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Abstract

BF theories defined over non trivial line bundles are studied. It is

shown that such theories describe a realization of a non trivial higher

order bundle. The partition function differs from the usual one -in

terms of the Ray Singer Torsion- by a factor that arises from the non

triviality of the line bundles.

Topological field theories were introduced in [1] and [2][4]. The partition
functions of the abelian BF theories is a topological invariant of the base
manifold X, related to the Ray Singer torsion as shown by A. Schwarz in [3].
Other interesting observables may be constructed as correlation functions
of Wilson surfaces associated to the A and B fields, these correlation func-
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tions determine the linking and intersection numbers of manifolds of several
dimensions.

The BRST gauge fixing of the BF action was studied for the abelian
case in [4] and completed for the non abelian case in [5] and [6], and several
interesting properties of the quantum effective action were analysed.

The interest on the BF theories is not limited to the topological field
theory, it happens that the BF lagrangian density appears as an interaction
term in several physical theories with local propagating degrees of freedom
[7] [8] in particular, as the interaction term relating dual theories of p and
(d−p−2)-forms in d dimensions [9], consequently the topological contribution
comming from BF theories appear even in those physical theories with non
trivial physical hamiltonian.

In the analysis of [1][2][4] the connection 1-form A of the BF action is
defined over a flat vector bundle, in this note we will consider BF theories
over non trivial U(1) bundles. More precisely, we will assume the base X
to be a compact, orientable finite dimensional euclidean manifold without
boundary, and will consider all the isomorphism classes of U(1) line bundles
with connections that can be built over X. We will compare the resulting
theory with the standard one, that is, we will compare a BF theory over a
trivial line bundle with a BF theory formulated over a non trivial one. We
will show that in the latest case the theory describes a realization of a non
trivial higher order bundle [9][10][11][12].

The partition function of both formulations have a common factor ex-
pressed in terms of the Ray Singer torsion, the new theory however contains
an extra topological factor arising solely from the non triviality of the line
bundles themselves, which distingushes both theories, this latest factor is
introduced by the zero modes of the quantum effective action of the theory.
These non trivial contributions to the partition function arising from non
trivial line bundles and higher order bundles are also present in any global
analysis of duality in quantum field theory, nevertheless, they are usually
missing in the literature.

Higher order bundles [9][10][11] constitute geometrical objects that gener-
alize the concept of fiber bundles, from a physical point of view they describe
antisymmetric tensor fields with transitions whose effect is detected in gen-
eralized Dirac’s quantization conditions, and are therefore naturally realized
in the Chern Simmons terms in the action for D = 11 supergravity and con-
sequently relevant for M theory. From the mathematical point of view [12]
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higher order bundles -also called Gerbes- are fiber bundles over a manifold,
whose fibers are groupoids.

We begin by reviewing abelian BF theories formulated on trivial bundles.
The action for such systems is given by

S =
∫

B ∧ dA (1)

under the assumption that A is a U(1) connection over a trivial line bundle
it follows that A is a globally defined 1-form over X while B is a globally
defined d − 2-form. The field equations following from (1) are:

dA = 0, dB = 0 (2)

that is: A and B are closed 1 and d − 2 forms. We define the gauge trans-
formations for these fields as:

B → dθ, A → dΛ (3)

where θ and Λ are a globally defined d − 3 form and a 0-form respectively.
The space of solutions of the field equations coming from the action (1) may
then be expressed as:

Hd−2

dR (X,ℜ) ⊗ H1

dR(X,ℜ) (4)

where Hp
dR(X,ℜ) stands for the de Rham Cohomolgy group of degree p. Let

us now turn our attention to the quantum theory and consider the BRST
invariant effective action associated to (1), to do so we have to introduce the
ghosts, antighosts and Lagrange multipliers associated to the gauge symme-
tries (3) and to the corresponding BRST gauge fixing procedure. We first
notice that the gauge symmetries correspond to exact forms and that conse-
quently, the associated ghost fields have no harmonic part. Indeed, since the
gauge transformation for the 1-form A is given by

A → A + dΛ (5)

it follows that the corresponding BRST transformation is [13][14]

δ̂A = dC (6)
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where the zero form Λ has been replaced by the ghost field C. Since dΛ is an
exact form dC must also be exact in order to preserve the same degrees of
freedom, consequently, dC has no harmonic part. If instead dΛ were a closed
1-form, dC should also be closed and hence would contain a harmonic part.
We also note that the Lagrange multiplier associated to the gauge fixing
introduced by the modified BFV approach [14] does not have any zero mode
freedom in agreement with Lagrange’s multiplier theorem. Consequently
the antighost (C̄) has also no harmonic part contribution. This result can
be generalized to reducible systems (such as BF theories for d > 3) where
one may argue that the ghosts and antighosts do not have any zero modes
(harmonic parts). In this sense the approach in [14] provides the construction
of the BRST invariant effective action without the introduction spurious zero
modes on the ghost sector. Going back to the discussion of the quantum
theory of the action (1) , we find that the only zero modes are those of the A
and B fields which are given by the cohomology classes (4), and which give
rise to the nontrivial contributions to the partition function

