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Abstract. Computer-aided diagnosis (CAD) has become one of the major research subjects in medical imaging
and diagnostic radiology. The basic concept of CAD is to provide a computer output as a second opinion to
assist radiologists’ image interpretation by improving the accuracy and consistency of radiological diagnosis and
also by reducing the image reading time. In this article, a number of CAD schemes are presented, with emphasis
on potential clinical applications. These schemes include: (1) detection and classification of lung nodules on
digital chest radiographs; (2) detection of nodules in low dose CT; (3) distinction between benign and malignant
nodules on high resolution CT; (4) usefulness of similar images for distinction between benign and malignant
lesions; (5) quantitative analysis of diffuse lung diseases on high resolution CT; and (6) detection of intracranial
aneurysms in magnetic resonance angiography. Because CAD can be applied to all imaging modalities, all body
parts and all kinds of examinations, it is likely that CAD will have a major impact on medical imaging and
diagnostic radiology in the 21st century.

Recently, computer-aided diagnosis (CAD) has become
one of the major research subjects in medical imaging and
diagnostic radiology [1–13]. Over the last 3 years, at the
Annual Meetings of the Radiological Society of North
America (RSNA) in Chicago, which is one of the major
meetings in the field of diagnostic radiology, the number
of papers presented on subjects related to CAD has
increased by approximately 50% per year, from 55 in 2000,
to 86 in 2001, to 134 in 2002, and 191 in 2003. Many
different types of CAD schemes are being developed for
detection and/or characterisation of various lesions in medi-
cal imaging, including conventional projection radiography,
computed tomography (CT), magnetic resonance imaging
(MRI) and ultrasound. Organs currently being subjected to
research for CAD includes the breast, chest, colon, brain,
liver, kidney, and the vascular and skeletal systems.

The basic concept of CAD is to provide a computer
output as a ‘‘second opinion’’ to assist radiologists’ image
readings [1–7]. Therefore, for development of a successful
CAD scheme it is necessary not only to develop computer
algorithms, but also to investigate how useful the
computer output would be for radiologists in their
diagnoses, how to quantify the benefits of the computer
output for radiologists, and how to maximize the effect
of the computer output on their diagnoses. Thus, large-
scale observer performance studies on radiologists
using a reliable methodology such as receiver operating
characteristic (ROC) analysis are equally as important
as the development of computer algorithms in the
field of CAD. Therefore, the research and development
of CAD has involved a team effort by investigators
with different backgrounds such as physicists, radiolo-
gists, computer scientists, engineers, psychologists and
statisticians.

CAD has generally been defined by diagnosis made by a
physician who takes into account the computer output

based on quantitative analysis of radiological images. This
definition is clearly distinct from automated computerised
diagnosis [14–20], which was attempted in the 1960s and
1970s, replacing radiologists by computers. However, our
serious investigation of CAD at the University of Chicago
began in the 1980s with a clear goal in mind of assisting
radiologists by use of a computer. The goal of CAD is to
improve the quality and productivity of radiologists’ tasks
by improving the accuracy and consistency of radiological
diagnoses and also by reducing the image reading time.
The general approach for CAD is to find the location of a
lesion and also to determine an estimate of the probability
of a disease; these correspond to CAD for detection of a
lesion and CAD for differential diagnosis. The basic
technologies involved in CAD schemes are: (1) image
processing for detection and extraction of abnormalities;
(2) quantitation of image features for candidates of
abnormalities; (3) data processing for classification of
image features between normals and abnormals (or benign
and malignant); (4) quantitative evaluation and retrieval
of images similar to those of unknown lesions; and
(5) observer performance studies using ROC analysis.

Because the concept of CAD is broad, CAD can be
applied to all imaging modalities, including projection
radiography, CT, MRI, ultrasound and nuclear medicine
imaging, used for all body parts such as the skull, thorax,
heart, abdomen and extremities, and all kinds of
examinations including skeletal imaging, soft tissue
imaging, functional imaging and angiography. However,
the majority of CAD schemes developed in the past
include the detection of breast lesions on mammograms [7,
21–30], the detection of lung nodules in chest radiographs
[31–49] and thoracic CT [50–71], and the detection of
polyps in CT colonography [72–82]. Therefore, the
current results obtained from basic research and clinical
applications of CAD may be considered the tip of an
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iceberg, and thus a major impact of CAD on medical
imaging and diagnostic radiology may be expected in the
future.

