Chapter 23

Rough Sets and Artificial Neural
Networks

Marcin S. Szczuka

Institute of Mathematics, Warsaw University
Banacha 2, 02-097 Warsaw, Poland

e-mail: szczuka@mimuw.edu.pl

1 Introduction

This work is an attempt to summarize several approaches aimed at connecting
Rough Set Theory with Artificial Neural Networks. Both methodologies have
their place among intelligent classification and decision support methods. Artifi-
cial Neural Networks belong to most commonly used techniques in applications
of Artificial Intelligence. During the last twenty years of its development nu-
merous theoretical and applied works have been done in that field. Rough Set
Theory which emerged about fifteen years ago is nowadays rapidly developing
branch of Al and Soft Computing.

At the first glance the two methodologies we talk about have not too much
in common. Basic rough sets deal with symbolic representation of data, they
construct representation of knowledge in terms of attributes, semantic decision
rules etc. On the contrary, neural networks in their basic form do not consider
the detail meaning of knowledge gained in the process of model construction and
learning. But, in spite of those differences it is interesting to try to incorporate
both approaches into some combined system. The challenge is to get as much as
possible from this association.

This work presents several approaches to the task of incorporating rough
set and neural network methods into one system for decision (classification)
support. Different results of attempts to preprocess data for a neural network
with rough set methods, to construct a the network using knowledge from rough
set calculations or to refine rough set results using network are described.

The work is organized as follows:

First section introduces the formalism necessary to describe basic notions of
rough sets and neural networks.

Second section presents, using several examples of applications, the attempts
to use rough set based methods as a data preprocessor. In those examples data
are treated by rough set reduction and then a network is constructed over simpli-
fied dataset. Possible advantages and threads of such a way of creating decision
support system are briefly discussed.

In the third section we present the concept of incorporating rough sets meth-
ods into construction of the neural net by using so called rough neurons.

Last section discusses usage of rough set methods and knowledge gained
from them in the process of establishing the architecture and initial state of a
neural network for a given problem. It touches numerous problems of dealing
with continuously-valued features, continuous decision and others.

2 Basic notions

2.1 Rough set preliminaries

The basic notions of rough sets theory are: information system, decision table,
reduct and others. We will introduce them now step by step. In order to represent
the sets of data we use information systems.

An information system is defined by a pair A = (U, A), where U is a non-
empty, finite set of objects (rows, records, samples, cases) called universe, A =
{ai,...,an,} is a non-empty, finite set of attributes, i.e. a; : U — V,, for i €
{1,...,n4}, where V,, is called the domain of the attribute a;.

In case of real-valued attributes, where for each i < ny4 a; : U — R is a real
function on the universe U, its elements can be characterized as points:

P, = (a1(u),az(u), ..., an, (u))

in n s-dimensional affine space "4,

To deal with tasks formulated as decision making or classification problems
we will use the notion of a decision table. A decision table is generally an in-
formation system with distinguished decision. Formally, decision table is a pair
A = (U,AJ{d}), d ¢ A where d is called decision attribute or decision. The
elements of A are called conditions. We assume that the set V; of values of the
decision d is equal to {v,...,v,,} for some positive integer ny called the range
of d.The decision classes are defined by

Ci={zeU:d(x)=uv}, fori=1,2,...,n4.

They determine the partition {C4, ...,C),,} of the universe U.

For any information system we can define a relation between objects using
their attribute values. For a given attribute a, the objects x, y are a-indiscernible
if they have the same value on a, i.e. a(z) = a(y). In these terms we call two ob-
jects indiscernible if one cannot distinguish between them using only the knowl-
edge available in the decision table. This definition can be extended to any subset
B C A by

tIND(B)y & VYoepa(z) = aly)

IND(B) denotes the relation determined on the subset B C A.
Obviously, IND(B) is an equivalence relation . Objects x,y satisfying the
relation IND(B) are indiscernible by attributes from B. We denote by

[#]inpB) = {y : (z,y) € IND(B)}

the equivalence class defined by the object z € U.

The notions of an indiscernibility relation and an indiscernible object allow
us to introduce key concepts in rough set theory: the reduct and the core.

A subset B of attribute set A is a reduct for A iff

IND(B) = IND(A) and Ve AIND(B — {b}) # IND(A)

In other words, a reduct is a subset of attributes such that it is enough to
consider only the features that belong to this subset and still have the same
amount of information. Moreover the reduct have the property of minimality i.e.
it cannot be reduced any more without loss in quality of information. There can
be of course a lot of reducts for a given information system (decision table), in

n

2
By RED(A) we denote the family of all reducts of a given information system.
Reducts with the least possible number of attributes are called minimal reducts
of A.

With an information system we may also connect the notion of the core:

extreme cases as much as (n[J) Those reducts can intersect or be disjoint.

CORE(A) = (| RED(A)

The core corresponds to this part of information which cannot be removed
from the system without loss in knowledge that can be derived from it. The core
can be empty if there exist some disjoint reducts of A.

An information space of A is defined by INF4 = []
information function Inf, : U — INFy4 by

aca Va- We define the

Infa (z) = (a1 (u),...,an, (u)),for any u € U.

Any object u € U is represented by its information vector Inf (u).

Every information system A = (U, A) and a non-empty set B C A define a
B-information function by Infg(u) = (a;(u) : a; € B) for u € U and some linear
order A = {ay,...,an,}. The set {Infpq(u): u € U} is called the B-information
set and it is denoted by Vg.

We may define indiscernibility relation in other terms using information func-
tions as:

IND(B) = {(u,u') e U x U : Infg(u) = Infp(u')}
The equivalence relation IN D(B) is also a useful tool to approximate subsets
of the universe U. For any X C U one can define the lower approximation and

the upper approximation of X by:

X ={z €U :[z];npmB) € X} lower approximation
X ={z €U :[z];np) X # 0} upper approximation .

The pair (X, X) is referred to as the rough set of X.