For the sake of simplicity we consider a straightforward example of the
above discussion, namely, the BF theory in d = 3 dimensions, the effective
action is given by

Seff =
∫

B ∧ dA + λ1d
∗B + λ2 ∧ D∗A + C̄1d

∗dC1 + C̄1d
∗dC1 (7)

by construction there are no zero modes for the ghosts, antighosts and La-
grange multipliers . Indeed, the potential zero modes for C1 -for example-
arise as solutions of

d∗dC1 (8)

but this condition is simply states that dC1 is an harmonic 1-form in contra-
diction with the fact that dC1 is exact. The only zero modes of the effective
action (7) come thus from A and B. The zero modes of the B field satisfy

dB = 0, d∗B = 0 (9)

and similar conditions for the zero modes of A. This set of conditions imply
that the zero modes are two copies of the space of harmonic (d−2) = 1-forms.
That is, the cohomolgy classes defined by H1

dR(X,ℜ) ⊗ H1

dR(X,ℜ).
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The evaluation of the partition function of the BF theory in this case
-over trivial line bundles- was performed in [2][3] [4], the final result is:

Z = Vol(ZM)(T (X))α (10)

where Vol(ZM) denotes the volume of the space of zero modes, while T (X)
is the Ray Singer torsion, the exponent α being given by (n = dim(X)):

α = {
2 − n + 1 n even

−1 n odd
(11)

According to the above construction of the effective action, the space of
zero modes ZM is given by

ZM = H1

dR(X,ℜ) ⊗ H1

dR(X,ℜ) (12)

Concerning the latest point, we take a different point of view than the one
presented in [4] where the gauge symmetry is extended to include harmonic
gauge parameters, in that case we agree in that the ghosts sector should
include harmonic parts.

We will now turn to our main interest: BF theories defined over non
trivial line bundles. Any connection 1-form over a nontrivial line bundle
may be decomposed as:

A = Â + a (13)

where a is a globally defined 1-form while Â is a fixed 1-form connection of
the same topological bundle as A. A and Â have the same transitions over
X, while a has obviously none. B will be taken as a globally defined (d− 2)
form.

The BF action for such a system may be written as:

S = i
∫

X
B ∧ F (A) = i

∫

X
B ∧ F (Â) + i

∫

X
B ∧ F (a) (14)

Variations of (14) with respect to a, or functional integration with respect
to it yields

dB = 0 (15)
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on the other hand, variations of (14) with respect to B or equivalently func-
tional integrations on B yields

F (A) ≡ dA = 0 (16)

finally, summation over all line bundles gives:
∮

ΣI

B = 2πnI (17)

where {ΣI} is a basis of homology of dimension d− 2, while the numbers nI

are integers associated to each ΣI . To obtain (17) we recursively integrate by
parts using a triangulation of X and proceeding as follows

i
∫

X
B ∧ F (Â) = (−1)d−2i

∫

X
d(B ∧ Â) = (−1)d−2i

∑

Ui∩Uj

∫

Ui∩Uj

B ∧ (Âi − Âj) =

= i(−1)d−2
∑

Ui∩Uj

∫

Ui∩Uj

B ∧ dΛij = i
∑

Ui∩Uj

∫

Ui∩Uj

d(BΛij) =

= i
∑

Ui∩Uj∩Uk

∫

Ui∩Uj∩Uk

B(Λij + Λjk + Λki) =

= i
∑

Ui∩Uj∩Uk

∫

Ui∩Uj∩Uk

2πnB = 2πmI
∑

I

i
∫

ΣI

B (18)

summation over all mI yields then (17). In (14) one may identify the last
term of the split action, namely: i

∫
X B ∧ F (a) as the BF action of a global

1-form a or equivalently of a 1-form connection over a trivial line bundle. The
contribution of all non-trivial U(1) line bundles arises from the i

∫
X B∧F (Â)

term of the action.
Let us now analyze the space of solutions of the field equations (15) ,(16), and
(17). We first recall that F (A) being the curvature of a connection 1-form A
over a line bundle also has integral periods (Dirac quantization conditions)
over any basis of homology of dimension 2, but because of (16) the integers
are all zero. Condition (16) implies that A is a flat connection 1-form, given
Aflat one such connection then for any closed 1-form ω over X

