
Ontology Module Extraction for Ontology Reuse: An
Ontology Engineering Perspective

Paul Doran
Dept. of Computer Science,
University of Liverpool, UK
pdoran@csc.liv.ac.uk

Valentina Tamma
Dept. of Computer Science,
University of Liverpool, UK

valli@csc.liv.ac.uk

Luigi Iannone
Dept. of Computer Science,
University of Liverpool, UK

luigi@csc.liv.ac.uk

ABSTRACT
Problems resulting from the management of shared, dis-
tributed knowledge has led to ontologies being employed as a
solution, in order to effectively integrate information across
applications. This is dependent on having ways to share and
reuse existing ontologies; with the increased availability of
ontologies on the web, some of which include thousands of
concepts, novel and more efficient methods for reuse are be-
ing devised. One possible way to achieve efficient ontology
reuse is through the process of ontology module extraction.
A novel approach to ontology module extraction is presented
that aims to achieve more efficient reuse of very large ontolo-
gies; the motivation is drawn from an Ontology Engineering
perspective. This paper provides a definition of ontology
modules from the reuse perspective and an approach to mod-
ule extraction based on such a definition. An abstract graph
model for module extraction has been defined, along with a
module extraction algorithm. The novel contribution of this
paper is a module extraction algorithm that is independent
of the language in which the ontology is expressed. This has
been implemented in ModTool; a tool that produces ontol-
ogy modules via extraction. Experiments were conducted to
compare ModTool to other modularisation methods.

Categories and Subject Descriptors
I.2.4 [Knowledge Representation Formalisms and Meth-
ods]: Representation languages;
I.2.6 [Learning]: Knowledge acquisition

General Terms
Algorithms

Keywords
ontology module extraction, ontology engineering

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’07, November 6–8, 2007, Lisboa, Portugal.
Copyright 2007 ACM 978-1-59593-803-9/07/0011 ...$5.00.

1. INTRODUCTION
Ontologies have been successfully employed in order to

solve problems deriving from the management of shared,
distributed knowledge, and the efficient integration of infor-
mation across applications [7]. Much of this success depends
on the ability to share and reuse existing ontologies [10]. On-
tology construction is deemed to be a time consuming and
labour intensive task, but is mediated by the possibility of
reusing existing ontologies. This is greatly facilitated by the
existance of Ontology Libraries (for example, the DAML On-
tology Library1), and the emergence of search engines such
as Swoogle2 and Ontosearch3 which support the retrieval of
web ontologies.

Many ontology development methods and methodologies,
such as the Ontology 101 method [15] and Methontology [11],
include a reuse step in the ontology development lifecycle
that allow Ontology Engineers to integrate into the ontol-
ogy they are currently designing and implementing an on-
tology that has already been developed4. The reuse of ex-
isting ontologies can occur at the design stage and at the
implementation stage. Some ontology editors, for example
Protégé [8], allow the reuse of another ontology by includ-
ing it in the model that is being designed. In Protégé this
happens through the inclusion of other projects, which op-
erates at the knowledge level. The web ontology language
OWL5 offers the possibility of importing an OWL ontology
by means of the <owl:imports> statement, and many on-
tology development tools allow the import of OWL files. In
both cases, the whole ontology is included, which can create
a huge overheard. However, ontology developers might only
be interested in a portion of the original ontology, especially
when the ontology being reused is very large. For exam-
ple, a developer might only be interested in concepts about
and relating to diabetes; but they have to import a whole
medical ontology, such as UMLS 6, in order to get what was
required. Currently there are no methods that allow only
part of an ontology to be specified and reused.

Ontology modularisation [17] could help to overcome the
problem of identifying a fragment of an existing ontology to
be reused, in order to enable ontology developers to include

1http://www.daml.org/ontologies/
2http://swoogle.umbc.edu/
3http://www.ontosearch.org/
4For an extensive review of the state of the art on Ontology
Engineering see [10]
5http://www.w3.org/2004/OWL/#specs
6An OWL translation is available from:
http://swpatho.ag-nbi.de/owldata/ swpatho1/umlssn.owl

61

only those concepts and relations that are relevant for the
application they are modelling an ontology for. Ontology
Engineering good practices list modularisation as one of the
principles for building good ontologies [1]. Whilst it is possi-
ble to build modular ontologies in OWL or RDF there are no
explicit constructs for defining module boundaries. Indeed
such constructs may not be that useful because the module
boundaries they define may be inappropriate for another on-
tologies application.

In addition to reuse, ontology modularisation has other
applications. These include query answering, distributed
reasoning; and scalable evolution and maintenance. Each
application places different requirements upon the ontology
modularisation process. This paper’s focus is on ontology
module extraction for reuse by providing two main contribu-
tions: we investigate and demonstrate a method for reusing
ontologies that depends only on the ontological model, and
is independent of the specific formalism used to represent the
ontology by producing highly reusable entities in the form
of ontology modules. In addition, we discuss the phases that
underlie the successful identification, and reuse of an ontol-
ogy module.

The paper is organised as follows. Section 2 reviews the
different approaches to ontology modularisation. Section 3
lays out a framework for ontology modularisation. A defi-
nition of an ontology module is provided. Section 4 details
a proposed methodology for reusing ontology modules. In
Section 5 an abstract graph model for module extraction is
presented. This model can be applied to RDFS and OWL.
Particular attention is paid to the rules used to generate the
ontology module, as these guarantee transitive closure. Sec-
tion 6 details the experiments conducted up to this point.
A discussion of the results is provided and these show that
ModTool compares favourably with current approaches. Fi-
nally, the conclusions are presented in Section 7; along with
possible directions for future work.

