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Abstract—Modern traceability tools employ information re-
trieval (IR) methods to generate candidate traceability links.
These methods track textual signs embedded in the system to
establish relationships between software artifacts. However, as
software systems evolve, new and inconsistent terminology finds
its way into the system’s taxonomy, thus corrupting its lexical
structure and distorting its traceability tracks. In this paper,
we argue that the distorted lexical tracks of the system can
be systematically re-established through refactoring, a set of
behavior-preserving transformations for keeping the system qual-
ity under control during evolution. To test this novel hypothesis,
we investigate the effect of integrating various types of refactoring
on the performance of requirements-to-code automated tracing
methods. In particular, we identify the problems of missing,
misplaced, and duplicated signs in software artifacts, and then ex-
amine to what extent refactorings that restore, move, and remove
textual information can overcome these problems respectively.
We conduct our experimental analysis using three datasets from
different application domains. Results show that restoring textual
information in the system has a positive impact on tracing. In
contrast, refactorings that remove redundant information impact
tracing negatively. Refactorings that move information among
the system modules are found to have no significant effect. Our
findings address several issues related to code and requirements
evolution, as well as refactoring as a mechanism to enhance the
practicality of automated tracing tools.

Index Terms—Refactoring, traceability, information retrieval.

I. INTRODUCTION

Traceability is defined as “the ability to describe and follow
the life of a requirement, in both a forwards and backwards
direction (i.e., from its origins to its subsequent deployment
and use, and through all periods of on-going refinement
and iteration in any of these phases)” [1]. Establishing and
maintaining traceability information is vital to several software
engineering activities such as program comprehension [2],
Verification and Validation (V&V) [3], [4], impact analysis [5],
feature location [6], and software reuse [7]. Traceability is
often accomplished in practice by linking various software
artifacts (e.g., requirements, design, source code, and test
cases) through a matrix, called a traceability matrix (TM).
However, when dealing with large-scale complex systems in
which software artifacts evolve constantly over time, building
the TM manually can become a tedious, exhaustive, and error-
prone task [1], [3], [8], [9].

To reduce the effort associated with the manual approach,
modern traceability tools employ information retrieval (IR)
methods for automated support [3], [9], [10]. Examples of IR
methods that have been heavily investigated in the automated
tracing literature include: Vector Space Model (VSM) [3], La-
tent Semantic Indexing (LSI) [11], and Probabilistic Network
Model (PN) [9]. These methods aim to match a query of
keywords with a set of artifacts in the software repository, and
rank the retrieved artifacts based on how relevant they are to
the query using a predefined similarity measure. The main as-
sumption is that the same words are used whenever a particular
concept is described [12], [13]. Therefore, artifacts having a
high textual similarity probably share several concepts, so they
are likely good candidates to be traced from one another [12].
However, as projects evolve, new and inconsistent terminology
gradually finds its way into the system’s taxonomy [14],
causing topically related system artifacts to exhibit a large
degree of variance in their lexical contents [15], [16]. This
phenomena is known as the vocabulary mismatch problem and
is regarded as one of the principal causes of poor accuracy in
retrieval engines [17].

When lexical tracks in the system get distorted, cases such
as hard-to-trace, or stubborn, requirements emerge [18].
A potential solution for this problem is to systematically
recover the decaying lexical structure of the system. We
believe this can be achieved through refactoring, a set of
behavior-preserving transformations to improve the quality of
a software system without changing its external behavior [19].
These transformations act on the non-formal information of
software artifacts, namely the features that do not have an
influence on the functionality of the system. Such information
is embedded in the taxonomy of the source code and is used
by tractability tools to generate candidate links. Based on that
common ground, in this paper, we hypothesize that certain
refactorings will help to re-establish the system’s corrupt
lexical structure, thus improving the retrieval capabilities of
IR methods working on that structure.

Refactoring can take different forms affecting different types
of artifacts. Therefore, testing our research hypothesis entails
addressing several sub research questions such as: What refac-
torings should be integrated? Which techniques have more
influence on the system’s traceability? And how to evaluate
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such influence? To answer these questions, in this paper, we
propose a framework for integrating refactoring techniques
in the automated tracing process. We conduct an experiment
using three datasets from various application domains to build,
calibrate, and evaluate our framework. Our main objective is to
describe a novel, yet a practical and cost-effective approach,
for systematically enhancing the performance of automated
tracing tools.

The rest of the paper is organized as follows. Section
II presents a theoretical foundation of IR-based automated
tracing. Section III introduces refactorings and describes the
different categories of refactoring used in our analysis. Section
IV describes our research methodology and experimental anal-
ysis. Section V presents the results and the study limitations.
Section VI discuses our findings and their implications. Sec-
tion VII reviews related work. Finally, Section VIII concludes
the paper and discusses future work.