The boundary region of X C U is defined by Bd(X) = X — X.

For many of applications presented in this work the key feature of decision
table is its consistency. We will say that decision table is consistent if there are
no two objects in the table which have the same values of conditional attributes
and different decision value. In case the decision table is consistent we have clear
decomposition of attribute-value space into decision classes. In the opposite case
we have to introduce some fault tolerance measurement to deal with cases that
cause inconsistency.

A decision rule is a formula of the form:

((a;; = v1) A(ay, =v2) Ao Aai, =wvg)) = d=uv,4

where a;,,...,a;, € A, v; €V for 1 < j <k, vg € Vy, iy, ...,ix € {1,...,ma} and
ij # i; for i # j. This kind of formula tells us that if the values of conditional
attributes are as specified in the left part of the rule then the decision is as given
inthe right part (i.e. vg).

2.2 Neural networks

Artificial neural networks are described in detail in many publications. Here we
will not provide detailed definition for all network paradigms to be used. We
only briefly outline the main facts about networks that will be further discussed.
In most of the applications presented in this work the classical multilayer feed-
forward network as described in [2] or [5] is utilized. The most commonly used
learning algorithm is backpropagation. By a sigmoidal excitation function for a
neuron we will understand a mapping of the form:

1

1@ = 1o

where x represents weighted sum of inputs for a given neuron and [is the
coefficient called gain, which determines the slope of our function.

3 Pre-processing with rough sets

One method of combining those two approaches is to use rough sets as the
preprocessing tool for neural networks. This idea was investigated by several
researchers and turned out to be effective for some applications. Herein some
of them are presented together with the results of experiments that had been
performed on different datasets. More detailed description can be found in papers
referred to below.

First of all, we need to understand the basic idea at the basis of our proposed
approach. We know that rough set methods allow us to reduce the size of dataset
by removing some of the attributes while preserving information included in
basic system. We may consider the possibility of reducing the dataset and then
performing construction and learning of the neural net.

Obviously, one has to consider several measurements that determine useful-
ness of methods proposed. Here the ones that matter are:

— Change in the quality of classification before and after using rough set meth-
ods for data preprocessing.

— Change in network size measured in number of processing units (neurons)
and weights.

— Change in learning effectiveness measured in time (number of steps) neces-
sary to accomplish learning with desired effect.

— Flexibility of trained network (ability to recognize unseen objects).

The main thing that has to be done is to find the connection between the way
we make reductions with rough sets and the characteristic of network constructed
after these reductions. We should possess some guidelines to avoid considering
all possible combinations. The attempts to that task were made and we will look
into some of them.

The straightforward approach to this task is based on the following procedure:

1. Take the learning part of the decision table and calculate the set of possibly
shortest (preferably minimal) reducts and the core.

2. Reduce the table using some reduct, or sum of several calculated reducts i.e.

remove from the table attributes not belonging to the reducts chosen.

. Construct the neural network over the reduced set of data.

. Perform network learning.

5. Do steps 3-4 until there is no chance for significantly better results of clas-
sification with this network.

6. Do steps 2-5 until satisfiable quality is obtained.

= W

This procedure although very simple turned out to be effective for some
datasets.

Below the results of experiments with data are presented. We will briefly
describe the nature of datasets used for those experiments, outlining also differ-
ences between the technique described above and approaches used in particular
cases.

Before we will discuss experimental results some fact have to be realized.
First of all we have to understand the constraints of the process of reduction.
The generic problem of finding a minimal reduct for a given decision table belong
to the NP-hard class. It is, in general, equivalent to the problem of minimal prime
implicant construction for a given boolean function (see [18]). Therefore, it is
necessary to use different approximating techniques in order to obtain the set of
minimal or sub-minimal reducts for a table. Among them are heuristic methods
as well as genetic algorithms.

In this work we deal with connections between neural networks and rough
sets, so it is proper to mention here that an attempt to use neural network for
finding minimal reducts has been made. In [17] the method for constructing a
Boltzmann machine which searches for a minimal reduct is described. It uses the
technique of Simulated Annealing as the engine of optimization process.

Another constraint is the size of attribute value sets. If an attribute describes
some continuous measurement then it can posses very large sert of possible val-
ues. For the rough set approach this situation is unwanted because in such cases
there are many objects that differ on this attribute. Sometimes such a difference
is negligible from the point of view of considered real world process, but still,
due to equivalence condition in indiscernibility relation rough sets methods treat
them as separate cases. Such a property of rough set methods leads to modified
approaches that claim to resolve the mentioned problem. One of possible solu-
tions is to use some preprocessing techniques to reduce the size of attribute value
sets. Another way of solving such a problem is to introduce somehow weakened
indiscernibility relation. We will discuss some of these methods further.

Now let us look at some applications of rough set reduction.

Ezample 1 Lymphography. This set of data is described in detail in [11]. It con-
tains 148 objects. Each object is described by 18 attributes. Objects belong to
4 decision classes and the distribution among classes is 2,4,61,81. The table is
consistent. This example is taken from [3].

Ezample 2 Picture. This dataset was created from microscopic histological pic-
tures. From every picture 155 binary features were extracted. Data table consists
of 216 such objects that are divided into 7 classes corresponding to different types
of brain cancer. Table is consistent. Detailed description of this example can be
found in [4].

Ezample 3 Election. This example comes from [3]. The table contains 444 ob-
jects. There are 30 conditional attributes. Objects belong to 2 decision classes
and the distribution among classes is 211 to 233. The table is consistent.

Ezample 4 Digits. This data table was created using some feature extraction
techniques from the set of 32x32 pixel images. Those images are part of NIST
database of handwritten digits. After extraction each of 1000 objects has 80
binary descriptors. There are 10 decision classes representing digits from 0 to
9. Distribution between classes is almost uniform. The table is consistent. This
case came from [20] and [21].

Example 5 Onko. This data table describes effects of some oncological examina-
tions. It contains 267 cases representing 12 decision classes. Each case is described
by 28 conditional attributes. The table is consistent. This example is described
in [3].