2. RELATED WORK
In this section a review and critical discussion of the cur-

rent approaches to ontology modularisation is carried out.
The problem of dividing an ontology into a number of mod-
ules has received much attention in recent years. A number
of approaches that aim at solving this problem have been
proposed, such as the approach by Noy and colleagues [16] to
determine ontology views, or the partitioning algorithm by
Cuenca Grau and colleagues [4]. Ontology modularisation is
also the focus of collaborative research in work package 2.1
of the EU funded network of excellence Knowledge Web7.
This has already produced an extensive overview on ontol-
ogy modularisation in the deliverable D2.1.3.1 [17]; this is
followed in order to define ontology modularisation and its
possible uses.

The method by Stuckenschmidt & Klein[22] consists of
automatically partitioning large ontologies into smaller par-
titions based on the structure of the class hierarchy; taking
into account the internal coherence of the concepts. The
method can be broken down into two tasks; the creation of
a weighted graph and the identification of partitions from
the dependency graph. The weights defined in the first step
determine the results of the second step.

Noy & Musen[16] create a ‘view’ on the ontology, analo-

7http://knowledgeweb.semanticweb.org/

gous to views in databases. The method is integrated into
Protégé. The view is produced by traversal of relations that
are specified by the user. The user selects the starting point
for the traversal and sepcifies which relations are traversed
and for how far. The result of this traversal is a view on
the ontology; the view retains all its relations to the source
ontolgoy via the ‘view boundary’. The view is not extracted
nor is it treated as a separate entity. This allows the user
to shrink or expand the view as required. The focus of this
method is on query answering rather than reuse.

Cuenca Grau et al.s [4, 12] cast the problem of modularisa-
tion as a problem of partitioning an ontology safely. Cuenca
Grau et al.provide an operational definition for characteris-
ing ‘safely partitionable ontologies’, though their work fails
to provide a definition of what a module is. An intuitive
notion of module is provided due to the fuzzy nature of the
modularisation problem. They propose then an algorithm
for obtaining such partitions whose elements are disjunct
w.r.t. the axioms contained. This approach is theoretically
rigourous, but this rigour reduces the possibility for reuse
because the method cannot be applied to any ontology. The
ontology must pass a safety check before the method can be
applied. This is not ideal as the number of possible ontolo-
gies available for reuse is reduced.

Cuenca Grau et al.work is based on the notion of conser-
vative extensions [9]. This means that essential inferences
about the entities contained within an element of such a par-
tition should be preserved. Whilst conservative extensions
can theoretically be used to define an ontology module, they
cannot currently be used in practice as deciding if an OWL-
DL module is a conservative extension is undecidable [14].
However, conservative extensions can be used with less ex-
pressive languages to help in the construction of a modular
ontology.

Seidenberg & Rector[20] produce ontology segments about

one or more classes of the userÕs choice; the algorithm bases
the extraction on these and related concepts. Whilst the
algorithm produces desirable results on Galen it is difficult
to see how the algorithm can be made general purpose due
to the number of parameters that have to be set.

D’Aquin et al.[5] define a sub-vocabulary of the ontology
that the ontology module should describe; for an element to
be included in the ontology module certain criteria have to
be met. The main criticism of this approach is that it is
tightly focused on knowledge selection. However, it would
seem that the algorithm could be deployed on different mod-
ularisation applications.

There is also the question of user involvement. Depend-
ing on the context of the reuse, user involvement may be
beneficial. When reuse is required online user involvement
should be kept to a minimum, but if reuse is being car-
ried out offline then the benefits of user involvement could
be capitalised upon. Both Stuckenschmidt and Klein, and
Cuenca Grau et al methods are automatic and require min-
imal user involvement. This makes them fairly simple to
use, but there is little control over the results. Noy and
Musen’s method requires user involvement and the results
of the method can therefore be tailored by the user to their
exact requirements.

Stuckenschmidt and Klein do not consider the semantics
of the relations in their method and instead offer a “simple
and scalable method based on the structure of the ontol-
ogy”[22]. This is a drawback to their approach because con-

62

sidering what the relations ‘mean’ is important in determin-
ing modules. This is why the rules applied by the approach
in this paper independently consider the different types of
relations. Noy and Musen allow the user to state what rela-
tions are to be considered, however their method is based on
RDFS; and its extension to OWL is not described, but the
authors say it can be extended. Whilst Cuenca Grau et al
method applies to OWL and also considers, at some level,
the semantics. However ε-connections have limited expres-
siveness of the connections made between partitions because
they cannot express subclass or sub-properties relations.

Lastly, Stuckenschmidt and Klein and Cuenca Grau et al
are ‘one shot’ approaches. The process is run on the ontology
and the results are obtained. In certain circumstances this
may be sufficient, but it is not hard to imagine circumstances
where the results obtained are not optimal. For example,
consider the case of a large ontology which would most likely
produce large partitions. Whereas, Noy and Musen allow
the user to run the method with different configurations to
refine the results to their requirements.