One of the important events in the history of CAD is
that R2 Technology has succeeded in commercialisation of
the first CAD system for detection of breast lesions in
mammography based on licensing of CAD technologies
from The University of Chicago, and that it obtained US
Food and Drug Administration (FDA) approval for the
clinical use of their system in 1998. Subsequently, clinical
uses of the mammographic CAD system have begun at
many screening sites for breast cancer in the United States,
and more than 1500 CAD systems are in current use in
assisting radiologists in the early detection of breast cancer
at many hospitals, clinics and screening centres around
the world. It has also been reported that CAD has
provided a gain of approximately 20% in the early
detection of breast cancers on mammograms [29]. In
2001, Deus Technologies developed another CAD system
for detection of lung nodules on chest radiographs, and
then received FDA approval for its clinical use. In Japan,
Mitsubishi Space Software has developed a CAD system
with temporal subtraction of sequential chest radiographs
and also for detection of lung nodules on chest images. A
number of prototype systems for detection of pulmonary
nodules in thoracic CT have been developed by manu-
facturers and are being evaluated at medical centres
around the world. Recently, R2 Technology received FDA
approval for their CAD system for detection of pulmonary
nodules in CT.

Because a number of commercial CAD systems for
detection of breast cancer on mammograms are currently
available for clinical use, some recent research on
mammographic CAD has been focused on clinical studies
evaluating the effect of CAD on radiologists’ performance
and on clinical outcomes [83–88]; these include prospective
studies on the detection rates of breast cancer without
and with the use of CAD [29, 89] and comparison of
double readings of mammograms with single reading by
CAD [90]. At present, the results of these studies are mixed
and controversial, thus requiring further investigations on
the effect of the computer output on clinical outcome
based on prospective studies and/or randomised clinical
trials.

The development of multidetector CT (MDCT) has
produced a large number of CT images that may require
additional time and effort in image interpretation by
radiologists. It has been expected, therefore, that CAD
would assist radiologists in reducing the reading time as
well as in improving the diagnostic accuracy. Many
investigators have attempted to develop CAD schemes
for detection of pulmonary nodules by MDCT. Because
the quality of MDCT images has been improved
considerably in terms of three-dimensional (3D) image
information over that of conventional CT images with
relatively thick slices, the performance of CAD schemes in
the detection of nodules on MDCT images has generally
been improved.

In this review article, a number of CAD schemes
developed at The University of Chicago are presented,
with emphasis on potential clinical applications in the
future. Subjects for these CAD schemes included in the
following sections are: (1) detection and classification of
lung nodules on digital chest radiographs; (2) detection

of nodules in low dose CT; (3) distinction between
benign and malignant nodules on high resolution CT;
(4) usefulness of similar images for distinction between
benign and malignant lesions; (5) quantitative analysis
of diffuse lung diseases on high resolution CT; and
(6) detection of intracranial aneurysms in magnetic
resonance angiography.

Detection and classification of lung nodules on
digital chest radiographs

It has been well documented that radiologists may miss
approximately 30% of lung nodules on chest radiographs,
some of which are clearly visible in retrospect. Therefore,
the purpose of CAD for detection of nodules on chest
radiographs is to indicate the potential locations of
nodules as a prompt to radiologists. The computerised
scheme for automated detection of nodules was based on a
difference-image technique [31, 32] with which nodules
were enhanced and the majority of background normal
structures were suppressed. The candidates for nodules
were then identified by thresholding of pixel values in the
difference image derived from a chest radiograph. A
number of image features on nodule candidates were
quantified, and some false positives caused by normal
anatomical structures were removed by a rule-based
method together with the use of an artificial neural
network (ANN). Finally, the locations of potential sites
for nodules were indicated by markers such as arrows on
chest images displayed on a monitor, as illustrated in
Figure 1. It is apparent in Figure 1 that a subtle nodule
overlapped with a rib in the left lung was correctly
detected by the computer, but that one false positive in the
computer output which is pointing to a normal anatomical
structure in the mediastinum was included. It is important
to reduce the number of such false positives as much as
possible in all CAD schemes, including that for detection

