
PII: S0301-5629(01)00510-5

● Original Contribution

ESTIMATING THE ELASTOGRAPHIC SIGNAL-TO-NOISE RATIO USING
CORRELATION COEFFICIENTS

S. SRINIVASAN, F. KALLEL and J. OPHIR

The University of Texas Medical School, Department of Radiology, Ultrasonics Laboratory, Houston, TX, USA;
and University of Houston, Electrical and Computer Engineering Department, Houston, TX, USA

(Received 20 August 2001; in final form 4 December 2001)

Abstract—In conventional elastography, strain is estimated from the gradient of the displacement (time-delay)
estimates. The displacement estimates involve estimating the peak location of the cross-correlation function
between matching pre- and post-compression A-lines. Bias errors in estimating the peak location of the
cross-correlation function, amplified by the gradient operation on the displacement estimates (needed for the
computation of the strain), could result in values of elastographic signal-to-noise ratio (SNRe) that exceed the
theoretical upper bounds, thereby hindering a consistent interpretation of this parameter. These algorithmic
errors have not been accounted for by the theory. We propose the use of the measured correlation coefficients
in the theoretical SNRe expressions to estimate the SNRe, rather than computing them directly from the
elastograms. This methodology results in values of SNRe that are lower than the theoretical upper bounds,
thereby avoiding the problems associated with computing SNRe directly from the elastograms. Using simulated
models of uniformly elastic phantoms, a proof of principle of such an SNRe measure is shown. (E-mail:
Jonathan.Ophir@uth.tmc.edu) © 2002 World Federation for Ultrasound in Medicine & Biology.
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INTRODUCTION

Ultrasonic techniques for measuring the elastic proper-
ties of compliant tissue generally rely on the estimation
of strain. Elastography, a technique of estimating strain
using differential displacements of the tissue elements
has been well established (Ophir et al. 1991, 1996, 1997,
1999). The commonly used time-domain cross-correla-
tion techniques estimate the time delay between the pre-
and the post-compression radiofrequency (RF) A-lines.
The strain is estimated as the gradient of the time-delay.
Stretching the post-compression A-lines is typically done
to undo the effects of the mechanical compression on the
signal (Cespedes and Ophir 1993; Varghese and Ophir
1997a). This stretching improves the correlation between
the pre- and post-compression A-lines and reduces the
strain noise. However, a perfect match between the pre-
and post-compression A-lines is not achievable. This is
because the transmitted pulse gets stretched simulta-
neously when the stretching compensates for the tissue

motion. The decorrelation of the A-lines increases
with the applied strain (Varghese and Ophir 1997a)
and corrupts the strain estimates for large strains (typ-
ically � 10%). On the other hand, for very low strains
(typically � 0.1%), the strain estimates are affected by
the sonographic signal-to-noise ratio (SNRs). Hence,
there is an intermediate range of strains for which
good elastographic SNR (SNRe) (defined as the ratio
of the mean value (�s) of the estimated strain to the
SD of the estimated strain (�s)) can be obtained. The
behavior of the SNRe as a function of the axial tissue
strain (Fig. 1) is similar to a band-pass filter (in the
strain domain) and has been named the Strain Filter
(SF) (Varghese and Ophir 1997b). A brief introduction
to the SF is given below.

Theoretical expressions for the upper bounds of SNRE

The expression for the upper bound of the SNRe is
given by:

SNRe �
s

�s
(1)

where s is the applied strain and �s is the lower bound on
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the SD of the measured strain given in Cespedes et al.
(1995b) as:

�s
2 �

2�t
2

T�T
(2)

where T is the segment length, �T is the separation
between adjacent time segments and �2

t is the variance
in the temporal time-delay estimate. The lower bound on
�2

t is derived in Weinstein and Weiss (1984a, 1984b) as
the Ziv–Zakai lower bound (�2

ZZLB) and has been
adapted to elastography by Varghese and Ophir (1997b)
as:
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Here, B is the system bandwidth, and SNRc is the com-
bined SNR used in obtaining �ZZLB, defined as:

SNRc �
SNR�SNRs

1 	 SNR� 	 SNRs
(4)

where SNRs is the sonographic SNR, and SNR� is the
correlation SNR (Cespedes and Ophir 1993), given by:

SNR� �
�

1 
 �
(5)

Details on the several variance values (�CRLB, �BB,
Threshold1, Threshold2) and the bounds �, �, �, �, can
be found in Varghese and Ophir (1997b) as:
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and

�/ 2����/ 2� � �12�/BsT�2 (11)