In this paper we present a novel approach to ontology
module extraction that aims to produce highly reusable en-
tities in the form of ontology modules. Rector [18] state
that it is necessary that the modules to be reused can be
identified and separated from the whole. This led us to pur-
sue module extraction from the pragmatic stand point of an
Ontology Engineer. Allowing the Ontology Engineer to have
some control over the process allows them to identify which
part of the ontology they wish to separate from the whole.
Our approach exploits an abstract graph model of the on-
tology rather than its representation in a logical formalism
like DL that underlies OWL, thus making it more general
and applicable to ontologies written in various formalisms,
from RDF to OWL-DL. The implementation of ModTool
was based on the abstract graph model given in Section 5.

Additionally, the approach presented is based on the no-
tion of the modularisation process being user-led. This is
because the Ontology Engineer needs to select which con-
cept they want the ontology module to be about. In ad-
dition, there was a need for the ontology module produced
to be user customisable. This makes the ontology modules
highly reusable because the Engineer can modify the mod-
ule to conform to their conceptualisation of the domain. For
example adding equivalent classes to conform to the natural
language commitments of the developers application. Mod-
Tool emphasises that the output produced has the least con-
straints imposed upon it as possible. This allows the user to
tailor it to their specific individual requirements.

The ModTool approach makes several contributions, the
first being that it produces highly reusable entities in the
form of ontology modules. The pragmatic approach taken
from the view of an Ontology Engineer introduces a different
perspective of ontology modularisation that is introduced in
Section 3.

3. FRAMEWORK FOR ONTOLOGY
MODULE EXTRACTION

Before proceeding to describe the approach to ontology
module extraction currently being investigated, we clarify
what an ontology module is in the context of this approach.
Several definitions exist within the literature. By formulat-
ing a possible definition of an ontology module it is necessary

to reconcile it with the previous definitions. It is hoped that
this will speed up the process of building toward a consensus.

While the notion of module is quite well understood and
accepted in the area of Software Engineering, it is not clear
at all what the characteristics of an ontology module are
[22]. For the purpose of this paper an ontology module is
the following:

An ontology module is a reusable component of
a larger or more complex ontology, which is self-
contained but bears a definite association to other
ontology modules, including the original ontology.

This definition implies that ontology modules can be reused
by developers either as they are, or by extending them with
new concepts and relationships. The process of module ex-
traction makes this possible because it takes existing ontolo-
gies and produces ontology modules. If ontology modules
can be extended with new concepts and relationships then
each ontology module should be viewed as an ontology itself.
This notion seems intuitive.

The validity of this definition needs to be assessed in rela-
tion to the literature. Cuenca Grau et al [3] state “a module
should contain information about a self-contained subtopic.”
This concurs with Stuckenschmidt and Klein [21] who state
“in order to facilitate the reuse of individual modules we have
to make sure that modules are self-contained.” Thus, an on-
tology module is an ontology that is a self-contained subset
of a parent ontology. An ontology module is self-contained
if all the concepts defined in the module are defined in terms
of other concepts in the module, and do not reference any
concept outside the module. In addition Cuenca Grau et al
[4] state “the module for an entity is the minimal subset of
axioms in the ontology that ‘capture’ its meaning ‘precisely
enough’ and hence the minimal set of axioms that are re-
quired to understand, process, evolve and reuse the entity.”
This concurs with the definition above.

However, the definition above provides more as it implies
that modules are not isolated entities but are related to each
other. The notion of inter-module relationships is analo-
gous to the notion of coupling in the Software Engineer-
ing paradigm. Highly-coupled ontology modules could be
generated via ε-connections[see [3]], and loosely coupled via
URI’s. The approach presented in this paper does not con-
sider inter-module relations.

Modularising O into different ontology modules, via mod-
ule extraction, will not mean that each module is disjoint.
For example, if A has subclasses B and C then creating a
module of A would include all three concepts, but creating a
module on B would only include B. Therefore, the module
of B is not disjoint from the module of A. However, when
constructing an ontology from ontology modules, the mod-
ules are likely to be disjoint. This is because the Ontology
Engineer is more than likely to pick modules that are about
distinct concepts rather than concepts that are closely re-
lated, although the domain of the modules is likely to be
the same or closely related. It seems somewhat counter-
intuitive for an Ontology Engineer to build an ontology from
overlapping/intersecting ontology modules. If an Ontology
Engineer were to do this then they would be negating the
many benefits of having a modular ontology.

It is important to note that an ontology module will prob-
ably not be semantically identical to the parent ontology, as
the process of extracting an ontology module will result in se-

63

mantic information contained in the parent ontology not be-
ing transferred to the ontology modules. However, it should
be possible to regain all of this semantic information by re-
combining the ontology modules. The impact of this effect
will depend on how the process of modularisation is carried
out and then reversed. Recombination is not addressed in
this paper as a complete partitioning of the ontology is not
carried out. The approach presented extracts an ontology
module and does not modify the original ontology.

The definition above of an ontology module, in addition,
implies that it must be possible to extract modules from the
ontology modules themselves, which further increases the
opportunity for reuse. This is because an ontology mod-
ule is self-contained, which in essence means every ontol-
ogy module is an ontology. However, there may be a point
at which an ontology module produced automatically be-
comes so small that the overhead involved in the reuse step is
greater than producing the ontology module manually from
scratch. This would only occur if the automatic methods for
producing an ontology module are inefficient. As such, in
order to support effective information integration, attention
needs to be paid to this point to ensure that the methods
available for reuse are efficient.

3.1 Ontology Module Requirements
It is now possible to define what requirements are placed

upon the ontology modules. The requirements for an ontol-
ogy module are as follows:

- Self-contained. Ontology modules should be a self-contained
subset of parent ontology. Given a set of relations the
ontology module should be transitively closed with re-
spect to these relations.