Ezample 6 Volleyball. The important features were extracted from video-recorded
games of USA Men’s Olympic Volleyball Team in 1993. The 144 cases with 13
conditional attributes and binary decision were examined. The table and results
are taken from [22].

Ezample 7 Buses. This dataset collected at the Mechanical Department, Tech-
nical University of Poznan consists of 76 objects. There are 8 attributes and 2
decision classes with 30 and 46 objects respectively. Example came from [3].

Ezxample 8 Production. This data table consist of some characteristics of auto-
mated production process. The goal is to foresee the level of possible breakdown
in production circuit. Every sample is described by 28 attributes. There are
5 possible decisions. The table used for calculation was consistent but it may
change with possible new cases as the modeled situation is time-changing. This
example was published in [23] and [24].

Ezxample 9 Breast Cancer. This dataset originally collected at the University Med-
ical Centre, Institute of Oncology, Ljubljana was taken from the well known Ma-

chine Learning Database at the University of California, Irvine [10]. 285 cases

are described by 8 conditional attributes. There are two possible decisions. This

dataset contains some inconsistency. The example came from [3].

The table below summarizes some results of experiments over presented de-
cision tables.

Name Input |Input|Net size| Net size| Result
- before|after |before |after after
Lymphography|35 18 40 24 -2.02%
Picture 155 17 192 53 -1.96%
Election 32) 26 17 +3.38%
Digits 80 58 189 134 +1.4%
Onko 159 62 72 35 +6.37%
Volleyball 13 6 20 13 -0.6%
Buses 8 5 15 10 -5.27%
Production 28 6 35 13 better
Breast Cancer|14 13 24 24 +0.7%

The results shown in the table require some comments. First of all we have
to explain the meaning of particular columns:

— Input before corresponds to the number of inputs to the network before rough
set reduction.

— Input after corresponds to the number of inputs to the network after at-
tribute reduction.

— Net size before corresponds to the size of the network before reduction mea-
sured in number of neurons. Sometimes also the number of weights is given
in braces.

— Net size after corresponds to the size of the network after reduction measured
in number of neurons. Sometimes also the number of weights is given in
braces.

— Results after. This column summarizes change in quality of network answers
after reduction. As the examples come from different sources, it is in fact
impossible to find the common format for representing results.The most
common measurement is the change in percentage of misclassified objects.
This will be explained separately.

We have to make one more important remark before we step to result ex-
planation. Cautious reader will notice for sure that in some of the examples
the number of network inputs (Input before) does not match the number of
attributes in decision table as described above. This situation occurs for follow-
ing datasets: Lymphography, FElection, Breast Cancer, Onko. It is the result of
applying encoding procedure to some of the attributes.

Authors in [3] distinguish among others those attributes which have symbolic
unordered values. It means that it is impossible to arrange values of particular
attribute along some axis of significance. This kind of attributes is very inconve-
nient for neural network. To resolve possible problems the one-from-n encoding
is applied. This encoding creates a binary vector whose elements correspond to
network inputs. When an attribute takes a particular value, the corresponding
vector element is equal to 1, while others to 0. Usage of such encoding allowed to
perform extended reduction. If some attributes are encoded using the presented
method, then we can take the decision table extended in such way and reduce
it (calculate reducts and core). In this case, in fact, we make not only attribute
reduction but also attribute domain reduction.

Now we can discuss the results of experiments.

In case of Lymphography, Election, Breast Cancer, Onko and Buses several
experiments using reduction of attributes as well as reduction of attribute do-
mains were performed. In the table the change in the missclassification rate over
whole dataset is presented. In order to give better understanding we provide the
table below with more detailed description of those cases.

. | Breast

FElection Cancer Buses | Lymphography | Onko
Changein | 56 | 125 |33.3 |-42.8 -23.6
neurons(%)
Change in
weights(%) -83.2 -20 -59.6 |-82.4 -77.4
Error
before() P21 PRI [658 1950 3.74
Changein | 338 4070 |-5.26 |-2.02 +6.37
error(%)

Change in neurons in table below is calculated using (- - 100) — 100
where 1,14, Npew represent number of neurons in network before and after reduc-
tion respectively. In the same manner change in weights is calculated using
(% -100) — 100 where w4, Wnew represent number of adjustable weights in
network before and after reduction respectively.

Error before represents percentage of missclassified samples for network
before reduction.

Change in error correspond to the difference in percentage of misclassified
cases after and before reduction. We can easily see that in those cases presented
in our table significant reduction of network size was achieved. Although the
classification error was sometimes bigger for reduced network, the network itself

was far more manageable from computational point of view.

In case of Picture decision table authors constructed non-reduced neural net-
work and performed some tests using the cross-validation technique. The average
quality of reclassification over 10 repeats was 86.15%. After reduction the size
of network decreased rapidly. The reduced set of attributes was almost, 10 times
smaller than original. It allowed to perform more attempts to construct a net-
work. The best one had two hidden layers and achieved 88.07 % accuracy of
reclassification on whole set of examples.

The Digits example differs slightly from others in method of reduction. For
construction of reduced data set several reducts were used. The shortest reduct
had 24 attributes. But experiments showed that it would be extremally difficult
to construct the network in case only one reduct is used. Therefore reduction
was done using the union of several reducts. After several experiments reduction
from 80 to 58 attributes turned to be optimal. The loss of quality measured
over several cross-validation tests dropped by 1.4% on whole data (1.9% on
testing set) and was equal to 93.6% (85.6% respectively). But size of the network
was significantly smaller. Moreover the number of learning steps necessary to
achieve good classification dropped from 8000 to 4000. Stronger reduction gave
better improvement in computational aspects but loss of classification quality
was significant.

