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Abstract

Understanding symmetries and arrangements in existing content is the first step towards providing higher level

content aware editing capabilities. Such capabilities may include edits that both preserve existing structure as well

as synthesize entirely new structures based on the extracted pattern rules. In this paper we show how to detect

regular symmetries and arrangement along curved segments in vector art. We determine individual elements in

the art by using the transformation similarity for sequences of sample points on the input curves. Then we detect

arrangements of those elements along an arbitrary curved path. We can un-warp the arrangement path to detect

symmetries near the path. We introduce novel applications in form of editing elements that are arranged along a

curved path. This includes their sliding along the path, changing of their spacing, or their scale. We also allow

the user to brush the elements that the system recognized along new paths.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Line and Curve

Generation—

1. Introduction

Symmetries are ubiquitous in natural and man-made envi-

ronments. They provide an important perceptive insight for

humans to understand the world. They are also essential ele-

ments in visual aesthetics. The more elements are symmetric

with each other the more prominent they appear. Even if the

elements are placed along a curved path, for example, leaves

along a curved plant stem, humans can still perceive the reg-

ularity of such arrangement.

By a curvilinear arrangement we understand a placement

of elements along a path, in which the distance between the

elements is regular and each element is aligned with the

curve’s normal. These arrangements can loosely be viewed

as symmetries warped along a curved path, although it has

to be noted that the individual elements are not warped,

only their position and orientation is adjusted to follow the

path. Curvilinear arrangements are very common in deco-

rative patterns where elements undergo rigid transformation

locally while their arrangements form some paths or curved

structures globally.

In this paper we present a robust technique for detecting

symmetries and curvilinear arrangements in vector art. Vec-

tor art is defined by a set of curves and curve bounded shapes

and it is used heavily in artistic design.

Our system detects the following symmetries: transla-

tions, rotations, mirror reflections, and scaling, and appli-

cation of translations and mirror reflections along curved

paths. We integrated this technique into an interactive de-

sign tool. This tool allows users to detect symmetries and

curvilinear arrangements in existing art and to synthesize

new patterns based on the extracted patterns (see an example

in Figures 11, 12 and 13).

The challenge of detecting arrangements of elements

along curved paths comes from the fact that we do not have

a prior knowledge about the shape, size and location of ele-

ments as well as the curved paths, especially since the paths

may not be explicitly drawn in the input pattern. The existing

symmetry detection technique of clustering point-wise cor-

respondences in transformation space, as presented by Mitra

et al. [MGP06], can yield too wide distribution of points in

the transformation space because the transformation vector

is varying along the path. Such distribution of points would
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Figure 1: A decorative pattern with various symmetries and

curvilinear arrangements that our system detects.

be difficult to cluster. Our goal was to design a method that

can automatically extract such arrangements without user in-

tervention.

Contribution. Our symmetry detection method extends

the Mitra’s approach [MGP06], in which the transformation

between corresponding sample pairs is first mapped into the

transformation space. Next, a set of candidate symmetries

are found using mean-shift clustering. The candidate sym-

metries are verified by growing patches that satisfy the cor-

responding symmetry transformation in the spatial domain.

To reduce the variance in the transformation space, our al-

gorithm performs local correspondence tests. First, we dis-

tribute sample points on the input curves based on the cur-

vature in order to have fewer points along segments with a

low curvature. Then we use neighborhood-matching to reject

false symmetries that were originally included in the trans-

formation space.

To detect curvilinear arrangements of elements along

curved paths, we observe that the distance between the el-

ements is either approximately constant or it is proportional

to the size of the elements. We first recognize individual el-

ements that are being transformed, and then define a single

point, a centroid, representing each element. We parametrize

transformations between pairs of centroids and cluster the

points in the distance dimension of the transformation space.

We extract the underlying paths of transformations by con-

necting elements from each cluster. In addition, we un-warp

the space along the paths to detect more symmetries.