The theoretical expression for the variation of � with
strain has been established in Varghese and Ophir
(1997a) and is given by:
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where s is the applied strain, ko is the wave number
(given by ko � 2 �/�o where �o is the wavelength), and
l is the correlation length. Combining eqns (1) through
eqn (12), we obtain the functional dependence of the
upper bound of SNRe on s. Such a variation of SNRe

with s has a band-pass characteristic, as shown in Fig. 1.
Two bounds, namely the Cramér–Rao lower bound
(CRLB) and the Barankin bound (BB) are shown. The

Fig. 1. The SF illustrating the distinct regions of strain estima-
tion obtained using the expressions for �ZZLB. The SF was
obtained for a 5-MHz, 50% fractional bandwidth transducer
using an observation window of 3 mm and a window overlap of
1.5 mm at an SNRs of 30 dB. The CRLB refers to the Cramer–
Rao lower bound that is dominated by random noise. The BB
refers to the Barankin bound that is dominated by decorrelation

noise.
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CRLB corresponds to the region where there are no
ambiguities in the amplitude and phase measurement and
the BB corresponds to the region where ambiguities in
phase measurement exist.

The variance in the time-delay estimation achieves
the Ziv–Zakai lower bound for unbiased estimators that
involve time domain correlation of analog signals. Esti-
mating time delays between discrete signals is typically
done through interpolation between samples (to avoid
oversampling of the A-lines, and thereby reduce the
computational cost and the acquisition time) around the
cross-correlation peak location, because the peak does
not necessarily fall at the exact sample locations. Typical
interpolation techniques involve a three-point parabolic
or cosine interpolation around the peak sample (Ces-
pedes et al. 1995a; De Jong et al. 1990). These tech-
niques have been shown to be biased and result in image
artefacts such as image periodicities commonly known
as “zebras and worms” (Ophir et al. 1999; Cespedes
1993). A detailed analysis of these bias errors has been
done by Cespedes et al. (1995a), and some of the effects
of these bias errors are briefly explained below.

Bias errors in time-delay estimation in elastography
In elastography, stretching the post-compression A-

lines is done before time-delay estimation between the
pre- and post-compression A-lines to remove the effects
of mechanical compression on the signals. Hence, for a
uniformly elastic phantom and in the absence of noise,
zero time delays between the pre- and post-compression
A-lines are expected after a perfect stretching of the
post-compression A-line. However imperfect stretching
of the post-compression A-line (Varghese and Ophir
1997a; Cespedes 1993) and the presence of noise in the
A-lines result in small random subsample delays (�).
Previous work has shown that the bias errors for sub-
sample delays are periodic with a period of 1 sample,
nulls occurring at � � 0.5 and 0 samples and a maximum
around � � 0.3 samples (Cespedes et al. 1995a).

Adjacent A-line segments tend to have similar bias
errors (especially when a high overlap between adjacent
segments is used) resulting in image artefacts (Ophir et
al. 1999; Cespedes 1993). This results in smoother strain
estimates and, hence, high SNRe. To illustrate this, con-
sider a case where no subsample time-delay estimate
(TDE) is found (i.e., the sample corresponding to the
correlation peak is taken as the true TDE). For such a
case, the TDE on a uniformly elastic phantom would
most likely fall at the same sample location (the first
sample, if there is no shift between the A-lines) for each
segment. Hence, the strain estimates for all the segments
would be identical to each other, resulting in an infinite
SNRe. Such a result is misleading because the presence
of noise and imperfect stretching should result in finite

SNRe. Figure 2a shows such a case where the strain is
estimated with no subsample interpolation (an extreme
case of biased interpolation) and Fig. 2b shows the case
where subsample interpolation is done. The presence of
additive noise and imperfect stretching produces residual
time-delay uncertainties and, hence, a nonuniform strain
image that can be seen in Fig. 2b. However, the absence
of such strain nonuniformities in Fig. 2a is due to the lack
of interpolation (precision in the time-delay estimation)
and is not indicative of the detail in the strain image. This
lack of precision usually results in loss of structural
detail in the elastogram that is significant, especially
when there is a strain contrast (like hard or soft inclu-

