shannon’s information

theory.

We start with a näıve approach, considering the video data as pure signal containing

only relevant changes. Therefore, we regard the sum of changed pixels or the absolute

luminance change as indicator of this kind of temporal “information”. Obviously, this

approach is inappropriate, since it violates our inherent sense of an information mea-

sure. For example, a continuously increasing scene illumination would result in high

temporal information measures, even if the structural content of the scene remains un-

changed. In contrast, small moving objects would be almost disregarded due to noise in

the video. This näıve approach is quite related to background subtraction or foreground

segmentation, which additionally try to suppress undesired effects (e.g., detection of

shadows, noise, variations in illumination, or periodic changes) by the introduction of

a background model.

Adopting Shannon’s information theory, we could use the inverse mutual infor-

mation measure to compare the common information of two frames F1 and F2. This

measure is based on the discrete luminance distribution Fhist1 , Fhist2 of the frames

and their probabilities p(f1), p(f2), as well as on the joint probability p(f1, f2). Mu-

tual information [4] expresses the interdependence between the normalized luminance

distributions of two frames:

I(F1;F2) =
∑

f1∈Fhist
1

∑
f2∈Fhist

2

p(f1, f2) log2

(
p(f1, f2)

p(f1)p(f2)

)
(1)

If the two luminance distributions are independent, I(F1;F2) reaches its lower bound

and thus this information measure between both frames is unlimited. This measure

for the temporal information of a video sequence empowers us to adapt the playback

speed according to the inverse mutual information coefficient. It has to be noticed

that mutual information provides a foundation for the term “information” from the

perspective of signal coding theory rather than human recognition.

Unfortunately, the assumption that subsequent frames remain constant (i.e. |F1 −
F2| = 0) in a scene where no changes appear does not hold for real video data, since

the sensor as well as the encoding process introduce noise to the signal. To cope with

these effects, we model video data as additive combination of the signal S carrying the

actual information and the temporal noise N . Then, the absolute frame difference is:

D = |F1 − F2| = |∆S +∆N | (2)

For the sake of simplicity we assume that suitable noise estimation is provided. In

Section 4, we discuss approaches to temporal noise estimation. For now we assume the

noise to be independent and identically-distributed in time and space. In Section 4, we

will also see that for some video sequences these assumptions are not tenable and more

powerful models are needed.
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The signal change and hence the temporal information provided by the video data

can be considered as the dissimilarity of the estimated noise distribution and the dis-

tribution of the absolute frame difference D (cf. 2). We normalize both distributions

to 1 to receive probability density functions.

An appropriate measure to compare both probability distributions is the Kullback-

Leibler (KL) divergence [12], also known as relative entropy:

DKL(D||N) =
∑
i

p(di) log2

(
p(di)

p(ni)

)
(3)

Based on Shannon entropy, the KL divergence can be interpreted as the expected addi-

tional binary message length that is required if the discrete difference image distribution

p(d) is encoded using the alphabet of the estimated noise probability distribution p(n).

The index i denotes a particular bin of the distribution histogram.

The KL divergence is related to the calculation of the sum of self-information of

the temporal change distribution p(d) if the probabilities of the noise distribution p(n)

are used. With the self-information formulated in Equation 4, Equation 5 illustrates

this relationship using the cross-entropy H(D,N) as an intermediate step.

I(p(x)) = log2

(
1

p(x)

)
(4)

∑
i

I(p(ni)
p(di)) =

∑
i

log2

(
1

p(ni)p(di)

)
= −

∑
i

p(di) log2(p(ni)) = H(D,N)

= DKL(D||N) +H(D)

(5)

It becomes obvious that the sum of self-information and the KL divergence behave

very similarly, except for the additional entropy term H(D).

Now we can cope with temporal noise in video sequences. To give the user additional

control over the accentuation of this information measure, we enhance this measure by

using a generalization of the KL divergence proposed by Rényi [24] for generalized

probability density functions. He defines the relative entropy Dα (or information gain,

α-divergence) of order α for α > 0 and α 6= 1:

Dα(D||N) =
1

α− 1
log2

(∑
i

p(di)
α

p(ni)α−1

)
(6)

As α approaches 1, the limit of Dα is the KL divergence (Equation 3). The α-divergence

takes on its minimum value Dα(D||N) = 0 if and only if p(d) is equal to the temporal

noise distribution p(n). Rényi describes the measure Dα as “the information of order

α obtained if the distribution of N is replaced by the distribution of D.”