In summary, we make the following main contributions:

• We develop a novel method for detecting curvilinear ar-

rangements of elements in vector art.

• We un-warp the arrangement paths to detect secondary

symmetries skewed by these paths.

• We combine our method with an improved existing

method for detecting symmetries into a single application

and we introduce new concepts for editing patterns. For

example, the artists can slide the group of elements placed

along the detected arrangement path.

In Section 2, we review the previous literature relevant

to symmetry detection. In Section 3 and 4, we give an

overview of our algorithm and describe details of placing

sample points, computing their signature, computing trans-

formations of centroids, and recognizing arrangements along

curved paths. In Section 5, we show detected symmetries and

arrangements in various patterns and we demonstrate exam-

ples of using the arrangement detection results to assist pat-

tern editing.

2. Related Work

Symmetry detection has been an active research area in com-

puter vision, computer graphics, architecture, and mathemat-

ics. Mathematics behind symmetries has been studied since

19-th century [Kle93].

Early methods of symmetry detection focused on finding

exact symmetries in planar figures [Ata85, WWV85]. Al-

though they are computationally efficient, these techniques

tend to break down in the presence of irregularities and

noise.

To address the noise and slight irregularities that usually

appear in real-world objects and patterns, many approaches

have be proposed to detect approximate symmetries. Alt et

al. proposed a method to compute global symmetries be-

tween two point sets [AMWW88]. Zabrodsky et al. defined a

continuous measure of distance of a shape, called symmetry

distance, to detect symmetries in noisy data [ZPA95]. They

detect and also recover rotation symmetries with respect to

the object centroids.

In general, there are two types of approaches to detecting

symmetries in 2D images or 3D models. The first type is

based on analysis in the frequency domain which uses FFT

or autocorrelation to find signal repetition. The second type

is feature-based symmetry detection. It needs to find distinct

features such as edges and corners that uniquely characterize

the images or objects under test.

Keller and Shkolnisky used a pseudo-polar Fourier trans-

form to find angular correlation to detect reflectional and ro-

tational symmetries in 2D images [KS06]. Liu et al. pro-

posed a method to detect frieze and wallpaper groups in

2D images by using autocorrelation. They define regions

of dominance to find the correct set of peaks instead of us-

ing absolute values of the peak heights of the signals. They

further apply the discrete Fourier transform frieze detection

method to rotation symmetry detection by mapping a 2D ro-

tation symmetry problem to a frieze detection problem using

frieze expansion. Their method is also able to identify differ-

ent rotation symmetry groups [LCL08].

Loy and Eklundh [LE06] developed a method that per-

forms pair-wise matching of feature points generated by

SIFT in images. Li et al. proposed a method to detect

complete and incomplete isometric cycles that induce ap-

proximate symmetries in the set of feature points [LLM07,
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LLM08]. They also introduced a method to merge in-

complete cycles that are induced by the same isometry.

Podolak et al. defined the planar reflective symmetry trans-

form, PRST, as a continuous shape descriptor of the reflec-

tional symmetry distance with respect to every plane reflec-

tion [PSG∗06]. They accelerated the computation by ap-

plying Monte Carlo integration to perform sampling of the

PRST of 3D surfaces. Kazhdan et al. introduced a shape de-

scriptor using center of mass [KFR03, KFR04].

One of the main limitations of frequency-based symmetry

detection is that it assumes that there exists a single repeated

pattern across the whole image. On the other hand, because

feature-based symmetry detection finds correspondence by

matching feature points or feature clusters, it is able to detect

small regions of repeated patterns within a larger image. We

chose a feature-based approach because we are interested

in artistic patterns which usually have features that do not

occupy the whole image.

Instead of looking at the set of representative points only,

Mitra et al. compute candidate symmetry actions of pairs of

points that match in their local shape descriptor [MGP06]. In

the transformation space, the most probable symmetries are

extracted by using mean-shift clustering. Finally, these can-

didate symmetries are verified by checking the spatial con-

sistency while false symmetries are rejected.