In the Volleyball example the reduction of attributes was compared with other
prediction techniques, in particular, with basic rough set approach i.e. calculation
of reducts and decision rules. The combination of rough set reduction and neural
network produced best classifier among considered. The error rate dropped from
13.73% to 12.67% on the training set. On the testing set, the quality was worse
that for non-reduced network by less than 1%. So, overall performance was better
but the reduced network lost some ability to recognize unseen objects.

The Production data is an example of making time prediction using neural
network. In this particular case the goal was not the quality of classification for
separate objects, but the degree of similarity between actual curve representing
dynamics of production (and possible breaks in circuit) and the one approxi-
mated using neural predictor. According to the detailed explanation presented
in [23], [24] the neural network based on reduced set of attributes behaved better
as it showed better stability. As the unimportant features have been removed,
the reduced network reacted only slightly to noisy information.

Summarizing the outcome of presented examples we may say that rough set
reduction of network input data turned to be effective especially if we could not
overcome the computational problems related to the size of the neural network.
It is understandable that for some application we have to accept the trade-off
between quality and computational ability.

We mentioned earlier that for some data, especially in case of continuously-
valued attributes, rough set methods face some problems. As we will return
to this topic further here we would like to provide simple example in order to
illustrate the hard part.

Let us consider the well-known simple dataset Iris of iris classification. It was
first published in 50’s by R.A.Fisher and now is available in [10]. The decision
table consists of 150 objects, each described by four conditional attributes and

one decision attribute. The conditional attributes have numerical values, the
decision takes one of three possible states. The simple calculation shows that any
three-element subset of the set of attributes is a reduct. Such a situation is easy
to predict as the conditions have many different values (large attribute domains).
Several computational experiments have been made in attempt to use rough set
reduction in this case. But results of experiments clearly showed that removal
of any of the attributes causes rapid decrease of network classification quality.
In non-reduced case simple network of 14 neurons with two hidden layers gave
almost 100% accuracy for learning, testing sets being halves of the whole table.
After reduction the best network gave only 75% accuracy on the whole table (as
few as 55% on the testing set) even for a network significantly larger than the
original, non-reduced one. The only possible conclusion is that rough set methods
should be applied to the cases when attributes have large domains together with
other methods that allow to preserve the important part of information which
is redundant in straightforward rough set approach.

4 Rough set neurons and networks

We have already seen the definition of upper and lower approximations for a
given set X of objects in the information system (decision table). To get some
intuition about those approximations, it is convenient to think about the upper
approximation as the set of object that are possibly (plausibly) similar to those in
X according to the knowledge taken from decision table. The lower approxima-
tion of X is a set of objects that are with certainty similar only to the elements of
X. The elements that belong to the boundary region are treated as those which
may or may not belong to our set.

Driven by the idea of decomposing the set of all objects into three parts: the
lower approximation, the boundary region and the outside area with respect to
given X, Lingras ([8],[9]) introduced the idea of a rough neuron. Following his
definitions we will now show the idea of rough neural network and present some
application.

A rough neural network consists of both conventional and rough neurons.
They form the classical multilayer structure with connections coming from layer
to layer.

A rough meuron r may be understand as a pair of usual neurons. One of
those two is referred as the upper bound denoted as 7, the other is called lower
bound and denoted r. The upper and lower bounds for a given rough neuron r
”overlap” i.e. those two neurons exchange information.

The connections between classical and rough neurons are made as in usual
case. While connecting rough neuron with classical one, we connect r and 7
separately. The situation starts to be more interesting when we want to connect
two rough neurons. As each of rough neurons r,s is in fact a pair r,7 and
5, s respectively, we will distinguish three kinds of possible connections between
them. The full connectionism occurs iff each of the components of r is connected
both to 5§ and s. So in the situation of full connectionism we have together four

connections between r and s.Two more possible ways of connecting such neurons
are called excitatory and inhibitory. If the rough neuron r ezcites the activity
of rough neuron s (i.e. increase in the output of r will result in the increase of
the output of s) then we connect only 3 with 7 and s with r. In the opposite
situation, if r inhibits the activity of s (i.e. increase in the output of r corresponds
to the decrease in the output of s) we connect only s with 7 and 5 with r.

The classical neurons in our rough set network behave as usual. For calcu-
lation of their output we use sigmoidal function taken over a weighted sum of
incoming signals. In case of the rough neuron we calculate outputs of upper and
lower bound neurons using;:

outputy = max (f (inputz) , f (inputi))

output, = min (f (inputz) , f (inputﬂ))

where f stands for a sigmoidal function and inputr,input, denote collected
weighted input i.e.

input; = Z w;j - output;
j: 7 connected with i

for a neuron i.

If two rough neurons are partially connected then the excitatory or inhibitory
nature of such connection is determined dynamically by polling the connection
weights. At the beginning, we can make some assumptions about initial character
(excitatory or inhibitory) of the connections. If we have assumed that the partial
connection from rough neuron r to another rough neuron s is excitatory and
wrs < 0 and w,s < 0, then the connection from rough neuron r to s is changed
from excitatory to inhibitory by assigning w,s = w,s; and wy, = wy5. The links
(5,7) and (s, r) are disabled while links (s,7) and (3,) are enabled. On the other
hand if neuron r is assumed to have an inhibitory partial connection to s and
w,s > 0 and wy, > 0 then the connection between rough neurons r and s is
changed from inhibitory to excitatory by assigning w,s = w,s and wrs = wg,.
The links (s,7) and (3, r) are disabled while links (5,7) and (s,r) are enabled.

The learning process for the network introduced above is based on the clas-
sical backpropagation paradigm. We tend to decrease the rate of error over the
part of available examples that form the training set. As we perform the super-
vised learning and the desired values of network outputs over training samples
are known, calculation of error is not a problem. In most cases this error is
just a difference between expected and received network output. As all the neu-
rons, both classical and rough in our network, use sigmoidal excitation function,
the backpropagation step in learning process is also relatively easy to perform.
Weights in the network are adjusted according to the simple backpropagation
scheme (no momentum, no cumulative effects) using the equation:

Wi = w;f-d +a-err; - f'(input;)

where f' is the derivative of sigmoidal function, « is the learning coefficient and
err; is an error for i-th neuron. Due to the properties of sigmoidal function,
calculation of f'(xz) = f(z) - (1 — f(z)) is also easy. We perform learning by
checking if trained network gives the required result for cases from testing set
that were not presented to the network during training.