The α-divergence provides an additional parameter α that allows to place emphasis

on certain parts of the distribution relation. Large values for α amplify high probability

ratios, while the α-divergence tends to treat all probability ratios in an equal manner

for α approaching zero. By letting the users choose the α parameter we enable them to

place emphasis on distributions according to their interest and application (e.g., Hero et

al. proposes the Hellinger affinity distance (α = 0.5) for classification tasks of a hardly

discriminable set [8]). Thus, they are not only able to define the information gain (i.e.
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Fig. 2 Terms of Rényi divergence
(α-divergence) between the noise
distribution and absolute frame
difference distribution. The first
two bins as well as the last 200 bins
were omitted.

the information throughput) for steering the playback speed, but they may also adapt

the acceleration accentuating the higher probability density ratios, for example. The

Rényi divergences for certain α parameters are strongly related to other divergences,

see [1,2] for details. The effect of the α parameter in our approach is empirically

evaluated in Section 6. The behavior of the Rényi divergence of an estimated noise

distribution and the absolute frame difference distribution is illustrated in Figure 2.

For an appropriate presentation, parts of the probability density functions are omitted.

In the case of strong noise, the noise distribution may dominate over the absolute

frame difference distribution. This results in low values for the α-divergence, even

when large image changes are present. Hence, playback acceleration performs contrary

to the expected behavior. This issue can be tackled by symmetrizing the α-divergence

according to the Jensen-Shannon divergence with equal weights. It can be defined for

the α-divergence as

D̂α(D||N) =
1

2
Dα(D||M) +

1

2
Dα(N ||M) (7)

with M = 1
2 (D +N). Properties of the Jensen-Shannon divergence and its relation to

other measures can be found in the work of Lin [13]. In the remainder of this paper, we

use the symmetrized α-divergence D̂α(D||N) for all cases independent of the signal-

to-noise ratio.

Please note that α-entropy measure was previously used for image matching or

image registration (e.g., [14]). In contrast to these approaches, we do not operate on

two images (or successive frames of a video), but use α-divergence measure to quantify

the information between noise distribution and luminance distribution of difference

images. If we would just use α-divergence on successive frames, changes in the image

that do not affect luminance distribution would be disregarded (e.g., a moving object

in front of homogeneous background).

4 Temporal Noise Estimation

For the estimation of the temporal noise in video sequences, we rely on techniques

known from the literature, since noise estimation is not the focus of this paper. For

more background information and more sophisticated approaches, we refer to recent

noise estimation and noise reduction literature (e.g., [27,6]).
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Assuming additive temporal noise that is independent and identically-distributed in

time and space, we can estimate the noise distribution as luminance differences in static

areas. If the video sequence includes temporal parts without any moving objects, these

parts can be used to derive the motion distribution. In some cases, there are special

calibration or training sequences that are suitable for noise estimation. In the absence

of such sequences or static periods, it is possible to extract the noise distribution out

of smaller areas that do not change during some frames. This introduces the need for

motion detection. For the evaluation of the proposed information-adapted video fast-

forward, motion estimation based on the global differential Horn-Schunck method [9]

is applied. For sequences with a high noise ratio, we use the mentioned fall-back to

noise estimation on static temporal parts.

We average the estimated distribution over several frames to cope with errors that

originate from pixel saturation and lighting conditions of the scene. Finally, the es-

timated noise distribution is normalized to 1, to obtain a proper probability density

function.

Noise in video sequences is most commonly Gaussian distributed [6]. This means

that large luminance distances are less likely to be covered by our estimation process

since we consider only a small number of estimation samples. Although the absolute

error is very small, the effect on the information measure is severe. If we consider for

example the relative entropy divergence (cf. Equation 3) from a signal coding or commu-

nication theoretical point of view, we might try to encode an arbitrary frame difference

distribution by the estimated noise distribution whose “alphabet” lacks some “char-

acters”. Hence, the information divergence approaches infinity, since receiving such a

message is unexpected. We handle this issue by adding a small offset to the estimated

noise distribution. A more sophisticated approach is to estimate the parameters of the

underlying noise distribution for the restoration of the missing values.

To cope with noise stemming from coding artifacts, we also have to consider noise

that varies periodically over time. We expect only a small number of different noise

distributions caused by coding schemes for distinct frame types (I-frame, P-frame, B-

frame) or by the re-encoding of a video sequence. Punchihewa and Bailey provide

an overview [21] on the different noise types and their origin in video processing.