Another similar problem is to discover the underlying

structures that describe the rules of how elements are ar-

ranged in patterns or object models. Pauly et al. proposed a

grid fitting method in the transformation space to detect reg-

ular structures of point- or mesh-based models [PMW∗08].

Liu et al. described a method to segment periodic re-

liefs by refining user-specified candidates of boundaries

on the model using the iterative closest point (ICP) algo-

rithm [LMLR07]. Simari et al. focused on detecting mirror

symmetries and they applied the result to construct a folding

tree data structure which is useful for mesh compression and

repair [SKS06].

Our method is not only capable of finding a regular grid

or rotation as in grid fitting method by Pauly et al. but it can

also find elements arranged along curved paths. Instead of

looking for a grid in a noisy transformation space we only

cluster points in the distance dimension of a less noisy trans-

formation space of centroids.

3. Overview

Our system takes a vector-art pattern as an input and detects

symmetries and curvilinear arrangements that appear in the

pattern. In Figure 1 we show examples of symmetries and

arrangements we can detect in a given vector-art pattern.

Given an input pattern, we sample points along all primi-

tive’s curves (Section 4.1). For each sample point, we com-

pute its corresponding normal vector and a signature based

on curvature near the sample point (Section 4.2).

Then we compute the transformation for each pair of cor-

responding points p and q (Section 4.3). The transformation

is defined by a scale s between the signatures, the rotation

angle φ between the normals and the distance d and the an-

gle θ of the translation needed to move point p to point q,

after the point p has been rotated round the origin by the

angle φ.

Valid transformations between each pair of points are

then mapped into the transformation space. If we include

scaling into consideration, there is a valid transformation

T = (d,θ,φ, s) for almost any pair, unless the curvature of

one point is zero and of the other one is not. That is why we

look at the neighbors to see if their transformation is very

close. If not, we do not consider T to be a valid transforma-

tion (Section 4.3).

We keep four separate transformation spaces, one for each

type of symmetry we seek. In case the scale s is close to 1,

we test for a potential reflectional symmetry — the angles

between normal vectors and the axes of reflection are the

same — or a potential translational symmetry — their nor-

mal vectors have the same orientation. If the scale value is

close to 1 but the angle φ is not zero, we have a rotational

symmetry. Otherwise we consider the symmetry to be scal-

ing. After classifying the symmetry we add a point to the

corresponding transformation space.

Then the system performs a clustering process to find all

possible symmetries. A cluster of data in the transformation

space indicates that there is a high probability that a symme-

try defined by the cluster appears in the spatial domain. The

symmetry detection part of our algorithm is very similar to

the approach described by Mitra et al., except that we look

at the neighborhoods to remove unnecessary points from the

transformation space and we place the sample points based

on the local curvature to reduce the noise in the transforma-

tion space (Section 4.3).

The second part of our algorithm detects arrangements

along curved paths. Pauly et al. identifies a sequence of

translations by detecting a regular grid in the transforma-

tion space. Unfortunately, the patterns created by a trans-

formation of objects along curved paths are not regular. In

our method, we group every largest possible set of points

with respect to a rigid transformation as an element (Sec-

tion 4.4). The centroid of each element is assigned a weight

which equals the size of the element. Then, we can perform

transformation analysis between pairs of centroids and fill a

centroid-specific transformation spaces. We detect transfor-

mations with the same distance component (or the same ratio

of the distance and scale components) and we use the cen-

troid locations to extract the underlying arrangement path.

After detecting curvilinear arrangements, we can further

un-warp the space around the detected paths to find more

symmetries (Section 4.8).

We can use symmetries and curvilinear arrangements for
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various editing purposes. We chose to implement an editing

mode, in which the user can scale elements associated with a

certain arrangement or slide the elements along the detected

path. We also implemented a brush that can brush the ele-

ments along a path drawn by the user.