II. IR-BASED AUTOMATED TRACING

To understand the mechanisms of automated tracing tools,
we refer to the main theory underlying IR-based automated
tracing. In their vision paper, Gotel and Morris [13] established
an analogy between animal tracking in the wild and require-
ments tracing in software systems. This analogy is based on
reformulating the concepts of sign, track and trace. A sign in
the wild is a physical impact of some kind left by the animal in
its surroundings, e.g. a footprint. Fig. 1-a shows a continuous
track of footprints left by a certain mammal. The task of the
hunter is to trace animals’ tracks by following these signs. In
other words, to trace means basically to follow a track made
up of a continuous line of signs. Similarly, in requirements
tracing, a sign could be a term related to a certain concept,
left by a software developer or a system engineer. Fig. 1-c
shows a continuous track of related words from the health
care domain <patient, ill, prescription, hospital>. The task
of the IR methods is to trace these terms to establish tracks
in system. These continuous tracks are known as links.

The availability of uniquely identifying marks, or signs, is
vital for the success of the tracing process. However, just as
in the wild, tracks in software systems can get discontinued
or distorted due to several practices related to software evo-
lution [14], [20]. Next we identify three symptoms related to
code decay that might lead to such a problem. These symptoms
include:
• Missing signs: A track can get discontinued when a

concept-related term in a certain artifact is lost. Fig. 1-
d shows how the trace link becomes discontinued when
the word <prescription> is changed to <x>. This can
be equivalent to a footprint being washed off by rain in
the wild (Fig. 1-b).

• Misplaced signs: A track can also be distorted by a
misplaced sign. For example, the word <computer>,
which supposedly belongs to another track, is positioned
in the track of Fig. 1-d. In the wild this is equivalent
to a footprint implanted by another animal on the track
of unique footprints left by the animal being traced (e.g.
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Fig. 1. Illustration of sign tracking.

Fig. 1-b shows a bird’s footprint left on the mammal’s
track in Fig. 1-a).

• Duplicated signs: This phenomenon is caused by the
fact that some identical or similar code fragments are
replicated across the code. These fragments are known
as code clones [21]. In our example in Fig. 1-d, this
can be equivalent to a track branching into some other
module that contains a word similar to one of the signs of
the trace link identified in Fig. 1-c. Some animals adopt
this strategy in the wild to confuse their predators i.e.
they duplicate their footprints in different directions at
different periods of time.

Our conjecture in this paper is that refactoring will help
to reverse the effect of these symptoms, thus systematically
re-establishing track in the system. Following is a brief de-
scription of refactoring, its operation, and its main categories.

III. REFACTORING

The main goal of refactoring is to improve the quality
of a software system (e.g., increase maintainability, reusabil-
ity, and understandability) by systematically applying a set
of behavior-preserving transformations that do not alter the
external behavior of the system, yet improve its internal
structure [19]. While such transformations can be applied to
various types of artifacts, such as design and requirements,
they are mostly known for affecting source code [22]. Program
refactoring starts by identifying bad smells in source code. Bad
smells are “structures in the code that suggest the possibility of
refactoring” [23]. Once refactoring has been applied, special
metrics can be used to determine the effect of changes on
the quality attributes of the system, such as maintainability
and understandability [24]. A comprehensive catalog of code
refactorings can be found in http://refactoring.com/.

Refactoring can be manual, semi, or fully automated. Man-
ual refactoring requires software engineers to synthesize and
analyze code, identify inappropriate or undesirable features
(bad smell), suggest proper refactorings for these issues,
and perform potentially complex transformations on a large
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number of entities manually. Due to the high effort associated
with such a process, the manual approach is often described as
a repetitive, time-consuming, and error-prone [25]. The semi-
automated approach is what most contemporary integrated
development environments (IDE’s) implement. Under this ap-
proach, refactoring activities are initiated by the developer, the
automated support helps to carry out the refactoring process,
such as locating entities for refactoring and reviewing refac-
tored results. In contrast, the fully automated approach tries
to initiate refactoring by automatically identifying bad smell
in source code and carrying out necessary transformations
automatically. However, even in fully automated tools, the
final decision whether to accept or reject the outcome of the
automated process is left to the human [26].