Fig. 2. Elastograms simulated using a 5-MHz, 35% fractional
bandwidth transducer, and 1-mm window with a 50% overlap
on a uniformly elastic phantom of 40 	 40 mm2 at 1% applied
strain with (a) no interpolation, and (b) parabolic interpolation.
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sions in a uniformly elastic phantom). For example, for
the case of a hard inclusion in a uniformly elastic phan-
tom, the absence of subsample interpolation to estimate
the TDE could result in the loss of contrast and, hence,
problems in lesion detectability. Figure 3 illustrates such
a loss of contrast in the absence of interpolation. The
inclusion cannot be seen in Fig. 3a, where subsample
interpolation is not performed, but it can be clearly seen
in Fig. 3b, where subsample interpolation is performed.
The value of the correlation coefficient improves with
interpolation, as can be seen in Fig. 3c, where a map of
the difference in the correlation coefficients between the
cases of subsample interpolation and no subsample in-
terpolation is shown. Such a result is expected because
subsample interpolation improves the value of the cor-
relation coefficient. Thus, as detailed later, the correla-
tion coefficient can be used to reliably predict the SNRe.
A systematic study of the effects of biased interpolation
on the loss of image contrast is beyond the scope of this
work.

As illustrated above, biased interpolation could re-
sult in high SNRe that does not represent the signal
decorrelation between the pre- and post-compression RF
A-lines. Moreover, visible elastographic artefacts such as
“zebras and worms,” which occur due to biased interpo-
lation, affect the SNRe estimate from the elastogram as
well. Hence, an SNRe measure that avoids such image-
related problems is preferable. One such measure using �
is detailed below.

Using the correlation coefficient to compute SNRe

The estimated value of � is used in eqn (5) to
compute the SNR�. This computed value of SNR� is used
in eqn (4) to compute the SNRc which, in turn, is used in
eqn (3) to estimate the �ZZLB. Equation (2) is then used
to compute the lower bound on �s (the lower bound is
obtained when �t � �ZZLB) and eqn (1) uses �s to
compute the SNRe.

1-D simulations of uniformly elastic phantoms were
conducted and the results are summarized below. Figure
4a shows the theoretical values of � as a function of
strain, eqn (6) along with the computed values. It can be
seen that the computed values of � are lesser than the
theoretical values at all strains. There is an improvement
in the estimated value of � with the use of interpolation
(Fig. 4b). A statistical analysis was performed to show
that the mean values of the correlation coefficients at
several sampling frequencies differed from each other
(p-values � 0.01) at strains less than 6%. For higher
strains (� 6%) no statistically significant difference was
found (p-values � 0.1). Fifty independent realizations
were used.

A comparison of the theoretical values of the SNRe

with the ones estimated using � and those computed

directly from the elastogram is shown in Fig. 5. It can be
seen that there is a good agreement between the SF that
uses the estimated value of � and that predicted theoret-
ically (the upper bound). The SF that is computed di-
rectly from the elastogram exceeds the theoretical upper
bounds for reasons explained previously. The mean val-
ues of SNRe obtained directly from the elastogram dif-
fered from those obtained using the correlation coeffi-
cients (p-values � 0.01) in some regions of the SF
(strains ranging from 4% to 20% and strains � 0.2%).
For strains ranging between 0.2% and 4%, no statisti-
cally significant difference was found (p-values � 0.1).

The value of � decreases with the lack of interpo-
lation (Fig. 4b) and results in a decrease in SNRe. How-
ever, the improvement in SNRe with interpolation is
marginal, as can be seen in Fig. 6. This indicates the
robustness of the technique with respect to the interpo-
lation scheme and also the lower sensitivity to bias errors
in TDE.

The utility of � as an estimator of SNRe is tested by
changing several parameters like the SNRs, center fre-
quency (fo), bandwidth (B), segment size (T), and seg-
ment separation (�T). The results for increasing SNRs

are shown in Fig. 7a. A good match between the theory
and the simulations can be seen. Figure 7b shows the
improvement of the SF with the center frequency of the
transducer. Because the SNRe has a 3/2 power relation-
ship with the center frequency (i.e., SNRe 
 fo

3/2 (Var-
ghese and Ophir 1997b)), the SF improves in both the
SNRe and the dynamic range (defined as the range of
strains in which the SNRe exceeds a predefined value).
Similar improvements can be seen with the bandwidth
(B), segment size (T), and segment separation (�T) in
Figs. 8a, b, and c, respectively.