4. Symmetry and Arrangement Detection

In this section, we discuss details of our algorithm.

4.1. Placing Sample Points

It is important to properly place sample points on the input

curves. First, if sample points on two symmetric shapes are

not placed in similar positions in high curvature areas, the

values in the transformation space are skewed and noisy. On

the other hand, if there are too many sample points along the

curve, the algorithm can be slow.

To address this problem, we initially distribute finely

spaced sample points along the curves, yet when placing

points into the transformation space, we skip points in areas

with low curvature (see Section 4.3 for more details).

The sample points xi are placed at a distance ds from each

other. We set ds to be approximately 1/100 of the scene size.

Once we have seed points xi we compute a normal and a

signature for each of them.

4.2. Normals and Signatures

Normal Vector: For each sample point xi on the pattern, we

store its normal ni. We determine the normal directly from

the parametric curve.

Signature: The signature si is equal to the curvature value

that for a parametric curve defined as a function of t can be

computed as [DoC76]:

si =
x′(ti)y

′′(ti)− x′′(ti)y
′(ti)

(

x′(ti)2 + y′(ti)2
)3/2

(1)

where ti are such that xi = (x(ti),y(ti)).

Two sample points, xi and x j , match each other in their

signatures if | si− s j |< sε. We use a one-dimensional binary

tree to speed up searches of points with similar signatures.

Because straight line-segments do not define a unique

transformation, we set the LineFlag of sampling points with

zero curvature to true in the sampling stage. They are dis-

carded during the correspondence pairing stage.

4.3. Matching Sample Points

Adding a point to the transformation space for each pair of

sample points results in very dense and noisy data. In ad-

dition, invalid points in the transformation space may cause

false results in the clustering stage. Thus we want to reject

those points that do not correspond to meaningful symme-

tries.

We take advantage of the fact that the samples are placed

on continuous curves. Thus in fact we are matching pairs of

point neighborhoods, not just pairs of points. In addition, we

skip sample points in areas of low curvature.

Skipping sample points: The matching proceeds as fol-

lows. We pick a part of the input art represented by a se-

quence of curves that are continuous. We go through the

sample points xi on the curves. At each point we generate

a random value ri. If the random value is above the curva-

ture ki associated with the point xi (and normalized to be in

(0,1)) we skip the point, unless last n points have not been

also skipped (we use n = 10).

Checking neighborhood: For the points that we do not

skip we search a point with matching signature. For those

points pi and p j, whose signature match, we compute the

transformation Ti j and we check if all points in the neigh-

borhood pi and p j can be transformed using the transforma-

tion Ti j . If they do then we add a point to a transformation

space for mirror, translational, or rotational symmetry, based

on the normal vector (see Section 3).

We do not require an exact match when testing the trans-

formation Ti j in the neighborhood of pi and q j. We define a

distance metric of a transformation Ti j as

dist(p,q,Ti j) = ||Ti j(p),q|| (2)

and accept those neighboring points pi+k and q j+k, for

which dist(pi+k,q j+k,Ti j) < dε and |k| ≤ Nnb/2. We define

dε as the distance tolerance of candidate transformations.

Figure 2 shows that by increasing the size of the exam-

ining neighborhood, we can reject most false matching. We

used Nnb (NBsize) of 10 in our examples.

Scaling: In the case of scaling, we determine the scaling

parameter s based on the ratio of signatures — if we scale

an object up by s the curvature is scaled by 1/s. In this case

we also compare the neighborhood of size n, but we need to

compute new sample points on the second curve, since we

need n points placed not at distance ds from each other as

on the first curve, but at the distance dss. If the points in the

neighborhood satisfy the Eq 2, using dεs, then we add a point

to the scaling transformation space.

After all valid symmetries are added to the transforma-

tions spaces we use mean-shift clustering to detect clusters.