Deciding on which particular refactoring to apply to a
certain code smell can be a challenge. In fact, applying
arbitrary transformations to a program is more likely to corrupt
the design rather than improve it [19]. However, there is no
agreement on what transformations are most beneficial and
when they are best applied. In general, such decisions should
stem from the context of use, such as characteristic of the
problem, the cost-benefit analysis, or the goal of refactoring
(e.g., improving robustness, extensibility, reusability, under-
standability, or performance of the system) [22], [25]. In
automated tracing, the main goal of adopting refactoring is
to improve the system’s lexical structure in such a way that
helps IR-based tracing methods to recover more accurate lists
of candidate links. Based on that, we define the following
requirements for integrating refactoring in the IR-based auto-
mated tracing process:

• Altering non-formal information of the system: As men-
tioned earlier, IR-based tracing methods exploits non-
formal information of software artifacts [27]. Based on
that, for any refactoring to have an impact on automated
tracing methods, it should directly affect the system’s
textual content.

• Coverage: Traceability links can be spreading all over the
system, linking a large number of the system’s artifacts
through various traceability relations [7]. Therefore, any
adopted refactoring shall affect as many software entities
as possible. Refactorings affecting only a few entities are
unlikely to have a significant impact on the performance.

• Automation: Since the main goal of automated tracing
tools is to reduce the manual effort, any integrated
refactoring should allow automation to a large extent. For
any refactoring process to be considered effort-effective,
it should provide automated solutions for code smell
detection and applying code changes [28]. Automating
these two steps will help to alleviate a large portion of
effort usually associated with manual refactoring.

Based on these requirements, we identify three categories of
refactorings that can be integrated in the automated tracing
process. These categories include: refactorings that restore,
remove and move textual information in the the system.
Following is a description of these categories.

A. Restore Information

Refactorings under this category target the degrading tax-
onomy in the system. The main goal is to restore the textual
knowledge that is lost over iterations of system evolution.
Several refactorings can be classified under this category (e.g.
Table I). The most popular refactoring in this category is
Rename Identifier (RI). As the name implies, this transfor-
mation includes simply renaming an identifier (e.g. variable,
class, structure, method, or field) to give it a more relevant
name [23]. This particular refactoring is expected to target the
Missing Sign problem affecting traceability methods. As men-
tioned earlier, to be considered in our analysis, refactorings
should provide support for automatic detection of code smell.
To identify opportunities for Rename Identifier refactoring, we
apply the following rules:

1) Identifiers with less than 4-character length: These are
usually acronyms or abbreviations. In that case, the long
form is used. For example, the parameter HCP in our
health care system is expanded to HealthCarePersonnel.
If the identifier is less than 4 characters but it is not an
acronym nor an abbreviation, then it is renamed based
on the context. If any of these parameters also appears
in the requirements being traced it is also expanded to
ensure an exact match.

2) Identifiers which have a special word as part of their
names: For example, the variable PnString is expanded
to PatientNameString.

3) Identifiers with generic names: For example, the func-
tion import is renamed to indicate what exactly it
imports. In our health care system import is expanded
to importPatientRecords.

Once the candidate identifiers for renaming have been iden-
tified, we use the refactoring tool available in Eclipse 4.2.1
IDE to carry out the refactoring process. This will ensure
that all corresponding references in the code are updated
automatically. Finally, the code is compiled to make sure no
bugs are introduced during refactoring.

B. Move Information

This category of refactorings is concerned with moving code
entities between system modules. The goal is to reduce cou-
pling and increase cohesion in the system, which is a desired
quality attribute of Object-Oriented design [29]. Refactorings
under this category provide a remedy against the Feature Envy
bad smell. An entity has Feature Envy when it uses, or being
used by, the features of a class other than its own (different
from that where it is declared). This may indicate that the
entity is misplaced [23]. Examples of refactorings under this
category are shown in Table I.

In our experiment, we adopt Move Method (MM) refactor-
ing as a representative of this category. By moving entities
to their correct place, this particular refactoring is expected
to target the Misplaced Sign problem mentioned earlier. To
identify potentially misplaced entities, we adopt the strategy
proposed by Tsantalis and Chatzigeorgiou [30], in which they
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TABLE I
REFACTORING CATEGORIES WITH SAMPLE REFACTORING

Restore Information Move Information Remove Information
Rename Identifier Move Method Extract Method

Add Parameter Move Parameter Decompose Conditional
Split Temporary Var Push Down Field Parameterize Method

-riable Push Down Method Remove Dou-
ble Negative

introduced a novel entity placement metric to quantify how
well entities have been placed in code. This semi-automatic
strategy starts by identifying a set of the entities each method
accesses (parameters or other methods). Feature Envy bad
smell is then detected by measuring the strength of coupling
that a method has to methods (or data) belonging to all foreign
classes. The method is then moved to the target foreign class
in such a way that ensures that the behavior of the code will
be preserved. This methodology has been implemented as an
Eclipse plug-in that identifies Feature Envy bad smells and
allows the user to apply the refactorings that resolve them
[31]. Move Method refactoring of Eclipse 4.2.1 IDE is used
to move methods. In our analysis we only consider misplaced
methods. Move Attribute refactoring is excluded based on the
assumption that attributes have stronger conceptual binding to
the classes in which they are initially defined, thus they are
less likely than methods to be misplaced [30].