2-D simulations of uniformly elastic phantoms were
conducted in MATLAB to further corroborate the re-
sults. Figure 9a shows the theoretical (Kallel et al. 1997)
and the simulated SFs at different lateral locations for the
simulations on a 40 	 40 mm2 uniformly elastic phan-
tom with a 100-element array transducer (pitch � 0.4
mm) and a Gaussian beam profile of beamwidth (half-
amplitude) of 0.7 mm. The SF at the location of lateral
symmetry (20 mm) has smaller values of the SNRe and
dynamic range than those corresponding to the 1-D sim-
ulations. This is attributed to the nonrigid scatterer mo-
tion (in the lateral direction) within the beamwidth. The
values of � corresponding to the SFs in Fig. 9a are shown
as a function of strain in Fig. 9b. Figure 9c shows the
correlation coefficient as a function of the lateral loca-
tion. The change in the values of � with the lateral
location are similar to those obtained by Kallel et al.
(1997). A statistical comparison of the SFs over 50
realizations was performed to compare SFs based on a
95% confidence interval (p-value � 0.01). The true
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Fig. 4. (a) The theoretical and the estimated correlation coef-
ficients for various sampling frequencies (fs) and (b) improve-
ment in the correlation coefficient with interpolation shown as
the logarithm of the difference in the correlation coefficient
with and without interpolation, for a 5-MHz, 50% fractional
bandwidth Gaussian PSF, and 3-mm window with a 50%
overlap on a uniformly elastic phantom at a SNRs of 40 dB.
Here, the error bars correspond to � � over 50 realizations.

Fig. 3. Elastograms simulated using a 5-MHz, 35% fractional
bandwidth transducer, and 1-mm window with a 50% overlap on
a 40 	 40 mm2 phantom, with a 5-mm radius inclusion and a
modulus contrast of 3, at 1% applied strain with (a) no interpola-
tion, and (b) parabolic interpolation. (c) The difference in the
correlation maps corresponding to the elastograms obtained using
parabolic interpolation and no interpolation. A sampling frequency

of 48 MHz and a SNRs of 40 dB were used.
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means of the simulated SFs were found to be signifi-
cantly different from one another for those reported in
Figs. 7, 8 and 9. The above-mentioned results further
validate the use of the � as an estimator for SNRe.

DISCUSSION

The previous sections dealt with the pitfalls in com-
puting the SNRe directly from the elastogram and also

with the use of � as a robust estimator of SNRe indirectly
from the elastogram. Yet, the value of � does not have a
one-to-one correspondence with the visual image (esti-
mated through a gradient of the TDE) because a small
change in the correlation coefficient could result in sig-
nificantly different strains, as evident from Fig. 4. How-
ever, using � to estimate SNRe facilitates a direct com-
parison between theory, simulations and experiments,
and could be used as a benchmark in comparing algo-
rithms and apparatus.

The 2-D simulations produce SFs that have smaller
SNRe and dynamic range than the 1-D simulation. This is

Fig. 5. Comparison of the SFs obtained using the correlation
coefficient and image SNRe with the theoretical SF for a
5-MHz, 50% bandwidth Gaussian PSF, and 3-mm window
with a 50% overlap on a uniformly elastic phantom at a SNRs

of 40 dB and a sampling frequency (fs) of 96 MHz. The error
bars correspond to � � over 50 realizations.

Fig. 6. Comparison of portions of the SFs obtained using the
correlation coefficient for the schemes with no interpolation on
the cross-correlation peak and parabolic interpolation on the
cross-correlation peak. The simulations were performed on a
5-MHz, 50% bandwidth Gaussian PSF, and 3-mm window
with a 50% overlap on a uniformly elastic phantom at a SNRs

of 40 dB and sampling frequencies (fs) of 48 MHz and 96 MHz.

Fig. 7. SFs for (a) several values of SNRs and (b) several center
frequencies for a 5-MHz, 50% fractional bandwidth Gaussian
PSF, and 3-mm window with a 50% overlap on a uniformly
elastic phantom at a SNRs of 40 dB and a sampling frequency
(fs) of 96 MHz. The error bars correspond to � � over 50

realizations.
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due to the lateral motion and the presence of a beam in
the 2-D simulation. It is to be noted that derating the SFs
to accommodate lateral motion (Kallel et al. 1997) still
does not account for the nonrigid scatter motion within
the beam. Therefore, the SFs at the location of lateral
symmetry (i.e., at 20 mm in Fig. 9a) is poorer than the
1-D simulation. An analysis of nonuniform displacement
within the beamwidth needs to be done to account for
such difference between the theoretical and simulation
results.