Each cluster represents a symmetry applied to the points as-

sociated with the cluster.

4.4. Detecting Arrangements Along Curved Paths

In many patterns elements are placed along curved paths.

Humans can easily identify them due to the regular spacing

or spacing proportional to the uniformly changing size of the

elements.
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Figure 2: The effects of the neighborhood size on the level of noise in the transformation space (top). Pink lines indicate

candidate reflection symmetries.

One approach for detecting such arrangements would be

to parameterize the translational vector between pairs of

points by both the distance and the angle. Figure 3 shows

the transformation space after clustering. The dots in the first

column show the transformation between pairs of points that

correspond to adjacent elements. We can use transformations

between adjacent elements to extract the arrangement path.

Figure 3: Naive clustering: an example of arrangement

along a curved path and associated transformation space,

when all sample points are considered.

However, in most cases, the elements are not purely trans-

lated along the path. They are usually rotated to be aligned

with the path’s normal. For example, each pair of mirror

symmetries in Figure 6 has a different axis of reflection,

thus they form separate small clusters in the transformation

space. The points representing transformation between pairs

of elements along the curve spread too widely and they are

hard to cluster. In addition, we should not make any assump-

tion about whether the curved paths are actually present in

the art or not since both cases are common in real patterns.

We observe the fact that a transformation between two

repeated elements can be viewed as a rigid body motion.

Therefore, we find individual elements by grouping contin-

uous sequences of sampling points, that can be mapped to

another sequence of points using the same transformation.

The centroid of each patch now represents each element.

Once we have centroids, we could use curve fitting or try

to connect a sequence of centroids that are closest to each

other. There are cases, though, where these approaches will

not work well, for example, when there are more elements

of the same type near those placed along the path or when

the elements of the same type are being placed along more

than one path and the paths are close to each other. The ex-

tra nearby elements would throw the curve fitting off. If we

have elements mirrored along the path, for example, and we

greedily connect nearest elements, we would create a zig-zag

path.

Since we are interested in elements that are placed regu-

larly along a given path, we use the transformation space of

distances or distances divided by the element size and cluster

points in these spaces.

Defining elements: In computer vision the common tech-

nique used to find correspondence between elements in

an image is called RANSAC (RANdom SAmple Consen-

sus) [FB81]. In this technique random points in the input sets

are selected and a model is fit into them. By perturbing the

selected points the algorithm can find the right correspon-

dences.

With many input points RANSAC is slow. We take advan-

tage of the fact that we have a continuous vector act and we

use a greedy approach. We define an element as follows. Let

S(pi) be the longest sequence of N sample points placed on

continuous segments of the input art that pass through the

sample point pi. Let S(pi) and S(q j) be two sequences on

different parts of the input art, and Ti j the transformation be-

tween points pi and q j. An element is a subset of sequence

S(pi) defined as:

E(pi) = {pi+k; pi+k ∈ S(pi),q j+k ∈ S(q j),
dist(pi+k,q j+k,Ti j) < dε}

(3)

such that size of |E(pi)| > N/3. For a pair of points pi and

q j it is easy to find the sequences S(pi) and S(q j) and test if

enough points in them can be transformed by Ti j .
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Figure 4: Our clustering: an example of a curvilinear ar-

rangement and associated transformation space, when cen-

troids of elements are used. Clustering in both dimensions

would not give us sufficient information, since the angle of

the translation changes along the arrangement curve. Thus

we cluster in the distance dimension only, collapsing the

columns into strong clusters.

Centroids: For each valid element E we define the cen-

troid C(E) as

C(E) =
1

TotalLength
∑

v j∈E

(w jp j) (4)

where w j are lengths of the curve associated with points p j

and TotalLength = ∑w j . The signature of a centroid is a pair

of minimum and maximum signature of sample points in the

element and the normal is the sum of all normals computed

at the sample points.