C. Remove Information

These refactorings remove redundant or unnecessary code
in the system. Table I shows examples of refactorings that
can be classified under this category. A popular smell such
refactorings often handle is Duplicated Code. This smell, usu-
ally produced by Copy-and-Paste programming [32], indicates
that the same code structure appears in more than one place.
These duplicated structures are known as code clones and are
regarded as one of the main factors for complicating code
maintenance tasks [33]. Exact duplicated code structures can
be detected by comparing text [23]. However, other duplicates,
where entities have been renamed or the code is only function-
ally identical, need more sophisticated techniques that work on
the code semantics rather than its lexical structure [34].

The most frequent way to handle code duplicates is Ex-
tract Method (EM) refactoring [35], [36]. For each of the
duplicated blocks of code, a method is created for that code,
and then all the duplicates are replaced with calls to the
newly extracted method. When the duplicates are scattered
in multiple classes, the new extracted method is assigned
to the class that calls it the most. In case of a tie, the
method is assigned randomly. Finally, the extracted method is
given a name based on the context. By removing potentially
ambiguous duplicates this transformation is expected to target
the Duplicated Sign problem of software artifacts. We use
Duplicated code detection tool (SDD) [37], an Eclipse plug-
in to detect the Duplicated Code instances. Extract Method
refactoring available in Eclipse 4.2.1 IDE is used to apply the
transformations.

TABLE II
EXPERIMENTAL DATASETS

Dataset LOC COM No. Req. No. SC Links
iTrust 20.7K 9.6K 50 299 314
eTour 17.5K 7.5K 58 116 394
WDS 44.6K 10.7K 26 521 229

IV. METHODOLOGY AND RESEARCH HYPOTHESIS

This section describes our research approach, including
our experimental framework, datasets used in conducting our
experiment, and evaluation mechanisms to assess the perfor-
mance.

A. Datasets

Three datasets are used to conduct the experiment in this
paper including: iTrust, eTour, and WDS. Next is a description
of these datasets and their application domains:
• iTrust: An open source medical application, developed

by software engineering students at North Carolina State
University (USA). It provides patients with a means
to keep up with their medical history and records and
to communicate with their doctors [38]. The dataset
(source code: v15.0, Requirements: v21) contains 314
requirements-to-code links. The links are available at
method level. To conduct our analysis, the links granular-
ity is abstracted to class level based on a careful analysis
of the system.

• eTour: An open source electronic tourist guide appli-
cation developed by final year Master’s students at the
University of Salerno (Italy). The dataset contains 394
requirements-to-code links that were provided with the
dataset.

• WDS: A proprietary software-intensive platform that pro-
vides technological solutions for service delivery and
workforce development in a specific region of the United
States. In order to honor confidentiality agreements, we
use the pseudonym WDS to refer to the system. WDS
has been deployed for almost a decade. The system is
developed in Java and current version has 521 source
code files. For our experiment, we devise a dataset of
229 requirements-to-code links, linking a subset of 26
requirements to their implementation classes. These links
were provided by the system’s developers.

Table II shows the characteristics of each dataset. The table
shows the size of the system in terms of lines of source
code (LOC), lines of comments (COM), source and target of
traceability links e.g., number of requirements (No. Req.) and
number of code elements (No. SC), and the number of correct
traceability links.

B. Experimental Analysis

Our experimental framework can be described as a multi-
step process as follows:
• Refactoring: Initially the system is refactored using vari-

ous refactorings mentioned earlier. The goal is to improve
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the system lexical structure before indexing. In all of our
experimental datasets, traceability links are established
at class granularity level (e.g. requirement-to-class) [3].
This limits our analysis in this paper to refactorings
that work within the class scope (e.g. Move Method
and Extract Method), rather than refactorings that affect
the class structure of the system (e.g. Remove Class
or Extract Class). Enforcing this requirement ensures
that our gold-standard remains unchanged after applying
various refactorings.
Results of applying different refactorings over our
datasets are shown in Table III. The table shows number
of affected entities (E) in each dataset, (e.g number of
moved or extracted methods and number of renamed
identifiers), the number of affected classes in each system
(C), and the number of affected classes in the gold-
standard, or classes being traced (C’).