- Concept centred. The ontology module contains enough
information to describe the start concept. Direct su-
perclasses are considered unimportant because they
only place the start concept in context. It is assumed
that the Ontology Engineer already has a context in
mind for the ontology module. In addition including
superclasses would increase the chances of the ontology
module being equal to the whole ontology.

- Consistent. Ontology modules should be consistent. Given
a consistent ontology to extract a module from, the
module produced should be consistent.

4. METHODOLOGY FOR REUSING AN
ONTOLOGY MODULE

The requirements outlined in the previous section allowed
the identification of the main steps involved in reusing an
ontology; these are summarised in the tentative methodol-
ogy below. Figure 1 shows our proposed methodology for
reusing an ontology module. Although ontology modulari-
sation has been the subject of much interest recently, to the
best of our knowledge, nobody has defined a methodology
for reusing an ontology module. Thus, Figure 1 is an at-
tempt to draw interest towards this important area. The
following explains all the steps involved in the methodology.

Define competency of module Before the module extrac-
tion process begins the Ontology Engineer needs to de-
fine competency questions for the module; these should

state what the Ontology Engineer wants the ontology
module to express. The competency questions can be
expressed in terms of SPARQL queries. If the compe-
tency of the ontology module is not defined in some
way then the Ontology Engineer will have no idea
whether the ontology module they extract meets their
requirements.

Ontology Selection The Ontology Engineer needs to se-
lect the relevant ontology that they wish to extract
a module from, as the number of ontologies available
continues to increase this step will become increasingly
important. Sabou et al.[19] provide an extensive re-
view on this area of research and also state require-
ments for the ontology selection process. Whilst on-
tologies can be discovered by browsing the available
repositories or by using a search engine like Swoogle,
the major effort in this task will be carrying out the
ontology evaluation.

- Ontology Evaluation The Ontology Engineer needs
to evaluate any ontology that is discovered to see
how suitable it is for reuse. There are several cri-
teria that can be applied to evaluate an ontologies
suitability for reuse. One criterion could be the
ontologies popularity; if an ontology is popular
and widely used then it is likely to be correct and
of some quality. Another criterion could be to
check the ontology against the competency ques-
tions the Ontology Engineer defined for the on-
tology module. If the ontology does not meet the
competency questions then the ontology module
will most likely not either.

Ontology Translation This step aims to change the rep-
resentational language used to implement the ontology.
This may be necessary to make the ontology compat-
ible with the module extraction process being used.
However, the application of this step requires some
care to be taken by the Ontology Engineer. Trans-
lating an ontology from a more expressive formalism
such as OWL-DL to RDFS will cause some ontological
features, such as restrictions on the classes, or cardinal-
ity constraints to be lost. Conversely, the translation
from a less expressive formalism into a more expressive
one will cause the Ontology Engineer to perform a fur-
ther enrichment step that is needed to complement the
less expressive model obtained through translation. A
complete treatment of the problems associated to on-
tology translation can be found in [2].

Extract module The ontology module is extracted from
the selected ontology. The amount of effort required
by the Ontology Engineer in this step will depend on
the method of extraction that is being used. In the
following section the algorithm we propose for module
extraction is presented.

Check Competency The extracted ontology module is checked
against the competency questions, in order to see if
they are met. One possible way to check whether the
competency questions are met is by formulating them
as SPARQL queries. If the competency questions are
met then the Ontology Engineer can integrate the on-
tology module into the ontology that they are con-

64

Dene competency of
module

Ontology Selection

Ontology Evaluation Extract Module

Ontology translation

Check competency

Rene

Integrate

Figure 1: A methodology for reusing an ontology module.

structing. If the competency questions are not met
then the Ontology Engineer should refine the ontology
module.

Refine When the competency questions are not satisfied
then the Ontology Engineer should refine the module
in a way that attempts to ensure that the competency
questions are met. This refinement could take two pos-
sible forms. Firstly, the Ontology Engineer could al-
ter the ontology module, i.e. by adding or removing
statements, in order to make it meet the requirements
defined by the competency questions. However, un-
der certain circumstances the Ontology Engineer may
decide that this would take too much effort and thus
decide to run the module extraction process again, or
indeed run a different module extraction process. Nat-
urally if the same module extraction process is being
used then the Ontology Engineer should ensure that
the parameters are fixed differently.

Integrate Once the ontology module satisfies the compe-
tency questions it can be integrated into the ontology
being constructed.

5. ABSTRACT GRAPH MODEL FOR ON-
TOLOGY MODULE EXTRACTION

To enable the development of an ontology module extrac-
tion method that was as language neutral as possible and
fulfilled the requirements stated in Section 3.1, an abstract
model was required. The model proposed is an edge-labeled
directed graph G, given an alphabet

P
E , is an ordered pair

G = (V, E) where:

• V is a finite set of vertices,

• E ⊆ V ×
P

E ×V is a ternary relation describing the
edges (including label). (N.B. E is not symmetric
which gives us direction. Therefore to properly cap-
ture the definitions of ‘disjoint’ and ‘equivalent’ two
edges are required.)

Using this abstract model, it is possible to define an on-
tology module as GM = (VM , EM), where
VM ⊆ V ∧VM 6= ∅ and EM ⊆ E. This implies that GM ⊆ G.