Based on the estimated noise distributions of several frames, we calculate a couple of

noise probability functions. These are retrieved as the cluster centroids after k-means

clustering is applied. Finally, the information gain ∆I we use to adopt the playback

speed is obtained as the minimum information measure between the absolute frame

difference distribution and the i noise distribution estimations:

∆I = min
i

(
D̂α(D||Ni)

)
(8)

5 Fast-Forward Visualization

Our adaptive fast-forward approach necessitates the possibility to play the video faster,

but the frame rate cannot be increased arbitrarily. Reasons are hardware constraints

like the refresh rate of the monitor. Liquid crystal displays typically have a refresh

rate of approximately 60 Hz. The maximum frame rate is therefore limited. Typical

video fast-forward visualization discards frames to boost the playback speed. Instead

of presenting every frame for a shorter duration, the requested frame rate is reached
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by displaying every n-th frame. In the context of visual surveillance, this is unsuitable

since important events may be skipped.

Another issue for fast-forward visualization for visual surveillance is indicated by

Scott-Brown and Cronin [26]. They describe change blindness, which occurs from in-

terruptions in consequence of discarded frames. Change blindness is the surprising

inability to detect large changes due to short visual interruptions. Examples are the

inability to recognize the disappearance of buildings or the movement of large objects

for a long period of time if motion in the video is interrupted. They additionally report

that such interruptions are omnipresent in the context of CCTV footage, due to low

frame rates. Discarding frames will cause interruptions of motion and finally induces

change blindness.

To overcome this problem, we provide a visualization that does not skip any frames.

We blend frames according to the information they convey. The blended frames can

be regarded as images taken by a virtual camera with varying exposure time. All

information over a small period is combined into a single image. In contrast to a

real-world camera, we preserve constant luminance and support non-uniform weights

of the original frames. We weight the original frames by their significance (i.e. the

information gain) calculated by the proposed approach. For slow motion scenes, we

limit the playback speed — this as well as the blending approach aids in tracking

motion.

The effect of the proposed fast-forward visualization is similar to the image inte-

gration of the human eye when playing the video at higher speed. The human visual

system requires an appropriate integration time to distinguish between temporally sep-

arated light flashes [11]. The integration time depends on several conditions like the

luminance of the stimulus, contrast, spectral composition, the area of the retina stimu-

lated, and the retinal position. The integration time varies between 10 ms and 100 ms

(i.e. 100 – 10 Hz). Depending on these physiological constraints, the eye is integrating

the light stimuli for different durations. We adapted the visualization to do the same:

we only present the original frames as long as the hardware constraints do not limit

the intended frame rate (i.e. 60 fps for LCD). In this case, the human visual system

integrates the single frames on its own. Beyond this limit, we integrate the light stimuli

similar as the human eye by blending the original frames according to their information

gain.

We need to consider that recorded video footage is typically gamma-encoded. The

original reason for the gamma correction is the non-linearity of CRT monitors: if we

double the voltage of the signal sent to the display device, the radiometric (physical)

brightness does not double. To address this problem, most of the video and image

capture devices internally gamma encode the signal. The linearly scaled chromatic-

ity stimuli (linear RGB) are non-linearly transformed to sRGB. If those non-linear

values are now presented to the user on a CRT monitor, the intrinsic gamma de-

coding characteristic automatically re-transforms the signal to linear RGB (cf. Fig-

ure 3(b)). For this purpose, a gamma pre-correction is included in other display devices

like LCDs. In the simplest case, the gamma-corrected (R′, G′, B′) are calculated by

(R′, G′, B′) = (Rγ , Gγ , Bγ). Images are typically encoded by the camera with γ = 1
2.2

and decoded by the display device with γ = 2.2. A similar argument can be made for

other color systems like YIQ or YUV, known from video systems. For more background

information on gamma correction and color systems, we refer to [18,5].

Originally, the observed scene is not changed by an imaging–displaying process as

depicted in Figure 3(a). To achieve physiologically correct integration we blend the
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(a) (b)

(c)

Fig. 3 (a) Visual stimuli arrive at the eye unchanged. (b) Videos and images captured by
a camera are gamma-encoded. The monitor reverses the non-linear transformation (gamma
decoding). (c) Artificial integration of visual stimuli according to the human vision system.
Before blending, the image is transformed to linear RGB and finally gamma-encoded again.

frames in linear RGB space. Therefore, the input frames (which are already gamma-

encoded) are firstly gamma-decoded back to linear RGB. Now correct blending is pos-

sible. After this step, the resulting images are gamma-encoded again (cf. Figure 3(c)).