• Indexing: This process starts by extracting textual content
(e.g. comments, code identifiers, requirements text) from
input artifacts. Lexical processing (e.g. splitting code
identifiers into their constituent words) is then applied.
Stemming is performed to reduce words to their roots
(i.e., reducing a word to its inflectional root: “patients”
→ “patient”). In our analysis we use Porter stemming
algorithm [39]. The output of the process is a compact
content descriptor, or a profile, which is usually repre-
sented as keywords components matrix or a vector space
model [40].

• Retrieval: IR methods are used to identify a set of trace-
ability links by matching the traceability query’s profile
with the artifacts’ profiles in the software repository.
Links with similarity scores above a certain threshold
(cutoff) value are called candidate links [3]. In our
experiment, we use Vector Space Model with TFIDF
weights as our experimental baseline. VSM-TFIDF is
a popular scheme in VSM which has been validated
through numerous traceability studies as an experimental
baseline [3], [41].

• Evaluation: At this step, different evaluation metrics are
used to assess the different aspects of the performance.
In particular, two categories of performance measures
are used to evaluate the quality and the browsability of
the generated lists of candidate links. The following is a
description of these categories.

C. Metrics

Sundaram et al. [42] identified a number of primary and
secondary measures to assess the performance of different trac-
ing tools and techniques. These measures can be categorized
into two groups as follows:

1) Quality Measures: Precision (P) and Recall (R) are the
standard IR metrics to assess the quality of the different
traceability tools and techniques. Recall measures coverage
and is defined as the percentage of correct links that are
retrieved, and precision measures accuracy and is defined as
the percentage of retrieved links that are correct [43]. Formally,

TABLE III
AFFECTED ENTITIES (E) AND CLASSES (C, C’) BY REFACTORING

iTrust eTour WDS
Refactoring E C C’ E C C’ E C C’

RI 175 113 110 85 63 57 203 174 166
MM 22 44 44 17 31 29 24 62 61
EM 132 201 193 45 92 88 62 102 98

if A is the set of correct links and B is the set of retrieved
candidate links, then Recall and Precision can be defined as:

R (Recall) = |A ∩B|/|A| (1)

P (Precision) = |A ∩B|/|B| (2)

2) Browsability Measures: Browsability is the extent to
which a presentation eases the effort for the analyst to navigate
the candidate traceability links. For a tracing tool or a method
that uses a ranked list to present the results, it is important
to not only retrieve the correct links but also to present them
properly. Being set-based measures, precision and recall do
not give any information about the list browsability. To reflect
such information, other metrics are usually used. Assuming h
and d belong to sets of system artifacts H = {h1, . . . , hn}
and D = {d1, . . . , dm}. Let L = {(d, h)|sim(d, h)} be a set
of candidate traceability links generated by the tool, where
sim(d, h) is the similarity between d and h score given by
tool. LT is the subset of true positives (correct links) in L ,
a link in this subset is described as (d,h). LF is the subset of
false positives in L, a link in this subset is described using the
notion (d′, h′). Secondary metrics can be described as:
• Mean Average Precision (MAP): is a measure of quality

across recall levels [44]. It can be described as the mean
precision after each relevant link retrieved (true postive).
Eq. 3 describes MAP. A method or a tool that produces
a higher MAP is superior.

MAP =
1

|H|

H∑
j=1

1

mj

mj∑
k=1

Precion(LjT ) (3)

• DiffAR: measures the contrast of the list [45]. It can be
described as the difference between the average similarity
of true positives and false positives in a ranked list. A list
with higher DiffAR has a clearer distinction between its
correct and incorrect links, hence, is considered superior.
Eq. 4 defines DiffAR.

DiffAR =

∑
(h,d) sim(h, d)

|LT |
−

∑
(h′,d′) sim(h′, d′)

|LF |
(4)

Performance of each dataset after applying a certain refac-
torings, in comparison to the baseline (VSM), is presented
as a precious/recall curve over various threshold levels (<
.1, .2, ..., 1 >) [3]. A higher threshold level means a larger
list of candidate links, i.e. more links are considered in the
analysis. Wilcoxon Signed Ranks test is used to measure the
statistical significance of the results. This is a non-parametric
test that makes no assumptions about the distribution of the
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data [46]. This test is applied over the combined samples
from two related samples or repeated measurements on a
single sample (before and after effect). IBM SPSS Statistics
software package is used to conduct the analysis. We use
α = 0.05 to test the significance of the results. Note that
different refactorings are applied independently, so there is no
interaction effect between them.