It is possible to reduce module extraction to the traver-
sal of a graph given a starting point x such that x ∈ VG.
The only exception being that there is no need to traverse

‘disjoint’ labeled edges of x in the first iteration. Thus, the
module is a graph GM = (VM , EM) where VM and EM are
the sets of traversed vertices and edges respectively. The
minimum number of possible GM derivable from G should
be equal to the number of elements in V . This is because a
single module could be generated for each concept.

Algorithm 1 Module Extraction

INPUT

• A directed graph G = (V, E)

• s a starting vertex such that s ∈ VG

• Excluded - a container of E not to be followed

• Visited - a container of V that have been visited

• ToVisit - a container of V to be visited.

OUTPUT

• A directed graph GM = (VM , EM)

procedure extractModule(Vertex s)
if s /∈ Visited then

insert s into Visited
create container X = {e ∈ E|s×

P
E ×v}

while X is not empty do
y =first element of X
if y /∈ Excluded then

y ∪ EM

insert r such that y = s×
P

E ×r into ToVisit
end if
if ToVisit is not empty then

t =first element of ToVisit
remove t from ToVisit
extractModule(t)

else
output GM

end if
end while

end if

Algorithm 1 presents the pseudo-code description of the
ontology module extraction method. The complexity of the
algorithm is O(n2). The graph is conditionally traversed to
extract the ontology module.

65

In the case of OWL in the first iteration of the extraction
process the disjoint relation is not traversed, but in subse-
quent iterations it is. This exception is allowed because the
user explicitly chooses the concept that the process will start
on. If this concept has disjoint concepts the assumption is
made that the user is not interested in these concepts. This
is fair because disjointedness requires that the concepts have
no instances in common. If the user had wished to include
the disjoint concepts they should have started the process
on their common superclass.

An interesting result of applying this algorithm to gen-
erate an ontology module, is that the ontology module pro-
duced will be transitively closed with respect to the relations
that are traversed. The only caveat is that the ontology be-
ing used to obtain the module must be transitively closed
with respect to these relations in order to guarantee that the
module will also have transitive closure.

It is important to note that there is no upward navigation
of the subclass hierarchy from the concept the process was
started on. Again this is justified because the user chooses
the starting concept. Furthermore, allowing upward naviga-
tion of the subclass hierarchy would substantially increase
the chance of extracting a module that is equal to the whole
ontology.

The abstract graph model means that the module ex-
traction process is independent of the language. For ex-
ample, the alphabet for OWL-DL is

P
E = {subClassOf,

disjointWith, equivalentTo, subPropertyOf, property} and
for RDFS it is

P
E = {subClassOf, subPropertyOf, property}.

Notionally these labels correspond to the primitives of OWL-
DL apart from ‘property’. If an edge is labelled ‘property’
then it means the starting vertex is the domain and the
ending vertex is the range.

Algorithm 1 has been implemented in ModTool, a stand-
alone tool for ontology modularisation. It provides an in-
tuitive graphical user interface (GUI) for extracting ontol-
ogy modules. It does not produce an exhaustive partition
nor does it support the recombination of ontology modules
in order to obtain the semantics of the original ontology.
It makes use of JENA8 to allow the ontology being modu-
larised and the ontology module produced to be persistently
stored. This is important because dealing with large ontolo-
gies in memory is cumbersome. Pellet9 is also used to check
that the modules produced are clean and valid. The GUI is
designed to allow the user to select which concept they wish
to produce an ontology module about. It is also possible
for the user to configure local redirections of any imported
ontologies.

5.1 A Walkthrough Example.
Figure 5 shows a simple ontology, represented in the ab-

stract model presented in this paper, about the University
domain. From this ontology we shall extract an ontology
module about ‘Academic Staff’, this is the starting concept.

Iteration 1.
‘Academic Staff’ is added to Visited. ‘Academic Staff’ is

disjoint with ‘Admin Staff’ so ‘Admin Staff’ is not added
to ToVisit. ‘Acadmic Staff’ has two subclasses, ‘Lecturer’
and ‘Research Staff’, these are added to ToVisit. ‘Academic

8http://jena.sourceforge.net/
9http://www.mindswap.org/2003/pellet/index.shtml

Staff’ has no more edges to traverse and is removed from
ToVisit; the extraction now continues with ‘Lecturer’ as the
concept of focus.

Iteration 2.
‘Lecturer’ is added to Visited. ‘Lecturer’ is the domain of

the object property ‘supervises’; the range of this property
is ‘PhD Student’, thus ‘PhD Student’ is added to ToVisit.
‘Lecturer’ has no more edges to traverse and is removed
from ToVisit; the extraction now continues with ‘Research
Staff’ as the concept of focus.

Iteration 3.
‘Research Staff’ is added to Visited. ‘Research Staff’ has

one subclass ‘PhD Student’. ‘PhD Student’ has already been
added to ToVisit, which does not permit duplicate elements,
however the edge that describes the subclass relation will be
included in the module. ‘Research Staff’ has no more edges
to traverse and is removed from ToVisit; the extraction now
continues with ‘PhD Student’ as the concept of focus.

Iteration 4.
‘PhD Student’ is added to Visited. ‘PhD Student’ has

no valid edges to traverse. Eventhough ‘PhD Student’ is
the range of an object property, this edge is not traveresed.
‘PhD Student’ is removed from ToVisit. ToVisit is now empty;
the extraction process ends and the ontology module is out-
putted.