Having in mind the above construction of rough neurons let us look how
this idea was utilized in some practical application. In [8] the dataset containing
information about traffic parameters called DHV is described. The task is to
predict the volume of traffic using data about this volume from the last week.

The classical neural network (Conventional) constructed for this task has
seven input neurons corresponding to the values in particular days of previous
week, four neurons in hidden layer and one output neuron. The neurons in this
typical network are fully connected.

Two different networks to solve this problem were constructed using the idea
of rough neuron. First of them (Rough 1) had rough neurons only in input
layer. This network had seven input rough neurons, eight hidden conventional
neurons and one output conventional neuron. In fact this particular network
was only an extension of the normal model because it contained no connections
between rough neurons. The second rough network model (Rough 2) had seven
input neurons, four hidden rough neurons and one output classical neuron. The
important difference in rough network approach is that they take as the inputs
the upper and lower bounds for attributes. So in fact this network has twice the
number of inputs as compared to the conventional one.

The table below presents results obtained for the traffic data using three
described networks.

Training set | Training set | Testing set | Testing set
Network model Maz. Efror Avg. Erfor Maz. egrror Avg. ergror
Conventional [46.2% 9.6% 28.1% 9.7%
Roughl 17.5% 5.5% 24.9% 8.1%
Rough?2 13.7% 5.8% 23.0% 8.0%

5 Rough sets and discretization in network construction

So far, we have seen utilization of some simple rough set concepts in creation of
neural networks. Now we would like to deal with a little bit more complicated
task. Rough set methods give us the possibility to search for classifiers defined in
terms of decision rules, reducts, discernibility etc. It is natural that equipped with
such a knowledge we should be able to construct the neural network with better
initial architecture than the one constructed without such guidelines. We are
eager to reduce the exhausting stage of designing proper network architecture
by applying some automated technique which utilizes knowledge about data
that we already have. Secondly, the network itself does not provide us with clear
interpretation of knowledge it contains ([19]). Fortunately, rough set methods
([15],[18]) can help to construct initial network in terms of such parameters like

the numbers of scaling conditions, minimal decision rules and decision classes in
discrete case.

As mentioned above the classical rough set approach faces difficulties when
confronted with continuously valued attributes. Therefore we will present some
discretization (quantization) techniques that allow to produce attributes with
small, discrete sets of values preserving information included in original, real-
valued decision table. The presented approach comes from [16].

5.1 Hyperplane discretization

The main problem of such discretization is how to approximate decision classes
{C1,...,Cp,} by possibly small and regular family of subsets 7, C R"4, where
any k points to some decision value v;) e.g. in terms of its high frequency of
occurrence for objects in 7.

In [14] searching for such decision rules was performed by defining hyper-
planes over . Any hyperplane

H={(z1,22,....,2,) € R™ 1 g+ 121 + -+ an, Ty, =0}
where ag, a1, a0, ..., an, € R

splits C} into two subclasses defined by:

Pt ={ueC: H(u) >0}

cH ={ue G H(u) <0}

where, for a given hyperplane, the function
H:U—->%R

is defined by
H (u) = H (Infa (u)

Let us propose some measures estimating the quality of hyperplanes with respect
to the decision classes Cy,Cy, ..., Cy,. Consider the function award(H) =

Z card (C’g’H) -card (Clg’H) (1)

11£12

If award(H) > award(H') for some hyperplanes H, H', then the number of
discernible pairs of objects from different decision classes by H is greater than the
corresponding number defined by H'. Thus, this is H which should be considered
while building decision rules.

In view of large complexity of searching for fixed number of hyperplanes
simultaneously, the following sequential algorithm was implemented.

1. Find optimal hyperplane H; with respect to award.

2. Find hyperplane Hs by maximizing function award(H/H,) =

Z Z card (Cl[{’H N Cf]”se’H‘) - card (C’lIQ”H N Cf]”se’H‘)

case=L,U 11#£I2

3. Repeat the above step considering function award(H/H;, ..., H;) constructed
for hyperplanes found step by step, until obtaining satisfactory degree of de-
cision classes’ approximation for some number n; of hyperplanes.

Remark. Function (1) can be combined with parameters like e.g.

penalty(H) = i card (C’lU,H) - card (C’lL,H)

or replaced by others, with respect to requirements.

Remark. The number of decision rules, equal to 2™ due to all possible combi-
nations of position of objects with respect to nj hyperplanes, can be reduced to
the number n, < 2"t of minimal decision of the form 7, = d = v;(), where no
component 7;; corresponding to hyperplane H; can be rejected without decrease
in given degree of approximation.

A method for generating hyperplanes, its advantages and limitations is also
described in detail in one of the chapters in this book, namely the one authored
by Nguyen Hung Son.

5.2 Hyperplane-based network

Once the hyperplanes and decision rules are constructed for a given A, we may
put them into the neural network.

Proposition1. Given a decision table A = (U, AU {d}) and the set of ny, hy-
perplanes inducing n,. decision rules, one can construct four-layer neural network
with na + 1 inputs, ny and n, neurons in hidden layers respectively, and with ng
outputs, such that it recognizes objects in U just like in the case of corresponding
hyperplane decision tree.

Proof. The network has n 4 inputs corresponding to conditional attributes. There
is also one additional constant input called bias. Every input neuron sends its
signal to all neurons in hidden layer. For each hyperplane H we construct one
neuron in hidden layer. This neuron has weights equal to coefficients describing
corresponding hyperplane.