V. RESULTS AND IMPACT

Fig. 2 shows the recall/precision data of our three datasets
after applying the different refactorings (RI: Rename Identifier,
MM: Move Method and EM: Extract Method) in comparison
to the baseline. Analysis of variance over the results is shown
in Table IV. In general, the results show that different types
of refactorings vary in their impact on the performance. In
details, Rename Identifier refactoring has the most obvious
positive impact on the results, affecting the recall significantly
in all three datasets. In iTrust dataset, both precision and recall
have improved significantly, achieving optimal recall levels
at higher thresholds. The same performance is detected in
eTour dataset in which the improvement in the recall and
the precision over the baseline is statistically significant. In
WDS dataset the precision has dropped significantly with the
significant increase in the recall. This can be explained based
on the inherent traded-off between precision and recall; even
though renaming identifiers has helped to retrieve more true
positives, it also retrieve a high number of false positive.

The results also show that Move Method refactoring has
the least influence on the performance. In all datasets no
significant improvements in the recall or the precision are
detected. In fact, the performance after applying this particular
refactoring is almost equivalent to the baseline. In contrast,
statistical analysis show that Extract Method refactoring has an
overall negative impact on the performance. In terms of recall,
the results show that removing redundant textual knowledge
from the system has caused a significant drop in the coverage,
taking the recall down to significantly low levels in all three
datasets. The significant increase in the precision levels can
be simply explained based on the inherent trade-off between
precision and recall i.e. smaller numbers of links are retrieved,
thus, the precision has improved.

In terms of browsability, statistical analysis results in Table
IV show that Rename Identifier and Move Method have no
significant impact on the average DiffAR. However, Extract
Method seems to be achieving significantly better performance
over the baseline. In terms of MAP, Fig. 3 shows the superior
performance of Extract Method over other refactorings in
comparison to the baseline. However, this behavior is expected
based on the fact that VSM retrieves the smallest number
of links after applying Extract Method, hence, achieves the
highest precision values, which in turn results in higher MAP
values. MAP results also show the inconstant performance of

Rename Identifier across the different datasets. In iTrust, Re-
name Identifier starts with good MAP values at lower thresh-
old levels, but could not beat the baseline halfway through;
no significant difference in the performance is detected. In
contrast, in eTour it achieves significantly better performance
than the baseline and significantly worst performance in WDS.
Finally, Move Method does not have any significant impact
on the MAP values, which is actually expected based on the
fact that it does not have a significant impact on the primary
performance measures.

In general, our results suggest that Rename Identifier refac-
toring has the most significant positive effect on the results,
improving the recall to significantly higher levels in all
datasets. In contrast, Extract Method had a significantly nega-
tive impact, taking the recall down to significantly lower levels
in all three datasets, and Move Method has no clear impact on
the performance. Automated tracing methods emphasize recall
over precision [3]. This argument is based on the observation
that an error of commission (false positive) is easier to deal
with than an error of omission (false negative). Based on
that, we conclude that Rename Identifier refactoring has the
most potential as a performance enhancement technique for
IR-based automated tracing.

A. Limitations

This study has several limitations that might affect the
validity of the results. Threats to external validity impact
the generalizability of results [47]. In particular, the results
of this study might not generalize beyond the underlying
experimental settings. A major threat to our external validity
comes from the datasets used in this experiment. In particular,
two of the projects are developed by students and are likely
to exhibit different characteristics from industrial systems.
We also note that our traceability datasets are of medium
size, which may raise some scalability concerns. Nevertheless,
we believe that using three datasets from different domains,
including a proprietary software product, helps to mitigate
these threats.

Another threat to the external validity might stem from
the fact that we only experimented with three refactorings.
However, the decision of using these particular refactorings
was based on careful analysis of the IR-based automated
tracing problem. In addition, these refactorings have been
reported to be the most frequently used in practice [35], [36].
Another concern is the fact that only requirements-to-code-
class traceability datasets were used. Therefore, our findings
might not necessarily apply to other types of traceability
such as requirements-to-requirements, requirement-to-design
or even different granularity levels such as requirements-
to-method. However, our decision to experiment only with
requirements-to-class datasets can be justified based on the
fact that refactoring has excelled in source code, especially
Object-Oriented code, more than any other types of artifacts,
thus we find it appropriate at the current stage of research
to consider this particular traceability type at this granularity
level.
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Fig. 2. Performance after applying different refactorings (RI: Rename Identifier, MM: Move Method, XM: eXtract Method)
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Fig. 3. Performance after applying different refactorings (RI: Rename Identifier, MM: Move Method, XM: eXtract Method)

Other threats to the external validity might stem from
specific design decisions such as using VSM with TFIDF
weights as our experimental baseline. Refactoring might have
a different impact on other IR methods such as LSI and
ESA, thus different results might be obtained. Also, a threat
might come from the selection of procedures and tools used
to conduct refactoring. However, we believe that using these
heavily-used and freely-available open source tools helps to
mitigate this threat. It also makes it possible to independently
replicate our results.