6. EXPERIMENTAL EVALUATION
As a proof of concept preliminary experiments were con-

ducted using the NCI Oncology Ontology10 and were based
on those carried out by Stuckenschmidt & Klein[22]. This
allowed for a comparison of results. ModTool was run for
every ‘partition name’ defined by Stuckenschmidt & Klein.
For Stuckenschmidt & Klein ’s [22] experiments with SUMO,
the partition name is derived from the top concept of the
respective module. We assume that the same method was
used to define the partition names for the NCI Oncology On-
tology. Where the partition name did not directly coincide
with a concept in the NCI ontology the most similar name
was used. There were only 12 cases where this occurred.
Full results for the experiments can be found at
www.csc.liv.ac.uk/~pdoran/ experiments/. The results
obtained show that the average difference between Mod-
Tool module sizes and those of Stuckenschmidt and Klein
was 69, with 40 of the modules being different in size.

It was necessary to compare ModTool’s approach with
that of Cuenca Grau et al.[4]. However, it should be noted
that the approach taken by Cuenca Grau et al. is biased
toward efficiency rather than reuse, and that in fact, the
ModTool view is orthogonal to Cuenca Grau et al.. ModTool
aims to extract ontology modules rather than partitioning.
This is due to the Ontology Engineering perspective taken
where a user has to find the most suited fragment of an on-
tology in order to include as much knowledge as is necessary.
This enables the conceptualisation to be reused. Whereas
the perspective taken by Cuenca Grau and colleagues is that
of an ontology maintainer that wants to subdivide a huge
ontology into well separated fragments. Thus, the problem
of reuse is addressed partially and indirectly. Indeed there

10
http://www.mindswap.org/2003/CancerOntology/nciOncology.owl

66

Academic
Staff

Lecturer Research
Staff

PhD
Student

StudentAdmin
Staff

Employee
subclassOf

subclassOf

subclassOf

subclassOf subclassOf subclassOf

subclassOf

supervises

disjoint

taughtBy

taughtBy

Figure 2: A simple ontology of the University domain.

Ontology Species Equivalent Disjoint Restriction
AKT-Portal ALCHIOF(D) X X

MindSwappers ALCHIF(D) X
Family ALC X X X

Table 1: Table showing ontology properties.

is no assurance that a user is interested in a concept that
appears in just one fragment. In addition modules cannot
have axioms in common but they can share concepts. Mod-
Tool instead explores the problem from the perspective of a
user that wants to elicitate the knowledge related to a single
concept without requiring a complete partition of the on-
tology. An advantage of such an approach is that a safety
check is less constraining since it is no longer required that
a whole ontology can be subdivided into disjoint axiom sets,
but rather all that is necessary for such a concept is included.

It was felt unfair to compare the ModTool approach with
that of Noy and Musen [16] because their approach is ori-
ented to query answering rather than reuse. One drawback
of both Stuckenschmidt and Klein, and Noy and Musen is
that they do not produce a reusable entity. The output of
Stuckenschmidt and Klein partitioning algorithm is not in a
Semantic Web language. Noy & Musen only create a view
on an ontology which is intended to be used for query an-
swering. It does not allow for the extraction of this view
for reuse. Whilst Cuenca Grau and colleagues method does
produce reusable entities, their reuse is restricted due to the
tight coupling that ε-connections [13] gives them.

In regards to Cuenca Grau and colleagues’ method it is
not possible to have an in-depth comparison of results due
to the size of the partitions produced. Furthermore, the bias
of their approach toward efficiency also hinders a more thor-
ough analysis. It is not possible to apply the ε-connections
method to the partitions to further reduce their size so that
a better comparison can be made. This indicates that un-
der certain circumstances it would be preferable for a user to
produce a module using ModTool rather than trying to reuse
one of the partitions obtained from using ε-connections. For
example, when the partition contains disparate concepts.
This is especially the case when one considers the perspec-
tive of an Ontology Engineer who is trying to reuse an on-
tology module, that is likely to need changing in order to
conform to their conceptualisation. This would suggest that
the ontology modules produced by ModTool are more ver-

satile than the partitions produced by ε-connections. Also,
the tight coupling of ε-connections is a disadvantage.

When running the Cuenca Grau and colleagues approach
deployed in SWOOP11 the NCI Oncology ontology was split
into 17 partitions. Some of these were large, for example, one
partition had 7663 concepts. This compares unfavourably
with the modules produced by ModTool whose largest was
2380.

One problem identified with this preliminary experimental
comparison was that there is no definitive notion of what a
‘good’ module is. Plus, the only way to carry out a compar-
ison was on purely subjective terms. Thus, there is a need
for a formal objective criteria. We propose that the preci-
sion and recall metrics used by Dellschaft & Staab[6] can be
applied to modularisation. This requires that a definition
of what precision and recall mean to module extraction for
reuse be devised.

- Precision. All the taxonomical relations that are in the
module are also in the parent ontology.

- Recall. Everything that is in the parent ontology is in the
module.

The metric then calculates the harmonic mean of precision
and recall, this is the fMeasure. Recall is particularly impor-
tant to evaluate the quality of a module, as it provides an
objective measure of how much of the original ontology has
been retained in the module, thus indirectly measuring how
competent the module is. In Uschold and Gruninger[23],
the notion of formal competency questions to evaluate the
quality of an ontology is introduced. These are used to ver-
ify that the ontology contains enough concepts to answer
some questions defined by the ontology engineers to limit
the scope of the ontology. Analogously, recall reflects how
much of the original ontology has been included in the mod-
ule, thus providing an indirect measure of the scope of the
module, or its competency.