For all neurons in the first hidden layer the threshold functions have the same

form
| 1 forxz>0
hj(x){lform<0

This is also the case for thresholds in the second hidden layer, which are given

as
_J1forx>1
Tk(m)_{Oform<1

Neurons in this layer correspond to binary hyperplane decision rules. The weights
connecting these two layers correspond to the way of occurrence of hyperplane
attributes in rules. For instance, let the 5-th minimal decision rule 75 be of the
form

(Hy (u) <0) & (Hy(u) >0) & (H7 (u) <0) = d(u) =4 (2)

Then the corresponding weights leading to the 5-th neuron in the second hidden
layer take the following values:

% forj=14
wjs =4 —x forj=2o0r7 (3)
0 otherwise

Thus, according to the above example, the 5-th neuron in the second hidden
layer will be active (its threshold function will reach 1) for some u € U iff u
satisfies conditions of the above decision rule.

For every decision value we construct one neuron in output layer, so together
ng outputs from the network. The [-th output is supposed to be active iff given
object put into the network belongs to corresponding decision class C;. To achieve
such a behavior we link every decision rule neuron only with the output neuron
corresponding to decision value indicated by decision rule. Thus, in case of our
example, the weights between the 5-th neuron in the second hidden layer and
the output layer are as follows:

S 1 forl=4
5= 0 otherwise

All neurons in the output layer receive threshold functions

1 forxz>1
Outl(w)_{0§orm<1

To give some intuition how this method of network construction works, let us
take a brief look at the iris classification example presented above. As decision in
this case has three possible values, our universe should be decomposed into three
decision classes. For Iris data, decision classes are linearly separable except for
two objects. But there exists a single hyperplane distinguishing one of decision
classes from the others. The remaining two classes can be distinguished using
simple hyperplane if we allow two mentioned objects to be missclassified or else
we have to use more than one hyperplane. In case we want 100% accuracy the
network constructed using technique from above will have 4 inputs, 4 neurons
in first hidden layer (as 4 hyperplanes are necessary to completely decompose
universe), 5 neurons in second hidden layer corresponding to decision rules and

finally 3 output neurons corresponding to the decision.

5.3 Modifications of the weights

The above neural network, although clear and valid in its construction, does
not express as much yet as it could. First of all, it does not deal with non-
deterministic decision rules which are often the only way to derive any informa-
tion from data. Let us go back to the example of decision rule (2) and assume
that it was stated with some degree of approximation not less than 0.9, where
the value

P(d:’U4‘H2<0,H420,H7<0):0.9

corresponds to the frequency of occurrence of vy as a decision value for the
subspace

L,H: U,H L,H
04; 2004, 4004, 7

corresponding to conditions of decision rule. In this case we propose to replace
previous output functions by

out; () =z

and link output neurons with weights wy; corresponding to frequency of decision
value v; conditioned by decision rule 7. Then, answering with a decision value
with the highest value of the output function, we obtain the same classification as
in case of decision rules. Additional information about degrees of approximation
for applied rules can be derived as well.

One should realize that in case of non-deterministic rules frequencies of de-
cision values may be often similar under given conditions. In fact, to evaluate
degrees of approximation for non-deterministic decision rules, we need a measure
not corresponding to concrete decision values, like e.g.

Q(m) = Y (P(d=wuln))" (4)

v EVy

where ¢ > 1, 73 decision rule. Now, one can express the meaning of particular
hyperplanes with respect to the given decision rule by computing the change of
() caused by rejecting particular hyperplane conditions. Let us denote by pg;
decision rule 74, without the j-th component 75;. Then, for any j = 1,..,n; and
k=1,..,n, we would like to put

Wi = iNi (Q () — Q (ij))

k

Remark. If one regards function (4) as the degree of approximation of decision
classes, then the factor 1/Ny is due to normalize weights coming into the neuron
corresponding to the k-th decision rule. Due to remark 5.1, each decision rule is
minimal in the sense that) may only decrease after rejecting any hyperplane
condition. Thus, the sign + is adjusted just for denoting the position of points
in 75, with respect to the j-th hyperplane (compare with (3)).

5.4 Interpretation of neuron functions

To improve flexibility of learning, replacing original threshold functions with
continuous ones should be performed. In fact, such a change enables to en-
code more information within our network model. Let us consider the class of
(rescaled) bipolar sigmoidal functions of the form

B 2
T 14 e n

h; (x) -
for hyperplane layer. Parameters a; express degrees of vagueness for particular
hyperplanes. Parallel nature of computations along the neural network justifies
searching for such parameters locally for each H; with respect to other hyper-
planes, by applying adequate statistical or entropy-based methods (compare with
6],[25).

Degrees of vagueness, proportional to the risk of basing on corresponding
hyperplane cuts, find very simple interpretation. Let us weaken decision rule
thresholds by replacing the initial function 7y by

(z) = 1 forxz>1—¢y
TR \T) = 0 forxz<1-—¢y

where parameter € expresses the degree of belief in decision rule supported by
Tx or, more precisely, in the quality of hyperplanes which generate it. Then,
for fixed ey, increasing a; for some H; occurring in 7, implies that for objects
which are "uncertain” with respect to the j-th cut function r; equals to 0 and
no classification is obtained.

If one wants to modify functions in the second hidden layer similarly as in
the first, the idea of extracting initial weights from the degrees of precision for
reasoning with given hyperplanes as conditions should be followed. We claim
that formulas for the decision rule functions should be derived from the shapes
of functions in the previous layer. Thus, for function

1

") = T

corresponding to the decision rule 7, the quantity of §; is given by formula
h
Bk = Zaj wjk|
j=1

5.5 Tuning of conditional hyperplanes

Modifications introduced for initial model of hyperplane-based neural network
enable to include necessary information for improvement of decision classifica-
tion. Obviously, described changes may cause that our network becomes inconsis-
tent with decision rules for some part of training objects. It means that, e.g. for
majority frequency rules, the output corresponding to a decision value pointed
by some rule may not be the one with the highest value of the output function.