Figure 1. Illustration of the computer output marked by two
arrows; one indicates the correct detection of a subtle nodule
in the left lung, and the other corresponds to a false positive,
which is a normal structure in the mediastinum.
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of lung nodules. The usefulness of a computer output such
as that shown in Figure 1 has been investigated in observer
performance studies by use of ROC analysis [33]. Two sets
of digital chest radiographs, i.e. one without and another
with computer output, were presented to radiologists for
detection of nodules. Radiologists’ performance in detect-
ing nodules on chest radiographs was evaluated in terms of
the Az value, which is the area under the ROC curve.
Results indicated that the Az value was improved from
0.894 to 0.940 when the computer output was available.
The performance level of the computer output used in this
study was a sensitivity of 80% with one false positive per
chest image. The difference in Az values obtained from the
two ROC curves has been confirmed to be statistically
significant (p50.001) [33].

Figure 2 shows Az values for 16 radiologists, obtained
without and with computer output. It is apparent that all
of the radiologists were able to improve their detection
performance by using of the computer output. Without
CAD, the average Az value for eight residents was lower
than that for attendings. However, the average gain in Az

value due to CAD was greater for the resident group than
for the attending group. Therefore, with CAD the average
Az value for the eight residents became comparable with
that for the eight attendings. These results indicate that
CAD can assist many radiologists in improving their
accuracy in detecting lung nodules, and also in reducing
the variation in detection accuracy due to the variation in
radiologists’ experience (i.e. residents vs attendings).
Therefore, these results appear to indicate the potential
that the purpose of CAD as described above can be
realised in improving the accuracy and consistency of
radiological diagnoses.

Once a lung nodule is found on a chest radiograph, the
subsequent task for a radiologist is to assess the nature of
the lesion, i.e. whether the nodule is malignant or benign.
This task of classification of lung nodules is considered
difficult for radiologists. The purpose of CAD for
classification of nodules on chest radiographs is to provide
the likelihood of malignancy as a second opinion in

assisting radiologists’ decisions [47, 48]. The computerised
scheme for determination of the likelihood of malignancy
is based on the analysis of many image features obtained
from a nodule on a chest radiograph and also from the
corresponding difference image. The image features
include features obtained from the outline of the nodule
such as the shape and size, the distribution of pixel values
inside and outside the nodule, and the distribution of edge
components.

The likelihood measure of malignancy was determined
by use of linear discriminant analysis (LDA) or an ANN
on a multidimensional distribution of image features.
Figure 3 shows the likelihood measure of malignancy for
three malignant and three benign nodules. Shiraishi et al
[49] have investigated the usefulness of these results for
classification of nodules in observer performance studies
by use of ROC analysis. Figure 4 shows ROC curves
obtained without and with the computer output in
distinguishing between benign and malignant nodules on
chest radiographs. It is apparent that radiologists’
performance in the distinction between benign and
malignant nodules was improved significantly by use of
the computer output. However, it is important to note
that the ROC curve for radiologists with CAD was still
lower than that obtained with the computer alone. This
result seems to indicate that, although radiologists were
able to utilise ‘‘some of the computer output’’ in improv-
ing their performance, they could not effectively take full
advantage of the computer output. The reasons for this
may be related to the present lack of experience with such
computer output. Therefore, when radiologists become
familiar with CAD for classification of nodules, the
benefits obtained with CAD might be increased further.

In addition to the two CAD schemes for detection
and classification of lung nodules on chest images as
illustrated above, a number of different CAD schemes
have been developed for detection of other abnormalities
such as interstitial opacities [34–36], cardiomegaly [45],
pneumothorax [46] and interval changes [39–44] on chest
radiographs as well as for differential diagnosis of

Figure 2. Az values without
and with computer-aided diag-
nosis (CAD) for 16 radiologists
in the detection of lung nodules
on chest radiographs. 60 nor-
mals and 60 abnormals with
lung nodules of varying subtlety
were used.
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interstitial lung disease [37, 38]. The potential usefulness of
these CAD schemes has been demonstrated in a number of
observer performance studies using ROC analysis [36, 38,
42–44, 91]. Therefore, when newer digital chest systems
such as flat-panel detectors and computed radiography
systems are installed in a hospital in the future, it is very
likely that a package of software providing various
prompts for potential abnormalities will be installed in a
computer associated with the image acquisition system
and/or picture archiving and communication system
(PACS).