11http://www.mindswap.org/2004/SWOOP/

67

Ontology Average Precision Average Recall Average fMeasure
Portal 1 0.54 0.68

MindSwappers 1 0.72 0.79
Family 1 0.84 0.9

Table 2: Experimental Results

6.1 Experimental Procedure And Results
Experiments were conducted on three ontologies: the AKT-

Portal, MindSwappers and Family ontologies. These ontolo-
gies were chosen because of their varying expressiveness, see
Table 1. Whilst the Family ontology is the least expressive it
is highly interconnected and contains complex restrictions.
For example, the Grandfather concept is defined as a father
who has a child who is a parent. The ontologies used in
the proof of concept, such as the NCI Oncology ontology,
were relatively simple and often only formed by taxonomic
relations

A module was produced for each concept. The metric was
then run to calculate the precision and recall of the module
with respect to the original ontology. It is expected that
precision will be high because the approach does not make
any changes to the concepts that are placed in the module.
In addition, intuitively, the recall should vary dependent on
how large the module is and where it appears in the taxon-
omy. For example, large modules at the top of the taxonomy
should have a high recall; whilst small modules at the bot-
tom of the taxonomy should have a low recall. There is little
expectation that recall will score highly. Indeed it is unde-
sirable to score highly on recall because this indicates that
the ontology module is fairly similar to the original ontol-
ogy, which nullifies the benefits of the module extractions
process. Thus, it is expected that the score for recall will be
lower than that for precision.

The results are shown in Table 2. They concur with our
expectations. Precision was high for all three ontologies;
recall was lower, as expected.

The difference in recall between Portal and Mindswappers
can largely be attributed to the difference in average depth
of the class tree. The average depth of the class tree for
Portal is 5.89 and for Mindswappers it is 3.9. The average
branching factor and the avergage number of object proper-
ties per concept are not significantly different. The average
branching factor of Portal is 2.53 and for Mindswappers it
is 2.58. Whilst the average number of object properties per
concept for Portal is 1.56 and for Mindswappers it is 1.26.

The difference in the avergage depth of the class tree at-
tributes to the difference in recall because of the way the
subclass rule works in the extraction process. The greater
the depth of the class tree means that as the process gets fur-
ther down the hierarchy, then less of the hierarchy is placed
into the ontology module. Thus, the less in your ontology
module the lower the recall.

There is a need for further analysis of the results with re-
gard to recall. This should look at whether a threshold can
be defined to assess when an ontology module is competent.
The upper threshold would indicate that the module is be-
coming to general, and the lower threshold would indicate
that the module is too specific.

7. CONCLUSIONS AND FUTURE WORK
This paper offers a new approach to generate an ontology

module for reuse. The abstract graph model for ontology
module extraction allows us to explicitly deal with the differ-
ent types of relations that are used within RDFS and OWL.
Experimental results have shown that ModTool can gener-
ate small modules that retain the properties of the original
ontology. Conducting usability tests could further validate
the approach, in order to recognise if the overhead of taking
another’s ontology and including it in your own modeling
task is manageable, or if it is easier for the Ontology Engi-
neer to model everything from scratch.

The postulation that precision and recall can be used as
an objective measure, it is hoped, will allow for different ap-
proaches to be compared in a more unbiased manner. This
highlights the need for the ontology modularisation commu-
nity as a whole to decide upon what a ‘good’ module is. It
would also be useful for a single ontology or a suite of on-
tologies to be selected as a benchmark. These are important
steps as they will allow different approaches to be compared
more objectively.

A flaw in the implementation of ModTool is that if con-
cepts in the ontology module inherit object properties from
concepts that are not in the module then these object prop-
erties are not included. This is not a trivial problem to solve
because deciding whether or not to change the domain and
range of an object property is not simple. For example, class
A has subclass B and object property P has domain A and
range C. If the user starts the module extraction process on
B then do we need to include A? If A is included then the
module size is likely to increase because upwards navigation
is introduced, and in certain cases the only module one may
be able to produce will be equal to the whole ontology. Or is
it possible to change the domain from A to B? If the domain
is changed does the range need to be changed and how can
this be decided? This is not a major flaw as the user is able
to add these properties by hand later if they are required;
but an automatic solution to this problem is a current focus
of research.

In the future, the ModTool approach will also be applied
to the other goals of modularisation. For example, the Mod-
Tool approach could allow for quicker and more relevant in-
formation retrieval by narrowing the scope of the query. In
addition, mechanisms to handle evolution and maintenance
need to be added to ModTool. Although strict enforcement
of evolution and maintenance is unlikely with the approach
taken, Ontology Engineers still need to be made aware when
the ontology they obtained their ontology module from has
been changed. Additionally research needs to be carried out
to see if ModTool can reduce the cognitive complexity for
Ontological Engineers allowing them to develop a more ac-
curate understanding of the ontologies they are reusing. A
subject of current research is investigating the effect of using
more than one concept to instantiate the module extraction

68

process. This could be useful if an Ontology Engineer can-
not find one specific concept in the ontology that fits their
needs, but rather needs to select several to obtain a module
that fits their requirements.

8. ACKNOWLEDGMENTS
This work was supported by the Engineering and Phys-

ical Sciences Research Council (EPSRC) and Knowledge
Web(KW).