Pixels in linear RGB are blended according to:

pout(x,y) =
∑
i

wi · pin(x,y),i (9)

A pixel of the blended frame (output frame, still in linear RGB) is represented by

pout(x,y); p
in
(x,y),i denotes a pixel of an input frame, (x, y) is the position of the pixel and

wi is the weight factor. The index i refers to an input frame and its weight within the

bounds of the first and the last input frame considered for the blended image.

The weights wi are calculated by dividing the display time ti by the output frame

duration tout:

wi =
ti
tout

(10)

Time ti is the duration a frame should be displayed with respect to the information it

conveys.

The number of frames blended into a single frame depends on their weights. The

sum of the weights for each output frame should be 1 to preserve the luminance.

If
∑
i=j..k wi > 1 and

∑
i=j..k−1 wi < 1, then weight wk will be split and image k

will be considered for two (or even more) output frames. Hence, the weight of frame k

for the first output frame is w∗k = 1−
∑
i=j..k−1 wi. For the second output frame input

frame k will be considered according to weight w′k = wk − w∗k. A blending example is

shown in Figure 4.



11

 5 ms 5 ms 40 ms 5 ms 5 ms
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5/30 = 1/6 1/6 4/6 4/6 1/6 1/6

Input Frames

Output Frames

Fig. 4 Blending of frames in re-
gard to their conveyed informa-
tion: In the upper row, the in-
put frames (3x3 pixel each, al-
ready gamma decoded) are dis-
played. The time each frame has
to be shown is noted below. It de-
pends on the information gain of
the frame. The input pixel val-
ues are weighted by the fraction of
the display time depending on the
information gain and the output
frame rate. The 3rd original frame
is split and affects both blended
frames.

6 Results and Discussion

The method proposed in this paper formulates the information gain ∆I as symmetric

Rényi divergence of the absolute frame difference and a previously known (or estimated)

noise distribution. Thus we derive the term “temporal information” from signal coding

theory. The information gain is further used to adapt the playback speed of the video

sequence to the amount of information communicated. Please note that information

based adaptive video fast-forward is not capable of pointing out relevant events on its

own, but more generally enables the user to keep track of the things going on in the

video.

In this section, we evaluate the properties and the performance of the proposed

approach. To illustrate the strengths and weaknesses of information-adapted video

fast-forward for visual surveillance we will first evaluate the proposed technique using

3 different video sequences, then summarize the theoretical aspects of this method,

and finally compare the applicability of different fast-forward techniques to the task of

video surveillance conducting a qualitative user study. For a visual impression of the

results we provide comparative evaluation sequences on our website3 (a quick overview

is provided in Table 1).

6.1 Evaluation of Playback-Speed Adaption

The first of the three sequences used for evaluation is provided by the video analysis

mini challenge of the IEEE VAST 2009 challenge, referred to as VAST Sequence. This

sequence is captured by a surveillance camera that periodically pans to four differ-

ent locations. Additionally, the material was re-encoded and, thus, includes common

coding artifacts (blocking, etc.), temporal shifts, and interlacing artifacts. Both other

sequences are gathered from the i-LIDS multi-camera tracking scenario4. These se-

quences were collected by surveillance cameras on an airport. Both sequences were

captured and encoded with high quality settings, i.e. large spatial and temporal res-

olution and high bitrates. While we use the first airport video as it is, the second

3 www.vis.uni-stuttgart.de/~hoeferbn/AdaptiveFastForward/index.html
4 Imagery library for intelligent detection systems (i-LIDS). http://scienceandresearch.

homeoffice.gov.uk/hosdb/cctv-imaging-technology/video-based-detection-systems/
i-lids/ilids-datasets-pricing/545840
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Table 1 Overview of the examples provided on the website including their relation to the
experiments of Section 6.1.

Name Methods compared Relation to experiments

Example 1
Comparison to
constant
fast-forward

Fast-forward at constant speed
(no blending – discard frames)

Figure 6 shows acceleration
profiles of various approaches
on a part of the sequence
used in this example.