Detection of pulmonary nodules on low dose CT

Low dose helical computed tomography (LDCT)
screening is regarded as one of the most promising
techniques for early detection of lung cancer [92–101]. It
has been reported that CT images are superior to chest
radiographs for detecting peripheral lung cancers [92].
However, it is a difficult and time consuming task for
radiologists to detect subtle lung nodules in a large
number of CT slices for lung cancer screening. Thus, a
CAD scheme would be useful for assisting radiologists in
cancer screening using LDCT. A number of investigators
[50–71] have attempted to develop CAD schemes for
computerised detection of lung nodules using various
methods and techniques.

Arimura et al [102] have developed a CAD scheme
based on a difference-image technique for enhancing lung
nodules and suppressing the majority of background
normal structures. The difference image for each CT
image was obtained by subtraction of the nodule-
suppressed image processed with a ring average filter
from the nodule-enhanced image with a matched filter.
The initial nodule candidates were identified by application
of a multiple grey level thresholding technique to the
difference image, where most nodules were enhanced well.
A number of false positives were removed first from the
entire lung, and then from the selected lung regions by use
of two rule-based schemes on the localised image features
related to morphology and grey levels. Some of the
remaining false positives were eliminated by use of a
multiple massive training artificial neural network
(MTANN), which was trained for reduction of various
types of false positives.

Suzuki et al [60, 103] have developed the MTANN
consisting of a modified multilayer ANN, which is capable
of operating on the original image directly, as illustrated in
Figure 5. The MTANN was trained by use of a large
number of subregions extracted from input images
together with teacher images containing the distribution
for the ‘‘likelihood of being a nodule’’. The output image
was obtained by scanning an input image with the
MTANN. The distinction between a nodule and a non-
nodule was made by use of a score that was defined from

Figure 3. Illustration of malignant and benign nodules on chest radiographs together with the likelihood measure of malignancy
obtained with a computer-aided diagnosis (CAD) scheme by use of linear discriminant analysis (LDA) and on artificial neural net-
work (ANN). A computer output above or below 0.50 indicates the likelihood of malignancy or benignancy, respectively.
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the output image of the trained MTANN. The multi-
MTANN for eliminating various types of non-nodules
consisted of a number of MTANNs arranged in parallel.
Each MTANN was trained by use of the same nodules but
with a different type of false positive, such as various-sized

vessels, and acted as an expert to distinguish nodules from
a specific type of false positive. The outputs of the
MTANNs were combined by use of the logical AND
operation, so that each of the trained MTANNs did not
eliminate any nodules but removed some of the various
types of false positives. Our computerised scheme was
applied to a confirmed cancer database of 106 LDCT
scans with 109 cancer lesions in 73 patients obtained from
a lung cancer screening program [93] in Nagano, Japan.
Our CAD scheme provided a sensitivity of 83% (91/109)
for all cancers with 5.8 false positives per scan, which
included 84% (32/38) for missed cancers with 5.9 false
positives per scan.

The usefulness of the MTANN in removing a large
number of false positives in a CAD scheme is illustrated in
Figure 6. The number of false positives per scan was
reduced from 27.9 to 12.5 by use of a single MTANN, and
further reduced to 3.8 by use of multiple MTANNs, thus
substantially improving the performance of the CAD
scheme. Another unique advantage of the MTANN is
related to a relatively small number of training cases
required for the MTANN compared with that for a
conventional ANN. A single MTANN can be trained by
use of only 10 nodules and 10 false positives. However,
because each of the training cases is scanned 500 000
times, the total number of iterations for training becomes
several billions, which is the reason for referring to
this ANN as a ‘‘massive training’’ ANN. Therefore, the
CPU (central processing unit) time for training the
MTANN can be quite long, for example 30 h [60, 103],
whereas the trained MTANN can provide the output
almost instantly.

Figure 7 shows the computer output that correctly
detected ‘‘missed’’ cancers [52, 101] in the Nagano

Figure 5. Illustration of the basic structure of a massive training artificial neural network (MTANN) together with image data as
input and teacher image data as output, used for training the MTANN. Typically, 10 nodules and 10 false positives are used for
training a single MTANN.