Such inconsistency, however, is justified by computing all weights and neuron
functions from decision table itself. Moreover, we have still possibility of tuning
the network by the wide range of learning techniques.

In classical backpropagation networks (]2],[5]) update of weights is based on
gradient descent technique. The backpropagation method allows us to perform
learning by minimizing any differentiable error function §. The update for any
weight w in the network is given by:

Aw = fnaa—(s
w

where 7 is a learning coefficient.
To be in agreement with the way of computing initial weights in the learning
process, we consider error functions of the form

§(u)=—= > (out; (u) —in (u))’

1<l<ngy

where out; (u) =

2
1 > — ; —1
2w |ltew| i) “’J’“(Hem(—aﬁf ())

1<k<n, 1<j<nn
and

- 0 otherwise

ing (u) = { Ljor dfu) =
We can also use the cumulative error given by § (U) =

o) S 2 (outt (u) — iny (1)

uelU 1<I<ng4

In this case we back-propagate the global error from the whole set of objects.

Once more we would like to stress that error functions given above corre-
spond to the quality measure () introduced before. Thus, if one would like to
consider hyperplane decision rules minimal in sense of another criterion, the way
of measuring classification error should be verified properly.

In classical neural network learning we may manipulate with some coefficients
to control the learning process ([2],[5]). In presented approach we may use this
ability in order to introduce some meaning for such operations. Change of weights
in the first hidden layer corresponds to the change of elevation of hyperplanes.
Hence, by setting constraints for value of learning coefficients we may induce the
learning in case we e.g. do not want the hyperplanes to change too rapidly. The
standard heuristics in the area of network learning, like momentum factor ([5]),
can also be used, although they do not have explicit interpretation in terms of
hyperplanes and decision trees.

During the learning process we should still remember about the interpretation
of weights and functions. Starting from the initial structure obtained from data

by the sequential algorithm for finding hyperplanes, we begin to modify weights
due to given learning method. Then, however, for possibly improved classification
we cannot determine how the decision rules behave over data actually. Another
point is to keep decision rules minimal for foregoing hyperplane weights to make
the whole process more clear. Thus, it turns out to be very important to preserve
the balance between what is derived from the learning process and what is
obtained from described construction.

5.6 Searching for optimal decision scaling

From the very beginning of this section we considered decision tables with real-
valued conditions and discrete decision with n, possible values. Such a case, oc-
curring in many classification problems, becomes much more complicated when
decision attribute d is real-valued as well. Obviously, one can assume some ini-
tial scaling over d and perform the decision process just like before. However,
although sometimes such a scaling is given, in many applications we do not need
to scale properly but also reason with real values after obtaining decision rules.

Objectives of proper decision scaling create wide range of often contradictive
requirements. One of possible methods is to scale decision attribute to obtain
a small number of hyperplane-based decision rules. In such a case, however,
derived rules may be not precise or safe enough to apply in real-life situation.
One solution is to scale decision attribute uniformly under some assumed degree
of scaling precision expressed by ng and to construct hyperplane-based neural
network for ng outputs. Then, we obtain some kind of parallel fuzzy inference
model with continuous excitation functions corresponding to the states of binary
fuzzy variables ([7],[19]).

Now, there are two methods of obtaining the proper decision system for a
given data table. The first one is to synthesize a corresponding neural network
by methods described previously, where the new error function is defined by

(Zl<l<nd v - (outy (u) —iny (U))>q

> <1<n, Oultl (u)

6(u):%

(5)

The main disadvantage of such an approach is, however, the lack of information
about the quality of initial decision scaling. Thus, although we can obtain quite
effective model for reasoning, it is a black box because our knowledge about
dependencies within data becomes unclear.

Another possibility is to use the network constructed and tuned for the scaled
decision attribute to improve the scaling itself. In this case we tune the values
v, corresponding to particular outputs to minimize function (5). As such a op-
timization process is very complex, we propose to use some heuristics like e.g.
genetic algorithm ([12]), where each chromosome in any evolution step corre-
sponds to some scaling of decision attribute. The length of chromosomes is due
to initially assumed exactness of scaling and the fitness of any individual is
oppositely proportional to the quantity (5) computed from the network.

Remark. During the evolution process the weights of the neural network remain
constant as expressing linguistic rules ([19]) corresponding to such a fuzzy-neural
inference. However, parameters of excitation functions may be sometimes modi-
fied according to the changes of the scaled decision values for the points in £"4.
Another solution is to optimize these parameters in parallel with decision scaling.
It leads, however, to considering longer chromosomes in population steps.

The presented above methodology is still in the process of development and
it does require thorough experimental verification. There are some other recent
results of application of rough set methods in design of fuzzy MLP’s (Multi Layer
Perceptrons), but they do not touch the problem of real-valued attributes and
decisions. For reference see [1].

Acknowledgement First of all I want to thank professor Andrzej Skowron for
the invitation to write this text. I want to thank the authors of papers I cite
in this work. They really did me a favor by providing the information about
their previous and current research. Many thanks to my colleagues Nguyen
Hung Son and Dominik Sl@zak who contributed a lot to my work.

This work was partially supported by the grant No 08T11C01011 from Na-
tional Committee for Scientific Research and by the ESPRIT project 20288
CRIT-2.