Clustering: After detecting elements and computing their

centroids with signatures, we match all pairs of centroids.

For each pair we insert a point representing the transfor-

mation between the two centroids into a centroid-specific

transformation space. Instead of clustering in all dimensions,

though, we cluster only in the distance dimension, to detect

elements at a regular distance from each other.

Before extracting the underlying arrangement paths

formed by the elements from the found cluster, we have to

remove redundant transformation clusters in the transforma-

tion space. For example, if we have 5 elements E1, E2, ..., E5

at a distance d1 along a curve, there are 4 points represent-

ing pairs (Ei,Ei+1) in the dual distance space at value d1.

In addition, there are 3 points representing pairs (Ei,Ei+2)
at value d2 < 2d1, 2 points for pairs (Ei,Ei+3) at value

d3 < 3d1, and 1 point for pair (E1,E5) at value d4 < 4d1.

The clusters at distances d2, d3, and d4 represent transfor-

mations that are a combination of the basis transformations

by the distance d1. Thus we can remove those points from

clusters at d2, d3, and d4 that are formed by elements Ei.

Figure 4 illustrates this on a bigger example. Note that in the

figure we show the transformation space before collapsing it

into distance dimension only.

Connecting centroids: After removing redundant clus-

ters, we can create the arrangement path by connecting el-

Figure 5: Connecting centroids to form the arrangement

path. If several centroids are at the same distance we choose

the one resulting in a smoother path.

ements that fall in the same cluster of distances d. We start

with any element and we connect it with a nearby element at

the distance d. We repeat the process and create the result-

ing path. In the case where two paths are adjacent to each

other with a distance similar to the inter-centroid distance d,

we use a heuristic approach by choosing the path that has

smoother transitional angles. For example, in Figure 5 the

distance between element A1 and B1 is similar to the ele-

ments between A1, A2 and B1, B2. Connecting elements with

a similar spacing distance may result in redundant and unnat-

ural paths.

4.5. Detecting Mirror Symmetries Along Curved Paths

If the elements placed along a path are reflected along the

path as well, their centroids can be further away from each

other at one side of the path and closer to each other at the

other side in areas with a higher curvature (see Figure 6).

If we detect elements A and B that are reflected, we intro-

duce a phantom object placed at the midpoint between the

element’s centroids, C(A) and C(B). Each phantom object

is also assigned an additional width parameter, which indi-

cates the distance between C(A) and C(B). We use the width

parameter as a signature of the phantom object and it can de-

termine the scaling part of the transformation (Section 4.6).

This approach is a special case of detecting hierarchical

symmetrical arrangements along curved paths. Similarly to

the reflectional symmetry, we could create a phantom ob-

ject representing a point symmetry, a rotational symmetry

or their combination and use that to detect the arrangement

path. In case of combination of symmetries, such as glide

reflection, the selection of the right phantom object is not

straightforward and we decided to leave the additional im-

plementation for the future work.
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Figure 6: Example of elements reflected along a path. Blue

circles represent phantom objects in the middle of red lines

formed by element centroids.

4.6. Detecting Scaling Along Curved Paths

When we include scaling of elements in our arrangement

detection, we use the size of the elements — the length of

the curve forming the element — or the width parameter of

phantom objects to determine the scale factor s between a

pair of elements or phantom objects.

There are two cases that we consider. First, if the distance

between scaled elements or phantom objects is the same, we

use the same technique of clustering in the distance dimen-

sion as described in Section 4.4. When connecting the cen-

troids to form the arrangement path, we connect those pairs

than have the same scale factor s.

In the second case, we assume that the distance between

elements or phantom objects for two consecutive pairs of el-

ements or phantom objects is being scaled by the factor s

as well. To detect such arrangements, we construct an ad-

ditional one-dimensional transformation space, in which we

store points at location d/w where d is the distance between

a pair of elements of phantom objects and w is the size of

the first one. Note that we need to add two points for each

pair since the elements or phantom objects may be processed

out of order. After clustering in this space we can detect

sequences of elements and phantom objects that are scaled

along a path.