Figure 4. Receiver operating characteristic (ROC) curves for
distinction between malignant and benign nodules, on chest
radiographs without and with the computer-aided diagnosis
(CAD) outputs such as those shown in Figure 3. 16 radiolo-
gists participated in an observer study in the interpretation of
53 chest radiographs, including 31 primary lung cancers and 22
benign nodules.
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database, which had been identified retrospectively as
‘‘actionable’’ lesions 1 or 2 years prior to the diagnosis of
cancer in the screening programme. These missed cancers
were generally considered very subtle and appeared as
small, faint nodules, overlapping normal structures or
opacities in a complex background caused by other disease
[101]. Li et al [104] have used these ‘‘missed’’ cancer cases
for observer performance study by selection of normal
cases by matching age, gender and smoking status to the
cancers from the same screening programme. Observer
studies were carried out with CT images displayed on an
LCD (liquid-crystal display) monitor using the cine mode,
where the sensitivity of the CAD scheme for detection of
these cancer cases was 80% and the average number of
false positives was 2.7 per case. Figure 8 shows ROC
curves for radiologists without and with the computer
output in detecting these missed cancers [104], where the
Az value was improved from 0.755 to 0.845 (p50.03) by
use of the computer output. It is important to note that
lung cancers missed at CT screening were very difficult to
detect even in an observer study. However, our CAD
scheme improved radiologists’ performance in detecting
these subtle cancers, despite the fact that the performance
level of the computer was much lower than that of
radiologists alone. This improvement in radiologists’
performance was possible because radiologists were able
to disregard the majority of false positives and were
reminded of some of their oversight by the correct
computer output.

Likelihood of malignancy for pulmonary nodules
on high resolution CT

CT screening has led to early detection of peripheral
lung cancer and also to detection of a large number of
false positives (i.e. non-calcified benign nodules) [92–94,
98, 99]. The false positive rate at screening has been
reported as 87–93% with low dose, single detector CT

at 10 mm slice thickness [92–94], and 98–99% with single
detector or multidetector CT at 5 mm slice thickness
[98, 99]. Also, simultaneous or additional diagnostic
high resolution CT (HRCT) is needed for distinction
between lung cancers and benign nodules detected as
suspicious or indeterminate lesions by screening CT
[92–94, 98, 99]. This high false positive rate due to
benign nodules is likely to reduce the benefit of CT
screening for early detection of lung cancer [100]. It is
therefore important to differentiate benign from malignant
nodules to reduce the false positives for screening CT, and
also to reduce follow-up examinations for diagnostic
HRCT.

Aoyama et al [105] have developed an automated
computerised scheme for determination of the likelihood
measure of malignancy by using various objective features
of the nodules in our database of thick section, low dose
screening CT, where one or two slices were employed for
image analysis on each nodule. Recently, we further
developed another computerised scheme for distinction
between malignant and benign lesions by using more than
50 objective features derived from multiple slices of
diagnostic HRCT obtained from low dose CT screening.
Li et al [106] have carried out observer performance
studies using ROC analysis for evaluation of the effec-
tiveness of our CAD scheme to assist radiologists in
distinguishing benign from malignant small nodules in
various patterns at HRCT. The lung cancers included
nodules with pure ground-glass opacity (GGO), mixed
GGO and solid opacity, as illustrated in Figure 9,
whereas benign nodules were selected by matching their
size and pattern to the cancers on HRCT in this observer
study.