References

1. Banerjee, M., Mitra, S., Pal, S.K. Rough fuzzy MLP: Knowledge encoding and
classification. IEEE Transactions on Neural Networks(1997) (submitted)

2. Hecht-Nielsen, R.: Neurocomputing. Addison-Wesley, New York (1990)

3. Jelonek, J., Krawiec, K., Stowinski, R.: Rough set reduction of attributes and their
domains for neural networks, Computational Intelligence 11/2 (1995) 339-347

4. Jelonek, J., Krawiec, K., Slowinski, R., Stefanowski, J., Szyma$, J.: Rough sets as
an intelligent front-end for the neural network. In: Proceedings of First National
Conference ”Neural Networks and their Applications”, April 12-15, Kule (1994)
268 273

5. Karayiannis, N.B., Venetsanopoulos, A.N.: Artificial neural networks: Learning
algorithms, performance evaluation and applications. Kluwer, Dortrecht (1993)

6. Kohavi, R., Sahami, M.: Error based and entropy based discretization of continu-
ous features. In: E. Simoudis, J. Han, and U.M. Fayyad (eds.): Proc. of the Second
International Conference on Knowledge Discovery & Data Mining. Portland, Ore-
gon (1996) 114 119

7. Kruse, R., Gebhardt, J., Klawonn F.: Foundations of fuzzy systems. Wiley, Chich-
ester (1994)

8. Lingras, P.: Rough neural networks. In: Proceedings of the Sixth International
Conference, Information Procesing and Management of Uncertainty in Knowledge-
Based Systems (IPMU’96), July 1-5, Granada, Spain (1996) 3 1445 1450

9. Lingras, P.: Comparison of neofuzzy and rough neural networks. In: P.P. Wang
(ed.): Proceedings of the Fifth International Workshop on Rough Sets and Soft
Computing (RSSC’97) at Third Annual Joint Conference on Information Sciences
(JCIS'97), Duke University, Durham, NC, USA, Rough Set & Computer Science
3, March 1-5 (1997) 259-262

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Machine learning databases, University of California, Irvine.
ftp:/ /ics.uci.edu/machine-learning-databases

Michalski, R.S., Mozetic, 1., Hong, J., Lavrac, N.: The multi purpose incremental
learning system AQ15 and its testing applications to three medical domains. In:
Proc. of 5 National Conference on Artificial Intelligence, Philadelphia, Morgan-
Kaufman, (1986) 1041-1045

Michalewicz, Z.: Genetic algorithms + data structures = evolution programs.
Springer Verlag, Berlin (1992)

Nguyen, H.Son, Nguyen, S. Hoa: From optimal hyperplanes to optimal decision
tree. In: S. Tsumoto, S. Kobayashi, T. Yokomori, H. Tanaka, and A. Nakamura
(eds.): Proceedings of the Fourth International Workshop on Rough Sets, Fuzzy
Sets, and Machine Discovery (RSFD’96), The University of Tokyo, November 6-8
(1996) 82 88

Nguyen, H. Son., Nguyen, S. Hoa, Skowron, A.: Searching for features defined by
hyperplanes. In: In: Z.W. Ras, M. Michalewicz (eds.), Ninth International Sym-
posium on Methodologies for Intelligent Systems. Zakopane, Poland, June 9 13,
Lecture Notes in Artificial Intelligence (ISMIS’96) 1079, Springer—Verlag, Berlin
(1996) 366-375

Nguyen, H.Son, Skowron, A.: Quantization of real-valued attributes. Rough Set
and Boolean Reasoning Approaches. In: P.P. Wang (ed.): Second Annual Joint
Conference on Information Sciences (JCIS’95), Wrightsville Beach, North Car-
olina, 28 September - 1 October (1995) 34 37

Nguyen, H. Son, Szczuka, M., Slgzak, D.: Neural networks design: Rough set
approach to real-valued data. In: J. Komorowski, J. Zytkow, (eds.), The First
European Symposium on Principle of Data Mining and Knowledge Discovery
(PKDD’97), June 25-27, Trondheim, Norway, Lecture Notes in Artificial Intel-
ligence 1263, Springer-Verlag, Berlin (1997) 359 366

Sapiecha, P.: An approximation algorithm for certain class of NP-hard problems.
In: ICS Research Report 21/92 Warsaw University of Technology (1992)
Skowron, A., Rauszer, C.: The discernibility matrices and functions in information
systems. In: R. Stowinski (ed.): Intelligent Decision Support — Handbook of Ap-
plications and Advances of the Rough Sets Theory, Kluwer Academic Publishers,
Dordrecht (1992) 331-362

Szczuka, M., Slgzak, D.: Hyperplane-based neural networks for real-valued decision
tables. In: P.P. Wang (ed.): Proceedings of the Fifth International Workshop on
Rough Sets and Soft Computing (RSSC’97) at Third Annual Joint Conference on
Information Sciences (JCIS’'97), Duke University, Durham, NC, USA, Rough Set
& Computer Science 3, March 1-5 (1997) 265-268

Szczuka, M.: Aproksymacja funkcji za pomoca sieci neuronowych z wykorzys-
taniem metod zbioréw przyblizonych. Master Thesis, Faculty of Mathematics,
Informatics and Mechanics, The University of Warsaw (1995)

Szczuka, M.: Rough set methods for constructing artificial neural networks. In:
B.D. Czejdo, I.I. Est, B. Shirazi, B. Trousse (eds.), Proceedings of the Third
Biennial European Joint Conference on Engineering Systems Design and Analysis
7, July 1-4, Montpellier, France (1996) 9 14

Swiniarski, R., Berzins, A.: Rouh sets expert system for on-line prediction of vol-
leyball game progress. In: B.D. Czejdo, LI. Est, B. Shirazi, B. Trousse (eds.),
Proceedings of the Third Biennial European Joint Conference on Engineering
Systems Design and Analysis 7, July 1-4, Montpellier, France (1996) 3-8

23. Swiniarski, R., Hunt, F., Chalvet, D., Pearson, D.: Prediction system based on
neural networks and rough sets in a highly automated production process. In:
Proceedings of the 12" System Science Conference, Wroctaw, Poland (1995)

24. Swiniarski7 R., Hunt, F., Chalvet, D., Pearson, D.: Intelligent data processing
and dynamic process discovery using rough sets, statistical reasoning and neural
networks in a highly automated production systems. In: Proceedings of the First
European Conference on Application of Neural Networks in Industry, Helsinki,
Finland (1995)

25. Vapnik, V.N.: The nature of statistical learning theory. Springer Verlag, New York
(1995)

This article was processed using the INTEX macro package with LMAMULT style