Information-based adaption
(biologically corrected blending)

Example 2
Performance
comparison
under noise

Motion-based adaption
(biologically corrected blending)

Example illustrates some
results of the experiment
depicted by Figure 7.Information-based adaption

(biologically corrected blending)
Example 3
Comparison of
visualization
techniques

Information-based adaption
(biologically corrected blending)

This example provides visual
impression of different
fast-forward visualization
techniques.

Information-based adaption
(no blending – discard frames)

airport sequence is degraded by adding Gaussian noise (50% normal distributed lumi-

nance changes). This was done to show the effects of different adaptive fast-forward

techniques to videos with a high amount of noise. We call these sequences the Airport

Sequence and the Noisy Airport Sequence, respectively.

To show the strength of information theoretic adaptive fast-forward, two excerpts

of the VAST Sequence are presented in Figure 5. Both show the inverse velocity of

the accelerated sequence, i.e. the information gain ∆I of several frame transitions. The

first one (Figure 5 (a)) depicts a detailed view on some frames revealing temporal lags

of the video sequence due to re-encoding. These lags originate from a different frame

rate of the sequence before being re-encoded and introduce intermediate frames with

no changes except for coding artifacts. The second chart (Figure 5 (b)) illustrates the

sudden panning of the surveillance camera that generates pixel changes and is also

overlaid with temporal re-encoding artifacts. The traditional fast-forward mode would

increase the playback speed by a constant factor. This would result in complex analysis

conditions since the temporal lags as well as the camera pan would be ignored in the

playback acceleration.

In Figure 6, several approaches (number of pixels changed, mutual information

according to Equation 1, average motion magnitude derived from Horn-Schunck [9],

(a) (b)

Fig. 5 Information gain on parts of the VAST Sequence: (a) detailed view of some frames to
show lags due to re-encoding of the sequence, (b) increase of information gain during camera
pan.
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Fig. 6 Different measures (in-
verse velocity normalized to an
expectation value of 1, i.e. the
output sequences accelerated by
this measure have equal duration)
for adaptive fast-forward, applied
to the Airport Sequence. Top
row shows three keyframes of
this sequence for rough visual
evaluation of the results.

symmetric α-divergence with α = 1) are compared to each other using an excerpt of the

Airport Sequence. Please note that we use the Horn-Schunck method for calculating

the optical flow instead of block matching as it is intrinsically applied by Peker et

al. [16]. This is done to obtain more precise motion vectors and a dense motion field

due to Horn-Schunck’s regularization term, increasing the quality of motion-based fast-

forward. Block matching is generally designed for video coding applications and thus

optimizes for PSNR instead for semantically correct motion vectors. We also tested

more recent approaches to calculate the dense motion field, but since results were

qualitatively equal regarding playback speed adaption, we decided to use the popular

Horn-Schunck method for evaluation. The chart in Figure 6 shows the inverse fast-

forward velocities (related to the amount of motion, information, etc.) normalized to

an expectation value of one. In the first half of this excerpt, only a short moments of

activity is observed; however, in the second half the activity level raises due to many

persons moving. It is clearly visible that all methods compared, measure the activity

level to some degree, i.e., all methods share the same qualitative and intended behavior.

It can also be observed that for all evaluated methods there is a distinct peak at every

250th frame. These peaks are caused by the different encoding of keyframes, resulting

in more pixel changes.

The advantage of the proposed method over recent other approaches in terms of

robustness to noise is illustrated in Figure 7. The chart depicts the inverse fast-forward

velocities, extracted from the Noisy Airport Sequence. Surveillance sequences with large

amounts of noise often suffer from badly illuminated scenes or strong encoding artifacts.

In this case, motion activity is completely dominated by video noise and the normalized

playback velocity does not reflect the movement activity of people. Conversely, in

periods with almost no scene activity, the motion magnitude is quite high, resulting

from the wrong estimation of optical flow due to noise. Similar estimation errors occur

in the case of static changes that are common in surveillance videos with low temporal

resolution (< 1 fps). Since correct optical flow estimation is not possible in those cases,

a wrong motion field is calculated and thus, the motion magnitude does not reflect the

movement in the video. An example of such a case is depicted in Figure 8. In the same

way, measures based on the amount of changed pixels or on mutual information fail to
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Fig. 7 Different measures applied
to the Noisy Airport Sequence. All
evaluated measures badly adapt
the playback speed to the walk-
ing man in the second half of
the sequence, except for our new
method.
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recognize the movement activity apart from noise. In those cases, our new approach is

superior to the others, as long as a reasonable noise estimation is provided.