Internal validity refers to factors that might affect the causal
relations established in the experiment. A major threat to our
study’s internal validity is the level of automation used when
applying different refactorings. In particular, an experimental
bias might stem from the fact that the renaming process is
a subjective task carried out by the researchers. In addition,
human approval of the outcome of the refactoring process was
also required. However, as mentioned earlier, in the current
state-of-the-art in refactoring research and practice, human
intervention is a must [22], [23]. In fact, it can be doubtful
whether refactoring can be fully automated without any hu-
man intervention [26]. Therefore, these threats are inevitable.
However, they can be partially mitigated by automation.

In our experiment, there were minimal threats to construct
validity as standard IR measures (recall, precision, MAP and
DiffAR), which have been used extensively in requirements
traceability research, were used to assess the performance of
different treatments applied. We believe that these two sets of
measures sufficiently capture and quantity the different aspects
of methods evaluated in this study.

VI. DISCUSSION

Essential questions to answer when refactoring a software
system are what refactorings to apply to certain situations and
how to apply them [23], [26]. In this paper we tried to address
such questions from a traceability perspective. In particular,
our findings in this paper provide insights into developers’
actions that might have an impact on the system’s traceability
during evolution, the extent of such impact, best ways to
implement beneficial transformations, and how potentially
negative effects can be reversed.

Our results suggest that restoring textual information has
the most positive impact on the system’s traceability. In
particular, Rename Identifier refactoring targets the vocabulary
mismatch problem, which seems to be the most dominant
problem affecting traceability tools. In the automated tracing
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TABLE IV
WILCOXON SIGNED RANKS TEST RESULTS (α = .05) FOR PRIMARY PERFORMANCE MEASURES

iTrust eTour WDS

Recall Precision Recall Precision Recall Precision
(Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value)

Refactorings
Rename Identifier (-2.395, .017) (-2.803, .005) (-2.701, .007) (-2.803, .005) (-2.090, .037) (-2.803, .005)

Move Method (-.405, .686) (-1.599, .110) (-1.753, .080) (-.663, .508) (-1.572, .116) (.000, 1.000)
Extract Method (-2.803, .005) (-2.803, .005) (-2.701, .007) (-2.803, .005) (-2.803, .005) (2.701, .007)

MAP DiffAR MAP DiffAR MAP DiffAR
(Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value) (Z, p-value)

Refactorings
Rename Identifier (-.357, .721) (-1.732, .083) (2.380, .017) (-1.414, .157) (-2.803, .005) (-1.000, .317)

Move Method (-.653, .514) (.000, 1.000) (1.478, .139) (.000, 1.000) (-1.680 .093) (.000, 1.000)
Extract Method (-2.803, .005) (-2.842, .004) (-2.809, .005) (-2.803, .005) (-2.803, .005) (-3.051, .002)

literature, this particular transformation can be considered
equivalent to other techniques that are usually used to handle
the vocabulary mismatch problem. Such techniques include
directly implanting tracing information in the system or using
external thesaurus [3], and query expansion [18], [41]. While
our approach confirms the benefits of such techniques, it
suggests a more systematic way for implementing them. In
particular, instead of creating and maintaining separate ad hoc
traceability thesaurus, arbitrarily implanting textual signs in
the system, or using external resources to expand the trace
query, this process can be handled systematically through
refactoring. This can be particularly beneficial to approaches
that use patterns in the namesof program entities to recover
traceability links in software systems [48]. Refactoring is now
being advocated as an essential step in any software process.
For example, in agile methods, refactoring has already been
integrated as a regular practice in the software life cycle [22].
In addition, refactoring tools, which support a large variety
of programming languages, have been integrated into most
popular development environments [26].

A surprising observation in this paper is that removing
redundant information from the system has a negative impact
on the performance. This suggests that redundant information,
while it is often considered a bad code smell from a refactoring
perspective [49], is actually serving a positive purpose for
traceability link recovery. Such observation can be used to
alter existing refactorings to mitigate the negative impact they
might have on traceability. For example, a suggested treatment
to reverse the negative effect of Extract Method is to use
comments. Whenever redundant code (code clone) is removed,
appropriate comments that describe the removed code can be
automatically inserted to fill the textual gap left by removing
code duplicates. This can be achieved by utilizing automatic
summarising techniques to generate comments from source
code [50].

Our results also show that moving information among the
system’s modules has no significant impact on traceability,
which suggests that misplaced signs are not as problematic
for traceability tools as missing or duplicated signs. This can
be explained based on the fact that Move Method does not
affect as many entities as other refactorings, thus its impact is
limited.