9. REFERENCES
[1] A. Bernaras, I. Laresgoiti, and J. Corera. Building and

reusing ontologies for electrical network applications.
In W. Wahlster, editor, Proc. of the 12th ECAI, pages
298–302, 1996.

[2] O. Corcho. A Layered Declarative Approach to
Ontology Translation with Knowledge Preservation
(Frontiers in Artificial Intelligence and Applications).
IOS Press, US, 2005.

[3] B. Cuenca Grau, B. Parsia, and E. Sirin. Combining
owl ontologies using e-connections. Journal Of Web
Semantics, 4(1):1–42, 2005.

[4] B. Cuenca Grau, B. Parsia, E. Sirin, and
A. Kalyanpur. Modularizing owl ontologies. In
Proceedings of the KCAP-2005 Workshop on Ontology
Management, Banff, Canada, 2005.

[5] M. d’Aquin, M. Sabou, and E. Motta. Modularization:
a key for the dynamic selection of relevant knowledge
components. In First International Workshop on
Modular Ontologies, ISWC 2006, First International
Workshop on Modular Ontologies, ISWC 2006,
Athens, Georgia, USA., 2006.

[6] K. Dellschaft and S. Staab. On how to perform a gold
standard based evaluation of ontology learning. In
I. F. Cruz, S. Decker, D. Allemang, C. Preist,
D. Schwabe, P. Mika, M. Uschold, and L. Aroyo,
editors, International Semantic Web Conference,
volume 4273 of Lecture Notes in Computer Science,
pages 228–241. Springer, 2006.

[7] J. D. (Editor), D. F. (Editor), and F. van
Harmelen (Editor). Towards the Semantic Web:
Ontology-driven Knowledge Management. John Wiley
and Sons Ltd, UK, 2002.

[8] N. Fridman Noy, R. W. Fergerson, and M. A. Musen.
The knowledge model of protege-2000: Combining
interoperability and flexibility. In R. Dieng, editor,
Proceedings of the 12th EKAW Conference, volume
LNAI 1937, pages 17–32, Berlin, 2000. Springer
Verlag.

[9] S. Ghilardi, C. Lutz, and F. Wolter. Did I damage my
ontology? a case for conservative extensions in
description logics. In P. Doherty, J. Mylopoulos, and
C. Welty, editors, Proceedings of the Tenth
International Conference on Principles of Knowledge
Representation and Reasoning (KR’06), pages
187–197. AAAI Press, 2006.

[10] A. Gómez-Pérez, M. Fernández-Lopez, and et al.
Ontological Engineering. Springer, London, 2003.

[11] A. Gómez-Pérez and D. Rojas-Amaya. Ontological
reengineering for reuse. In Knowledge Acquisition,
Modeling and Management: 11th European Workshop,
EKAW ’99, Dagstuhl Castle, Germany, May 1999.
Proceedings, volume 1621 of Lecture Notes in
Computer Science, page 139. Springer Berlin, 1999.

[12] B. C. Grau, I. Horrocks, Y. Kazakov, and U. Sattler.
A logical framework for modularity of ontologies. In
Veloso [24], pages 298–303.

[13] O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev.
E-connections of abstract description systems.
Artificial Intelligence, 156(1):1–73, 2004.

[14] C. Lutz, D. Walther, and F. Wolter. Conservative
extensions in expressive description logics. In Veloso
[24], pages 453–458.

[15] N. Noy and D. McGuinness. Ontology development
101: A guide to creating your first ontology. Technical
Report SMI-2001-0880, Stanford Medical Informatics
(SMI), Department of Medicine, Stanford University
School of Medicine, 2001.

[16] N. F. Noy and M. A. Musen. Specifying ontology
views by traversal. In International Semantic Web
Conference, pages 713–725, 2004.

[17] A. Rector, A. Napoli, G. Stamou, G. Stoilos,
H. Wolger, J. Pan, M. D’Aquin, S. Spaccapietra, and
V. Tzouvaras. Report on modularization of ontologies.
Technical report, Knowledge Web Deliverable
D2.1.3.1, 2005.

[18] A. L. Rector. Modularisation of domain ontologies
implemented in description logics and related
formalisms including owl. In K-CAP ’03: Proceedings
of the 2nd international conference on Knowledge
capture, pages 121–128, New York, NY, USA, 2003.
ACM Press.

[19] M. Sabou, V. Lopez, E. Motta, and V. Uren. Ontology
selection: Ontology evaluation on the real semantic
web. In Proceedings of the EON’2006 Workshop,
”Evaluation of Ontologies on the Web”, held in
conjunction with WWW’2006, 2006.

[20] J. Seidenberg and A. Rector. Web ontology
segmentation: analysis, classification and use. In
WWW ’06: Proceedings of the 15th international
conference on World Wide Web, pages 13–22, New
York, NY, USA, 2006. ACM Press.

[21] H. Stuckenschmidt and M. Klein. Integrity and change
in modular ontologies. In Proceedings of the
International Joint Conference on Artificial
Intelligence - IJCAI’03, Acapulco, Mexico, 2003.

[22] H. Stuckenschmidt and M. Klein. Structure-based
partitioning of large concept hierarchies. In
Proceedings of the 3rd International Semantic Web
Conference, Hiroshima, Japan, 2004.

[23] M. Uschold and M. Gruninger. Ontologies: principles,
methods and applications. Knowledge Engineering
Review, 11(2), 1996.

[24] M. M. Veloso, editor. IJCAI 2007, Proceedings of the
20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, January 6-12, 2007,
2007.

69