Consecutive region-of-interest (ROI) images for each
nodule on HRCT were displayed for interpretation in cine
mode on a CRT (cathode ray tube) monitor. The images
were presented to 16 radiologists, first without and then
with the computer output, to indicate their confidence level
regarding the malignancy of a nodule. The resulting ROC
curves are shown in Figure 10, where the Az value of the
CAD scheme alone was 0.831 for distinguishing benign
from malignant nodules. The average Az value for
radiologists was improved from 0.785 to 0.853 by a
statistically significant amount (p50.016) with the aid of
the CAD scheme [106]. In addition, it is important to
note that the radiologists’ performance with the CAD
scheme was better than that of the CAD scheme alone
(p,0.05), and also better than that of the radiologists
alone. One may ask why this is possible. From a detailed
analysis of radiologists’ responses and computer outputs,
we found that radiologists were correct and the computer
output was incorrect in some cases, whereas the computer
was correct and the radiologists were incorrect in other
cases. Therefore, the radiologists’ overall performance
was improved by maintaining their ‘‘firm’’ correct
decisions on some cases and by correcting their initial
mistakes by looking at the computer output on other
cases. This is a synergistic effect of the computer and
radiologists: all of CAD is intended eventually to produce
multiplicative benefits by humans and computer. Thus,
CAD has the potential to improve diagnostic accuracy in
distinguishing small benign nodules from malignant ones
on HRCT.

Figure 6. Illustration of the usefulness of the massive training
artificial neural network (MTANN) in reducing the number of
false positives (FPs) in computerised detection of nodules in
low dose CT (LDCT) images. Single MTANN or multi-
MTANN was applied to a rule-based computer-aided diagnosis
(CAD) scheme for 63 LDCT scans with 71 nodules including
66 primary cancers and 5 benign nodules.
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Usefulness of similar images for distinction
between benign and malignant nodules on low dose
CT

To assist radiologists in differential diagnosis, it may be
useful to provide a set of benign and malignant images
that are similar to an unknown new case in question. If the
new case were considered by a radiologist to be very
similar to one or more benign (or malignant) images, then
s/he would be more confident in deciding that the new
case is benign (or malignant). Therefore, similar images
may be employed to supplement the computed likelihood
of malignancy for implementing CAD for differential
diagnosis. The usefulness of similar images has been

demonstrated in an observer performance study [107], in
which the Az value in the distinction between benign and
malignant modules in thoracic CT was improved.
Figure 11 illustrates the comparison of an unknown case
of a pulmonary nodule in the centre with three benign
cases on the left and three cases with malignant nodules on
the right, which were obtained from LDCT used in a lung
cancer screening programme [93, 108, 109] in Nagano,
Japan. It has been confirmed that most radiologists were
able to identify the unknown case correctly as being more
similar to malignant nodules than to benign ones.

The reason for presenting similar images is based on the
fact that radiologists learn diagnostic skills by observing
many clinical cases during their training and clinical

Figure 7. Illustration of subtle missed cancers, which were detected correctly by our computer-aided diagnosis (CAD) scheme, on low
dose CT images obtained from a lung cancer screening.
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Figure 8. Receiver operating characteristic (ROC) curves with-
out and with computer-aided diagnosis (CAD) output for
detection of lung cancers in low dose CT images. Six radiolo-
gists participated in an observer study, detecting missed periph-
eral lung cancers in 27 cases including 17 CT scans with cancer
and 10 CT scans without cancer.

Figure 9. Illustration of malignant and benign nodules with pure ground-glass opacity (GGO), mixed GGO and solid opacity. These
nodules were segmented for subsequent analysis for determination of the likelihood measure of malignancy.

Figure 10. Receiver operating characteristic (ROC) curves
without and with computer-aided diagnosis (CAD) output for
distinction between malignant and benign nodules on high
resolution CT. The images used in this study included 28 pri-
mary lung cancers (6–20 mm) and 28 begin nodules that were
selected by matching their size and pattern to the cancers. A
ROC curve for the computer results is also shown.
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practice, and their knowledge obtained from visual
impression of images with various diseases constitutes
the foundation for their diagnosis. Two fundamental issues
related to the concept of similar images are: (1) how
radiologists perceive the similarity between two nodules
subjectively; and (2) how one can determine a reliable
similarity measure that would agree well with the
subjective similarity according to radiologists’ judgement.
If ‘‘similar’’ nodules determined by a computerised scheme
are not really similar to the unknown nodule in terms of
radiologists’ visual perception, these nodules would not be
useful in assisting radiologists in the diagnosis of an
unknown nodule.