It is important to point out here that even after applying
proper refactorings, the tracing performance, especially in
terms of precision, is still far from being optimal. This suggests
that some work is needed on the other side of the trace
link i.e. the requirements themselves. Just like source code,
requirements can get outdated, and in order to keep the system
quality under control, they have to evolve too [51]. The
approach presented in this paper can be used to support such
a process. This can be achieved by observing hard-to-trace
requirements. These requirements that result in low precision
and recall, even after refactoring the code, represent candidates
for updating. In other words, our approach can be used to guide
the requirements evolution process [52], [53].

VII. RELATED WORK

In this paper, we addressed some of the issues associated
with code evolution that might affect the performance of
traceability methods. Related to our work is the work in
[54], in which Antoniol et al. developed a tool to establish
and maintain traceability links between subsequent releases of
an Object-Oriented software system. The method was used
to analyze multiple releases of two projects. Using such
information, the tool recovers design from the code, compares
recovered design with the actual design and helps the user
to deal with inconsistencies during evolution. Later in 2004,
Antoniol et al. [55] proposed an automatic approach to identify
class evolution discontinuities due to possible refactorings.
The approach identifies links between classes obtained from
refactoring, and cases where traceability links were broken due
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to refactoring. Cases such as class replacement, class merge
and split were considered in their analysis. Our approach is
distinguished from this work in the sense that we use refac-
toring as a preprocessing step to enhance the performance,
rather than dealing with the implications of already applied
refactorings.

Hammad et al. [56], proposed an approach to maintaining
code-to-design traceability during code evolution. In particular,
they developed a tool that uses lightweight analysis and
syntactic differencing of the source code changes to detect
when a particular code change may have broken traceability
links. Design documents are updated accordingly. Evaluation
of their approach showed that their approach outperforms a
manual inspection approach. Grechanik et al. [48] proposed
an approach for automating parts of the process of recovering
traceability links between types and variables in java programs
and elements of the system’s use case diagrams. The proposed
approach searches for patterns in the names and the values of
program entities, and uses such patterns to recover traceability
links between these entities and elements of the system’s
use cases in evolving software systems. Our work supports
such approach by restoring identifiers names, thus recovering
missing patterns in the system.

The approach proposed by Charrada et al. [57] tackles the
problem we tackle in this paper from a different perspective.
In particular, they proposed an approach to automatically
identifying outdated requirements. This approach is based on
analyzing source code changes during evolution to identify
the requirements that are likely to be impacted by the change.
This approach can be complementary to our approach. While
our approach works on the decaying lexical structure from the
code side, their approach can work on the same problem but
from the opposite side of the trace link (the trace query). This
will accelerate the process of bridging the textual gap in the
system.

Finally, since this paper starts with Gotel and Finkelstein’s
definition of traceability [1], and is based on Gotel and Mor-
ris’s theoretical approach of IR-based automated tracing [13],
we find it appropriate here to end our discussion with Gotel’s
latest views on the field. In their most recent roadmap paper,
Gotel et al. identified a number of challenges for implementing
effective software and systems traceability [58]. In the set
of short-term goals they specified, they emphasized the need
for researchers to focus on mechanisms to mix and match
approaches to achieve different cost and quality profiles. The
work we presented in this paper is aligned with that goal. Our
objective is to add to the current incremental effort of this
domain in a way that helps to move forward on the automated
tracing roadmap.

VIII. CONCLUSIONS

In this paper, we proposed a novel approach for enhancing
the performance of automated tracing tools using refactor-
ing. In particular, we described an experiment for assessing
the effect of applying various types of refactorings on the
different performance aspects of IR-based tracing methods.

Our main hypothesis is that certain refactorings will re-
establish the decaying lexical structure of evolving software
systems, thus helping IR methods to recover more accurate
lists of candidate links. To test our research hypothesis, we
examined the impact of three categories of refactorings on
the performance of three requirements-to-code datasets from
different application domains. In particular, we identified three
main problems associated with IR-based automated tracing
including: missing, misplaced, and duplicated signs, and we
suggested three categories of refactorings to mitigate these
problems. Results showed that restoring textual information in
the system (e.g. Rename Identifier) has a significantly positive
impact on the performance in terms of recall and precision. In
contrast, refactorings that remove redundant information (e.g.
Extract Method) affect the performance negatively. The results
also showed that moving information between the system’s
modules (e.g. Move Method), has no noticeable impact on the
performance.

Our results address several issues related to code and
requirements evolution, as well as applying refactoring as a
performance enhancement strategy. Future work in this domain
includes evaluating other types of refactoring (Table I) over
industrial length datasets. In addition, other issues related to
code evolution, especially changes in the code structure (e.g.,
remove class, add class, change inheritance relations, etc.) will
be investigated.
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