Peker and Divakaran [15] consider the spatio-temporal complexity (visual complex-

ity) of a video sequence as cue for its playback velocity. Note that in most cases the

proposed information measure intrinsically covers the spatio-temporal complexity of

the video sequence, while neglecting the noise component. We show this for two typ-

ical examples: an object increasing in size, while moving towards the camera and an

object that moves orthogonal to the camera view. While the first object approaches,

its image enlarges. Thus, the information gain increases, since it is based on the rela-

tion between frame difference distribution and noise distribution. As a second example,

we consider the information gain of a textured object (high spatial complexity) and

a homogeneously colored object with low spatial complexity, both moving orthogonal

to the camera direction. In the case of the object with low spatial complexity, only

the borders orthogonal to the movement direction contribute to the frame difference

distribution. Hence, the information gain is lower than for the textured object, where

the difference image of the frames shows a greater number of changes.

Fig. 8 Three subsequent frames of a temporal subsampled surveillance sequence with arbitrary
motion vectors due to static changes.
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The α parameter of the Rényi divergence regulates the emphasis of the measure

to certain parts of the probability density functions — as already mentioned in Sec-

tion 3. This effect can be deemed an amplification of certain distribution ratios. While

the Rényi divergence tends to treat all probability ratios as equal for limα→0, the

α-divergence converges to the amplification of only the highest probability ratio for

limα→∞. Within a certain range of α, the parameter can be considered an acceleration

of the fast-forward velocity as it emphasizes the higher probability ratios. This effect

is illustrated in Figure 9 for a short period of the Airport Sequence.

In Figure 10, we depict the adaption of the information gain with increasing number

of noise distributions. The different noise distributions are calculated according to the

method proposed in Section 4. As the number of noise distributions increases, the

impact of wrong noise estimations, originating from coding artifacts in keyframes, is

reduced. The noise distributions improve slightly even outside the keyframes, since the

influence of the outliers is removed.

6.2 Theoretical Aspects of Playback Adaption

The findings in the above examples are backed by the following theoretical considera-

tions. Assuming the true noise distribution N to be provided, the proposed approach

calculates the temporal information gain ∆I based on the symmetric Rényi divergence

D̂α, cf. Equation 6. By calculating the α-divergence as information “distance” to the

noise distribution, we consider image changes originating from temporal noise to be

irrelevant for the user. This property of the proposed information measure agrees with

the intuitive human perception and its relevance rating of image changes to be valu-

able information or not. On the other hand, the proposed measure is generally (e.g., in

the case of Gaussian noise distribution) sensitive to the absolute frame distance. That

means that the amount of information retrieved by ∆I depends on the luminance

difference of moving objects to the background.

Although human perception is to some degree robust to inaccurate playback ve-

locity, the correctness of the calculated information gain depends on the quality of

noise estimation. For theoretic considerations of the proposed approach, we expect a

perfect noise distribution to be provided. However, our evaluation results were using

an estimated noise distribution based on a simplified noise model. These practical and

realistic tests have shown that even simplified noise models lead to appropriate play-
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Fig. 9 Effect of the α parameter
of the Rényi divergence: α > 0 em-
phasizes the speed modification for
fast-forward, whereas α→ 0 levels
out those modifications. The infor-
mation gain is normalized to an ex-
pectation value of 1.
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Fig. 10 Reduction of information
gain error due to wrong noise
estimation with the increase of
noise distribution clusters. This
chart was calculated on the Air-
port Sequence.
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back velocities. A more sophisticated noise estimation would consider other types of

noise, temporal changing noise (especially non-periodic changes due to lighting condi-

tions), or spatially inhomogeneously distributed noise. Such approaches would result

in more precise estimations of the information gain, with a possibly further improved

adaptation of playback velocity.

The uniform time complexity of the proposed approach is in O(n+k), where n is the

number of pixels in the two frames and k represents the number of histogram bins of the

discrete luminance distance distributions. The low complexity of this approach allows

real-time processing of video sequences in contrast to other approaches that deal with

more complex features and thus have non-linear algorithmic time complexity. For real-

time processing, these other approaches often rely on the availability of preprocessed

features and thus are less flexible. To get a rough sense for the different complexities

of the activity measures, we provide a small benchmark using single-threaded, non-

optimized C++ code on an Intel Core2 Quad CPU Q6600 (2.4 GHz): for the Airport

Sequence, we achieve an average processing rate of 87 fps on PAL resolution (720×576)

and 36 fps on a HD-1080 sequence (1920 × 1080), whereas the Horn-Schunck motion-

based approach yields 12.5 fps / 1 fps and block matching 32 fps / 2.5 fps for PAL and

HD, respectively. Note that the number of frames that have to be processed each second

for real-time processing depends on the fast-forward properties and may approach

hundreds of frames in sequences with little interframe changes.