However, it would be very difficult to develop a reliable
and useful method for quantifying the similarity of a pair

of images (or lesions) for visual comparison by radiolo-
gists. For example, for a given pair of lesions when most
of the measurable objective features such as size, shape
and contrast of the two lesions are almost identical, two
lesions may appear to a radiologist to be similar visually
based on the diagnosis of benign lesions; however, two
lesions may look very different to the radiologist if one of
the lesions contains a very subtle spiculation indicating
malignancy. It is also possible that, even when most of the
objective features are quite different, two lesions will look
very similar to radiologists if the two lesions contain only
one common feature such as subtle localised spiculations,
localised sharp edges or non-uniform densities. Therefore,
it would be very difficult to define a reliable measure for
the similarity of lesions based on objective image features

Figure 11. Illustration of the potential usefulness of similar images for distinction between malignant and benign lesions. The image
in the centre is an unknown case on low dose CT, and two sets of benign and malignant nodules that would be similar to the
unknown case are shown on the left and right, respectively.
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alone. It would be necessary to take into account both
objective features and subjective judgement on the
similarities for many pairs of lesions in formulating a
useful measure for selection of similar lesions in a
database.

Recently, Li et al [107] conducted an observer study to
obtain subjective rating data by radiologists on the
similarity of a large number of pairs of pulmonary
nodules in LDCT images. They employed an ANN to
learn the relationship between objective features and
subjective ratings on pairs of nodules. The ANN was
trained by use of objective features for pairs of nodules as
the input data, and the corresponding subjective similarity
rating as the teacher data. The trained ANN was used as a
tool to provide a new psychophysical similarity measure
for objective features of a given pair of nodules, which
were entered as input data. Li et al [107] demonstrated a
high correlation value of 0.72 for the relationship between
psychophysical measures and radiologists’ subjective rat-
ings; this appears to be a promising development.

There is another important issue related to the use of
similar images in practical clinical situations, that is the
need for a unique database that includes a large number of
images which can be used as being similar to those in
many unknown new cases. Although it may take

considerable time, a database for this purpose can be
developed in the future.

Quantitative analysis of diffuse lung diseases on
HRCT

The differential diagnosis of diffuse lung disease is a
major subject in HRCT. However, it is considered a
difficult task for radiologists, partly because of the
complexity and variation in diffuse disease patterns on
HRCT images, and also because of the subjective terms
used for describing diffuse lung diseases. Therefore, our
goal was to develop a CAD scheme [110] for diffuse lung
diseases on HRCT to assist radiologists’ image interpreta-
tion as a ‘‘second opinion’’.

In an initial study [110], we attempted to determine
physical measures on HRCT images in order to detect and
characterise diffuse lung diseases, which will be the basis
for application to the differential diagnosis of diffuse lung
disease in the future. We compared the physical measures
of normal slices with those of abnormal slices, which
included six typical patterns of diffuse lung diseases. In
addition, we investigated the classification performance for
distinction between normal and abnormal slices. Our
database consisted of 315 HRCT images selected from 105

Figure 12. Illustration of ‘‘gold standard’’ for one normal and six abnormal patterns of diffuse lung diseases on high resolution CT
images that were determined by the areas marked independently by three radiologists.
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Figure 13. Illustration of images (96696) selected from the seven slices in Figure 12, histograms of region-of-interest (ROI) images,
and output images for air density components, line components, nodular components and multilocular components.

Figure 14. Illustration of the
distribution of mean CT values
and the standard deviation of
CT values for six abnormal
patterns and normals on high
resolution CT.
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Figure 15. Illustration of an original magnetic resonance angiography (MRA) image and three images selectively enhanced for dot,
line, and plane objects, all of which were produced by maximum intensity projection (MIP) image processing. Circles indicate a large
(7.5 mm) aneurysm.

Figure 16. An original mag-
netic resonance angiography
(MRA) image and an
enlarged aneurysm detected
by computer.

K Doi

S14 The British Journal of Radiology, Special Issue 2005



patients, which included normal and abnormal slices
related to six different patterns, i.e. GGOs, reticular and
linear opacities, nodular opacities, honeycombing, emphy-
sematous change and consolidation. The areas that
included specific diffuse patterns in the 315 HRCT
images were marked by three radiologists independently
on the CRT monitor in the same manner to how they
commonly describe them in their radiological reports. The
areas with a specific pattern, which three radiologists
marked independently and consistently as the same
patterns, were used as ‘‘gold standard’’ for specific
abnormal opacities in this study, as illustrated in
Figure 12.