Figure 7 illustrates the case when the distance between

elements is scaled by the factor s as well.

4.7. Merging Lists Corresponding to the Same Path

Figure 8 shows an example of multiple types of elements

being arranged along the same path. Sometimes we want

to group all types of elements along the same path to-

gether while sometimes we want to classify them as different

groups.

In the first case, we merge lists of elements that have ap-

proximately the same underlying paths. Because the paths

Figure 7: Examples of elements scaled along a path, in

which the ratio of di/wi is constant.

are extracted by manifold learning on different point sets in

the transformation space, we define a similarity measure be-

tween every two extracted paths, P and Q, as

E = ∑
(

| pi,q j | − | pi+1,q j+1 |
)2

(5)

where points pi are on the path P and points q j are on the

path Q. In other words, if the distances between elements

or phantom objects in consecutive pairs are similar, the two

paths can be merged together.

4.8. Inverse Warping of Space Around Detected Paths

Once we detect arrangement paths we can further un-warp

the space around these paths to extract more embedded sym-

metries.

To straighten a curved path we compute the geodesic dis-

tance from any point on the path to the head of the path as

the x coordinate in the un-warped space. Only objects within

a certain distance of the path need to be un-warped. For each

sample point near the path we find the closest point on the

path. The x coordinate of that point becomes the un-warped x

coordinate of the sample point. The un-warped y coordinate

is the distance of the sample point to the path.

Figure 9 shows an example of a pattern and its un-warped

version. Notice that after straightening the path we are able

to detect more symmetries and arrangements.

5. Results and Discussion

For testing our algorithm we converted high resolution raster

images of ornamental art into vector representation. In some

simple examples we took individual elements from those

converted patterns and arranged them by hand in Adobe Il-

lustrator. More complex input patterns are shown in Fig-

ure 10 and 11. It took under 2 seconds on a Macbook Pro

with 2.6 GHz Intel Core2 Duo to detect all symmetries and

curvilinear arrangements.

When the patterns become much more complex than those
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a b c d e

Figure 8: Merging detected arrangement paths (b,c,d) with elements having constant distance into a single path (e).

Figure 9: Without un-warping the method detects only one

arrangement path (top right). After the sample points are un-

warped along the path (bottom right) the method detects an

additional path (bottom right).

Figure 10: Several reflectional symmetries and arrange-

ments detected in a more complex pattern.

shown in Figure 10 the matching of candidate sample points

may be too slow for interactive editing. One possible solu-

tion is to apply the matching only to objects that are selected

by the user, and to detect only symmetries and arrangements

of these objects.

In our implementation, the signature tolerance sε in Sec-

tion 4.2 is 0.1, the distance tolerance dε in Section 4.3 and in

Eq 3 is 1/100 of the scene size. The window size for cluster-

Figure 11: Changing spacing of elements and moving ele-

ments along detected arrangement path.

ing in the centroid-specific transformation space was about

1/10 of the scene size. We found these values to work well

for various examples we used.

We have assumed that our scanned artwork is free of bro-

ken gaps and missing segments. Large missing segments at

the end of element curves will add a considerable noise to

the location of their centroids. If there is a gap in the middle

of an element, the element may not be detected at all. In this

paper we used vector art that originated from good quality

raster images, and the vectorizing algorithm did not create

such gaps. To be able to handle input of a lower quality we

would have to bridge those gaps. For each segment we could

search a neighborhood of its endpoints to see if there is an-

other segment within a certain distance and a certain range

of directions near the tangent at each endpoint.

5.1. Application

In this section, we demonstrate pattern editing using results

obtained from our method.