The use of subsample interpolation improves the
values of � because the subsample peak value tends to be
larger than that corresponding to the sample peak. Figure
10a and b show the correlation maps corresponding to
Figs. 3a and b, respectively. The improvement in the
values of � with subsample interpolation is evident from
these figures. It is of interest to note that some adaptive
stretching techniques (Alam et al. 1998; Bilgen 1999)
utilize the maximum value of � to estimate the stretch
factor (and, hence, the strain) and thereby improve the
SNRe in the presence of strain contrast. These adaptive
stretching techniques have shown the values of � (and
SNRe) to improve with adaptive stretching. The stretch
factor corresponding to the maximum value � reflects the
local strain and, thus, eqns (1) through (5) could be used
to compute the local SNRe. Hence, the improvement of �
represents the improvement in the local SNRe. The SNRe

maps corresponding to those in Fig. 3a and b are shown
in Figs. 11a and b, respectively. Here, the analytical
strain map (Kallel et al. 1996) was used to compute the
SNRe values. Low values of SNRe in the regions corre-
sponding to the inclusion can be seen in these figures
because the strain in these regions are low and the
variance is high. The difference in the SNRe between
Fig. 11b and a are shown in Fig. 11c. The positive values
indicate the improvement in SNRe, as well as the corre-
spondence between the local values of SNRe and �.

A phantom with strain contrast would be less suit-
able than a uniformly elastic phantom for benchmarking
(in terms of the SNRe) because strain contrast is more a
test of the stretching (companding) schemes. Moreover,
upper bounds for the values of the contrast-to-noise ratio
(CNRe) in the presence of strain contrast can be obtained
directly from the SF (Varghese and Ophir 1998). (These
upper bounds can be achieved with the use of adaptive
strain estimation procedures because a uniform stretch-

Fig. 8. SFs for (a) several fractional bandwidths, (b) several
window lengths, and (c) several window overlaps for a 5-MHz,
50% fractional bandwidth Gaussian PSF, on a uniformly elastic
phantom at a SNRs of 40 dB and a sampling frequency (fs) of
96 MHz. The error bars correspond to � � over 50 realizations.
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ing is not suitable in the presence of strain contrast.)
Hence, experiments and simulations on uniformly elastic
phantoms could be adequate for benchmark testing in

Fig. 9. (a) 2-D SFs at several lateral locations and comparison
with the theoretical and 1-D SFs, (b) the correlation coefficient

Fig. 10. Correlation maps corresponding to the elastograms
simulated in Fig. 3 using (a) no interpolation, and (b) parabolic

interpolation.

as a function of strain at several lateral locations, and (c) the
correlation coefficients as a function of the lateral location for
a strain of 1%. The simulations were performed on a 40 	 40
mm2 uniformly elastic phantom with a 5-MHz, 50% fractional
bandwidth Gaussian PSF, and 3-mm window with a 50%
overlap at a SNRs of 40 dB and a sampling frequency (fs) of 48
MHz. The error bars correspond to � � over 50 realizations.
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terms of the SNRe and CNRe. The presence of lateral and
elevational motion can be included as derating factors or
corrected using lateral companding (Konofagou and
Ophir 1998; Chaturvedi et al. 1998) algorithms.

A major part of the study was performed using 1-D
simulations instead of 2-D or 3-D simulations for two
reasons: 1. Lateral and elevational motion and beam
effects have been accounted for (Kallel et al. 1997) as
derating factors in the SF; and 2. significantly smaller
simulation time is required when statistical analysis over
several parameters like the window size, overlap, center
frequency, bandwidth, SNRs, sampling frequency, quan-
tization, etc. is performed.

System parameters such as fo, B, and SNRs are
needed to use � to estimate SNRe. For experimental
setups, these system parameters could be found from the
system specifications or measured through simple tests.

The theoretical and the simulated SFs in this work
have a larger dynamic range and SNRe values than those
reported in previous works (Varghese and Ophir 1997b;
Konofagou et al. 1999; Varghese et al. 2000) due to the
present use of a half-power bandwidth rather than a
half-amplitude bandwidth of the impulse response.

CONCLUSION

The use of the correlation coefficient to estimate the
elastographic SNR (SNRe), rather than a direct measure
of SNRe from the elastogram is shown to be robust and
less sensitive to bias errors in time-delay estimation.
Estimates of SNRe computed directly from the elasto-
grams are often higher than the theoretical upper bounds
on SNRe, due to bias errors and/or post-processing on the
strain images. Using the correlation coefficient in the
theoretical expressions produces strain filters that are
bounded by the theoretical upper bounds. Thus � could
be used as a benchmark in evaluating and comparing
simulations and experiments to theoretical predictions. A
limitation of this technique is the requirement for having
access to the actual system parameters, such as the center
frequency, the bandwidth, and the sonographic SNR, and
not just to the final elastogram.
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