In our CAD scheme developed by Uchiyama et al [110],
the lungs were first segmented from background in each
slice by use of a morphological filter and a thresholding
technique, and were then divided into many contiguous
ROIs with a 32632 (and/or 96696) matrix. Six physical
measures that were determined in each ROI included the
mean and the standard deviation of the CT value, air
density components, nodular components, line compo-
nents and multilocular components [110], as illustrated in
Figure 13. The distribution of two of the physical
measures is shown in Figure 14, where some of the six
different patterns listed above can be clearly distinguished
even with the use of only two physical measures. ANNs
were employed for distinguishing between seven different
patterns, which included normals and the six patterns
associated with diffuse lung disease. The sensitivity of this
computerised method for detection of the six abnormal
patterns in each ROI was 99.2% (122/123) for GGOs,
100% (15/15) for reticular and linear opacities, 88.0% (132/
150) for nodular opacities, 100% (98/98) for honeycomb-
ing, 95.8% (369/385) for emphysematous change and 100%
(43/43) for consolidation. The specificity in detecting a
normal ROI was 88.1% (940/1067). Therefore, this com-
puterised method may be useful in assisting radiologists in
their assessment of diffuse lung disease on HRCT images.

Detection of intracranial aneurysms on magnetic
resonance angiography

Prospective autopsy and angiographic studies indicated
that between 3.6% and 6% of the general population have
intracranial aneurysms [111] that could cause a sub-
arachnoid haemorrhage (SAH) due to rupture of the
aneurysm [112]. SAH is a serious disorder with high
mortality and morbidity [113–116] (approximately 40–50%
mortality rate) [113, 117]. The rate of rupture of
asymptomatic aneurysms was estimated to be 1–2% per
year [111, 118]. During the past decade, there has been
considerable interest in the roles of ‘‘less invasive’’ imaging
modalities such as computed tomographic angiography
(CTA) and magnetic resonance angiography (MRA) in the
detection of intracranial aneurysms [111, 119–125].
However, it is still difficult and time consuming for
radiologists to find small aneurysms, or it may not be easy
to detect even medium-sized aneurysms on maximum
intensity projection (MIP) images because of overlap with
adjacent vessels and unusual locations. Therefore, a CAD
scheme would be useful in assisting radiologists in the
detection of intracranial aneurysms, especially small
aneurysms, by use of MRA.

Recently, Arimura et al [126, 127] have developed a
computerised scheme for automated detection of unrup-
tured intracranial aneurysms in MRA based on the use of
a 3D selective enhancement filter [128] for dots (aneur-
ysms). 29 cases with 36 unruptured aneurysms (diameter
3–26 mm, mean 6.6 mm) and 31 non-aneurysm cases were
used in this study. The isotropic 3D-MRA images with
40064006128 voxels (a voxel size of 0.5 mm) were
processed by use of a selective, multiscale enhancement
filter [128], as illustrated in Figure 15. The initial
candidates were identified by use of a multiple grey-level
thresholding technique on the dot-enhanced images and a
region-growing technique with monitoring of some image
features. All candidates were classified into four types
according to the size and local structures based on the
effective diameter and the skeleton image of each
candidate, i.e. large candidates and three types of small
candidates – a short-branch type a single-vessel type and a
bifurcation type. In each group, a number of false
positives were removed by use of different rules on
localised image features related to grey levels and
morphology. LDA was employed for further removal of
false positives. With our CAD scheme, each of the 36
aneurysms was correctly detected, with 2.4 false positives
per patient based on a leave-one-out-by-patient test
method. Therefore, our CAD system would be useful in
assisting radiologists in the detection of intracranial
aneurysms in MRA. Our preliminary study on the effect
of the computer output on radiologists’ detection perform-
ance indicated that the ROC curve for radiologists in the
detection of intracranial aneurysms in MRA was improved
when the computer output such as that illustrated in
Figure 16 was available.

Conclusion

A number of CAD schemes have been developed for
detection and classification of lesions in medical images.
Observer performance studies indicated that the computer
output helped radiologists to improve their diagnostic
accuracy. Because CAD can be applied to all imaging
modalities, all body parts and all kinds of examinations, it
is likely that CAD will have a major impact on medical
imaging and diagnostic radiology in the 21st century.
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