Figures 11 and 12 show several input reference patterns,

which contain elements arranged along curved paths. The

system detects whether there are arrangements correspond-
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Figure 12: The system detected arrangement along a curved path allowing the user to perform adjustment to element spacing,

location, and scale.

Figure 13: The pairs of red and green elements in the input pattern (left) were recognized as a group by merging the underlying

curves. They were used to brush over the input pattern and to create a new pattern.

ing to the user selected point in the pattern. A set of possible

operations are offered. The user can slide elements along the

detected arrangement path as a group, change the distance

between elements, or scale the elements further away from

the picked one.

Notice that it is possible to generalize some basic sym-

metries, such as translational or rotational symmetry, as an

arrangement along a line or a circle, respectively. Our sys-

tem detects those cases, see the bottom of Figure 11, and

allows the user to make the sliding or scaling edits on these

arrangements as well.

In addition, we allow the user to extend the existing pat-

tern or create new patterns using the elements or groups of

elements learned from the input example. In the input pat-

tern in the left of Figure 13 the system recognized several

curves and merged them together, allowing the user to brush

the two pairs of red and green symbols.

We view this application as a step toward inverse procedu-

ral modeling. Our system learned some rules in constructing

the input pattern and it allows the user to extend the pattern

using the same rules. In this case the rule is based on a group

of symbols being distributed along a path in a certain pattern.

6. Conclusion and Future Work

In this paper we presented a technique for detecting sym-

metries and curvilinear arrangements in vector art. The tech-

nique can detect not only regular symmetries, such as the

reflectional, translational or rotational symmetry, or scaling

and their combinations, but also various arrangements along

arbitrary curved paths. The technique also detects individual

elements that are being transformed along curved paths.

Our method uses transformation spaces that represent po-

tential symmetries to find the suitable candidate symmetries,

similarly to existing techniques. We use a different approach

when populating transformation spaces, though. We adap-

tively distribute sample points on the input art, based on the

curvature, and we test neighborhood sample points before

inserting a point into the transformation space.

To detect arrangements along a curved path, we group

points that can be transformed to another group of points

and mark them as elements. We also create phantom objects

between mirror symmetric elements. We use centroids of el-

ements or the phantom objects to find clusters in centroid-

specific transformation space.

We un-warp the arrangement paths to detect elements that

may be further away from the curve and whose spacing is

too irregular for direct path detection. We can also detect

elements that have similar paths and group them.

To demonstrate the applicability of the framework to fa-

cilitate easy editing of complex patterns with curvilinear

arrangements we introduce several editing operations that

could not be possible without the element and arrange-
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ment detection. The system automatically learns the rules for

placement of symbols along curved paths and it allows the

user to recreate parts of the input patterns using a brushing

tool.

One limitation of the technique is its speed for very com-

plex patterns. Another limitation is the dependency on the

quality of the input art. If the scanned image is poor, for ex-

ample, with many discontinuities for thin lines, we may fail

to detect elements with our greedy algorithm. One possibil-

ity of handling more challenging examples and addressing

the issue of gaps in the input art would be to let the user

select the initial element, possibly containing also disjoint

parts. First, it would allow us to expand the definition of an

element to include gaps between segments and second, the

algorithm would not have to pair as many matching element

centroids. Another approach, suggested in Section 5, would

try to bridge short gaps.

Our technique for detecting arrangement paths can fail

when the elements follow a curved path but their centroids

are too far from the path, for example for a T shape, and

there are no mirror elements along the path. We would like

to investigate some optimization techniques that would al-

low us to estimate a path that is at a certain fixed distance

away from the centroid.

Another interesting area of future research is to extend the

idea of phantom objects to a hierarchies of symmetries along

curved paths, as mentioned in Section 4.5.

In addition to improvements in speed and robustness we

would like to extend the technique to 3D and apply the re-

sulting symmetry and arrangement graph for creation of a

similar or bigger version of the pattern, similarly to work by

Ijiri et al. [IMIM08].
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