Aflat + ω (19)
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is also a flat connection on the same line bundle, moreover these are all the
flat connections over the line bundle. The problem then reduces to find all
the line bundles which admit a flat connection. There exists generically non-
trivial line bundles with flat connections over it. They are line bundles with
constant transitions and are classified by the Čech cohomology group with
values on the constant sheaf ℜ/Z:

Ȟ1(X,ℜ/Z) (20)

For any such line bundle the flat connections are in one to one correspon-
dence to the de Rahm cohomology group

H1

dR(X,ℜ). (21)

According to this, the total space of flat connections is determined by the
product

Ȟ1(X,ℜ/Z) ⊗ H1

dR(X,ℜ) (22)

Let us now analyze the space of solutions to (15) and (17), taking into
account the gauge symmetry of the B field

B → B + dθ (23)

where dθ is an exact (d − 2) form. Conditions dB = 0 and
∮
ΣI

B = 2πnI

ensure the existence of both: a higher order U(1) bundle, and a (d−3)-form b
with non-trivial transitions over X [9] , such that B = db. The former result
is a generalization of Weil’s theorem stating that given a 2-form F satisfying
Dirac’s quantization conditions there exists a line bundle and a connection
A such that F is the curvature of A [12]

In a particular case, B being a 3-form we have, on an open covering
Ul, l ∈ L, of X that

B = dbi on Ui, bi − bj = dηij on Ui ∧ Uj 6= ∅

ηij + ηjk + ηki = dΛijk on Ui ∧ Uj ∧ Uk 6= ∅ (24)
∑

ijkl

Λijkl = 2πn
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the cocycle condition being satisfied on any intersection of four open sets.
Conversely, given conditions (24), then B satisfies (15) and (17).

The gauge equivalent triplets (b, η, Λ) are defined by

bi → bi + dηi on Ui

ηij → ηij + ηi − ηj + dΛij on Ui ∩ Uj (25)

Λijk → Λijk + Λij + Λjk + Λki on Ui ∩ Uj ∩ Uk

It is important to realize that given B satisfying (15) and (17) the triplet
(b, η, Λ) in (24) may not be unique in general, indeed, there may exist con-
stant transition Λ̃ijk on Ui ∩ Uj ∩ Uk ∩ Ul 6= ∅ satisfying

∑

ijkl

Λ̃ijk = 0 on Ui ∩ Uj ∩ Uk ∩ Ul 6= ∅ (26)

which may be added to any particular triplet (b, η, Λ) satisfying (24) giving
rise to a new triplet satisfying the same conditions. The space of all the
triplets (0, 0, Λ̃ijk) with constant transitions Λ̃ijkare classified by the Čech
cohomology group Ȟ2(x,ℜ/Z) with values on the constant sheaf ℜ/Z. This
is the only degeneracy on the triplets satisfying (24) for a given B, a closed
3-form with integral periods. Modulo this degeneracy two triplets (b1, η1, Λ1)
and (b2, η2, Λ2) satisfying the cocycle condition with the same set of integers
n satisfy

(b2, η2, Λ2) ∼ (b1 + θ, η1, Λ1) (27)

where ∼ denotes gauge equivalence (25), and θ is a globally defined 2-form
over X. Since this is just the gauge symmetry (23) of the BF action and
consequently of its field equations (15) and (17), we conclude that the set
of integers nI associated to a basis of integral homology of dimension 3 de-
termine the space of solutions of (15) and (17). They classify all the higher
order bundles of degree 3, that is the Čech cohomology group

Ȟ3(X, Z) (28)

modulo Ȟ2(X,ℜ/Z) the space of higher order bundles of degree 3 with con-
stant transitions, i.e. two elements of the same equivalence class differ by
constant transitions Λ̃.
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Finally, from (14) we may determine the partition function of the BF theory
on non-trivial line bundles. It has the form Vol(ZM)(T (X))α already found
in [2][3][4] but now the zero mode space is determined by

(Ȟ1(X,ℜ/Z) ⊗ H1

dR(X,ℜ)) ⊗ (Ȟ3(X, Z)/Ȟ2(X,ℜZ)). (29)

In the general case the degree of the Čech cohomology groups are d − 2
and d − 3 respectively and consequently the last formula generalizes to

(Ȟ1(X,ℜ/Z) ⊗ H1

dR(X,ℜ)) ⊗ ( ˇHd−2(X, Z)/ ˇHd−3(X,ℜZ)). (30)

showing that BF theories provide, may be the most elementary realization
of higher order bundles in field theory.
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