6.3 Qualitative User Study

To evaluate the applicability of adaptive fast-forward systems in video surveillance, we

conducted a qualitative user study by means of expert interviews. The goal of this study

was to determine if playback adaption based on low-level features is generally capable

of emphasizing the periods of surveillance footage that are perceived to be relevant for

video analysis by security personnel. Further, we tested whether the proposed approach

in particular outperforms existing approaches, as we expected from results of previous

sections. Please note that we evaluate playback-adaption at a higher semantic level

(video surveillance) than the approaches were immediately designed for (pixel change

information). Hence, differences may sometimes appear between expected playback

speed and the behavior of the adaption algorithm. This discrepancy is often called the

semantic gap.
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Sequence 1 Sequence 2 Sequence 4

Fig. 11 Frames of the scenarios used in expert interview.

Task Description & Experimental Protocol The study was introduced by explaining

the idea of adapting playback speed. Then, an example of constant and adaptive fast-

forward was provided. After this tutorial, we confronted the participants with 4 video

sequences of different quality, duration, and activity level. After each presentation (each

sequence was subsequently accelerated by the three methods: constant speed, adaption

by Rényi entropy, and adaption according to motion), we asked the participants pre-

pared questions. Among them, we asked to provide their opinion about each method’s

adaption efficiency (“Did the adaption of playback speed support monitoring by re-

ducing tedious periods while keeping an overview of bustling parts of the video?”) and

their conformity with user expectation (“Does the acceleration/deceleration of playback

speed meet your expectation?”). In addition, the experts were advised to think-aloud

in order to investigate how they perceive particular situations (stress, boredom, etc.).

Finally, we asked them to judge the acceptance of adaptive fast-forward methods in

the field of video surveillance and to provide suggestions for the improvement of such

methods. The interviews had an average duration of 45 minutes.

Participants The group of experts that participated in the qualitative user study was

composed of visualization experts and domain experts. We chose visualization experts

since they have knowledge about the visual communication process, while the domain

experts are experienced in monitoring people and places and thus are able to rate

the relevance of particular situations more reliable. The experts for visualization are

research associates of the institute for visualization and interactive systems of the

University of Stuttgart. This group included three males and one female. The domain

experts, both male, are employees of a security company and work as CCTV operators.

Both of them received reimbursement. All 6 participants had (corrected) normal vision.

Experimental Setup Participants were individually interviewed and the study was con-

ducted by two interviewers, one asking questions and one preparing a protocol. Ad-

ditionally, each participant was recorded by a webcam to backup the protocol and

to capture facial expressions while watching the sequences. The video sequences were

presented by a PC with a standard TFT-display.

Stimulus For the expert interviews, we chose 4 video sequences showing different sit-

uations that may emerge during surveillance monitoring. The first sequence covers a

continuously crowded airport hall, to evaluate playback speed adaption in situations

with high activity. We accelerated this sequence to be in average 5 times faster than

the non-accelerated version (09:52 minutes duration). The second sequence is similar
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Table 2 Results of the expert interview for the questions: a) “Did the adaption of playback
speed support monitoring by reducing tedious periods while keeping an overview of bustling
parts of the video?”, b) “Does the acceleration/deceleration of playback speed meet your
expectation?”

Stimulus 1 Stimulus 2 Stimulus 3 Stimulus 4
Crowded Airport Airport Noisy Airport Night

Duration 09:52 min 14:20 min 14:20 min 21:08 min
Mean Speed 5x 10x 10x 10x

5

1

1

5

1

0

6

0

-

3

2

-a) Efficiency

1

4

1

5

1

0

6

1

-

2

1

-b) Conformity
with user
expectation

α-Divergence Motion activity Constant speed

to the Noisy Airport Sequence, but without noise. It contains periods without activity

as well as crowded situations. The video (14:20 minutes duration) was accelerated in

average by factor 10. The third sequence we used was the Noisy Airport Sequence with

the same speed-up settings. These three video sequences were obtained from i-LIDS

multi-camera tracking scenario5 and are sampled with 720× 576 pixels at 25 fps. The

last sequence was monochrome video captured at night. Hence, contrast is very low

and sensor noise is dominant due to high gain settings. The sequence (656×494 pixels,

15 fps, 21:08 minutes duration) was also accelerated in average by factor 10. Keyframes

of the scenarios used in expert interview are depicted in Figure 11. The playback speed

of both adaptive fast-forward approaches was adjusted to match the duration of con-

stant cue-play, in order to make them comparable. To counterbalance learning effects,

we randomly permuted the presentation order of the three methods and displayed them

anonymously.

Results The results of the qualitative user study based on the experts’ comments and

our observations during the study can be summarized as follows (for a comparative

summarization see Table 2):

• Adapting the playback speed relative to the content in the video was appreciated by

all participants. They mentioned that watching a video this way is more efficient and

they felt more confident than watching the video at constant playback speed. They

also felt it was more comfortable due to less stress during periods of high activity.

The advantage of an adaptive playback speed depends highly on the activity in the

video. For crowded scenes, such as sequence 1, the benefit was marginal.

• Efficiency: For each of the sequences, the majority of participants rated the pro-

posed method to be most appropriate for monitoring.

5 Imagery library for intelligent detection systems (i-LIDS).
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• Conformity with user expectation: For sequences 2, 3, and 4, the proposed method

met the users’ expectation of speed adaption more closely than the motion-based

method. There were different reasons for the poor impression of the motion-based

method: in sequence 2, there are strong accelerations when people exit the room. In

sequence 3 and 4, noise is present and inhibits correct motion calculation. For the

first sequence, most of the participants preferred the approach based on motion. In

this case, lots of highlights are present. A person moving across a highlight yields

slower playback speeds compared to a person moving in the dark, which results

in jerky playback speed changes. For both adaptive methods, users found it more

difficult to estimate the speed of people compared to the constant method. They

suggested to add visual feedback to increase awareness of playback speed.

• The participants did not recognize any differences between the adaption of play-

back speed in sequence 2 (without noise) and 3 (including noise) for the proposed

method. Contrary, for the third sequence the motion-based approach was wrongly

interpreted as having no adaption. Sequence 4 (low contrast, noise) was judged to

be not optimally adapted by any adaptive methods, but the proposed method was

slightly favored over the motion-based approach.

• The preferred acceleration varies from participant to participant. While some were

bored during slow-motion playback of crowded periods, others were comfortable

with the speed, and some desired an even slower playback. For simplification rea-

sons, we did not provide a control to adjust the acceleration level for the qualitative

user study. In practice, surveillance operators should be provided with an acceler-

ation control to adjust the information load according to their personal abilities.

7 Conclusion And Future Work

In this paper, we have formulated the temporal information of a video sequence as

symmetric information gain between an estimated noise distribution and the absolute

frame difference distribution by means of the Rényi entropy. This has enabled us to

adapt the playback velocity of video to this information theoretic measure. The pro-

posed approach was evaluated under different sequences exhibiting common properties

and difficulties of surveillance videos, like noise and static changes. We have compared

the results to recent adaptive fast-forward approaches and have pointed out the advan-

tage over conventional cue-play. The main advantages of our method are robustness

against noise, suitability for low-framerate videos, and high computational efficiency.

We have also conducted a qualitative user study which verifies the efficiency of adap-

tive fast-forward in visual surveillance and points out the advantage of the proposed

method. Further, we have discussed possible fast-forward visualization methods and

proposed a biologically motivated approach for information-preserving visualization

that can handle arbitrary playback velocities. The combination of adaptive playback

velocity and an appropriately animated display is the basis for user-centered browsing

and the analysis of extensive surveillance video data.

In future work, noise estimation could be improved to cope with temporally vary-

ing and other types of noise arising from video processing. Additionally including color

information, which is currently ignored, could improve the saliency of the temporal

information measure. As further enhancement of fast-forward visualization, the intro-

duction of movement interpolation should be considered to provide smoothed visual

results in slow-motion periods in scenes with high activity. Further, the participants
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of the conducted study asked for visual feedback on the playback speed and a smooth

and consistent adaption to the amount of activity (i.e., by a low-pass filter). Finally,

a quantitative controlled user study including recent adaptive fast-forward methods

is required to judge the advantage of our method as well as the benefit of adaptive

fast-forward in general.
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