
Chapter 23Rough Sets and Arti�cial NeuralNetworksMarcin S. SzczukaInstitute of Mathematics, Warsaw UniversityBanacha 2, 02-097 Warsaw, Polande-mail: szczuka@mimuw.edu.pl1 IntroductionThis work is an attempt to summarize several approaches aimed at connectingRough Set Theory with Arti�cial Neural Networks. Both methodologies havetheir place among intelligent classi�cation and decision support methods. Arti�-cial Neural Networks belong to most commonly used techniques in applicationsof Arti�cial Intelligence. During the last twenty years of its development nu-merous theoretical and applied works have been done in that �eld. Rough SetTheory which emerged about �fteen years ago is nowadays rapidly developingbranch of AI and Soft Computing.At the �rst glance the two methodologies we talk about have not too muchin common. Basic rough sets deal with symbolic representation of data, theyconstruct representation of knowledge in terms of attributes, semantic decisionrules etc. On the contrary, neural networks in their basic form do not considerthe detail meaning of knowledge gained in the process of model construction andlearning. But, in spite of those di�erences it is interesting to try to incorporateboth approaches into some combined system. The challenge is to get as much aspossible from this association.This work presents several approaches to the task of incorporating roughset and neural network methods into one system for decision (classi�cation)support. Di�erent results of attempts to preprocess data for a neural networkwith rough set methods, to construct a the network using knowledge from roughset calculations or to re�ne rough set results using network are described.The work is organized as follows:First section introduces the formalism necessary to describe basic notions ofrough sets and neural networks.Second section presents, using several examples of applications, the attemptsto use rough set based methods as a data preprocessor. In those examples dataare treated by rough set reduction and then a network is constructed over simpli-�ed dataset. Possible advantages and threads of such a way of creating decisionsupport system are briey discussed.In the third section we present the concept of incorporating rough sets meth-ods into construction of the neural net by using so called rough neurons.

Last section discusses usage of rough set methods and knowledge gainedfrom them in the process of establishing the architecture and initial state of aneural network for a given problem. It touches numerous problems of dealingwith continuously-valued features, continuous decision and others.2 Basic notions2.1 Rough set preliminariesThe basic notions of rough sets theory are: information system, decision table,reduct and others. We will introduce them now step by step. In order to representthe sets of data we use information systems.An information system is de�ned by a pair A = (U;A), where U is a non-empty, �nite set of objects (rows, records, samples, cases) called universe, A =fa1; : : : ; anAg is a non-empty, �nite set of attributes, i.e. ai : U ! Vai for i 2f1; :::; nAg ; where Vai is called the domain of the attribute ai.In case of real-valued attributes, where for each i � nA ai : U ! < is a realfunction on the universe U , its elements can be characterized as points:Pu = (a1(u); a2(u); :::; anA(u))in nA-dimensional a�ne space <nA :To deal with tasks formulated as decision making or classi�cation problemswe will use the notion of a decision table. A decision table is generally an in-formation system with distinguished decision. Formally, decision table is a pairA = (U;A [fdg), d =2 A where d is called decision attribute or decision. Theelements of A are called conditions. We assume that the set Vd of values of thedecision d is equal to fv1; : : : ; vndg for some positive integer nd called the rangeof d.The decision classes are de�ned byCi = fx 2 U : d(x) = vig; for i = 1; 2; :::; nd:They determine the partition fC1; :::; Cndg of the universe U:For any information system we can de�ne a relation between objects usingtheir attribute values. For a given attribute a; the objects x; y are a-indiscernibleif they have the same value on a, i.e. a(x) = a(y). In these terms we call two ob-jects indiscernible if one cannot distinguish between them using only the knowl-edge available in the decision table. This de�nition can be extended to any subsetB � A by xIND(B)y , 8a2B a(x) = a(y)IND(B) denotes the relation determined on the subset B � A.Obviously, IND(B) is an equivalence relation . Objects x; y satisfying therelation IND(B) are indiscernible by attributes from B. We denote by[x]IND(B) = fy : hx; yi 2 IND(B)g

the equivalence class de�ned by the object x 2 U:The notions of an indiscernibility relation and an indiscernible object allowus to introduce key concepts in rough set theory: the reduct and the core.A subset B of attribute set A is a reduct for A i�IND(B) = IND(A) and 8b2AIND(B � fbg) 6= IND(A)In other words, a reduct is a subset of attributes such that it is enough toconsider only the features that belong to this subset and still have the sameamount of information. Moreover the reduct have the property of minimality i.e.it cannot be reduced any more without loss in quality of information. There canbe of course a lot of reducts for a given information system (decision table), inextreme cases as much as �n�n2 ��. Those reducts can intersect or be disjoint.By RED(A) we denote the family of all reducts of a given information system.Reducts with the least possible number of attributes are called minimal reductsof A:With an information system we may also connect the notion of the core:CORE(A) =\RED(A)The core corresponds to this part of information which cannot be removedfrom the system without loss in knowledge that can be derived from it. The corecan be empty if there exist some disjoint reducts of A.An information space of A is de�ned by INFA = Qa2A Va: We de�ne theinformation function InfA : U ! INFA byInfA (x) = (a1 (u) ; : : : ; anA (u)) ; for any u 2 U:Any object u 2 U is represented by its information vector Inf (u) :Every information system A = (U;A) and a non-empty set B � A de�ne aB-information function by InfB(u) = (ai(u) : ai 2 B) for u 2 U and some linearorder A = fa1; :::; anAg. The set fInfBd(u) : u 2 Ug is called the B-informationset and it is denoted by VB .We may de�ne indiscernibility relation in other terms using information func-tions as: IND(B) = f(u; u0) 2 U � U : InfB(u) = InfB(u0)gThe equivalence relation IND(B) is also a useful tool to approximate subsetsof the universe U . For any X � U one can de�ne the lower approximation andthe upper approximation of X by:X = fx 2 U : [x]IND(B) � Xg lower approximationX = fx 2 U : [x]IND(B)TX 6= ;g upper approximation .

The pair (X;X) is referred to as the rough set of X .The boundary region of X � U is de�ned by Bd(X) = X �X:For many of applications presented in this work the key feature of decisiontable is its consistency. We will say that decision table is consistent if there areno two objects in the table which have the same values of conditional attributesand di�erent decision value. In case the decision table is consistent we have cleardecomposition of attribute-value space into decision classes. In the opposite casewe have to introduce some fault tolerance measurement to deal with cases thatcause inconsistency.A decision rule is a formula of the form:((ai1 = v1) ^ (ai2 = v2) ^ ::: ^ (aik = vk))) d = vdwhere ai1 ; :::; aik 2 A; vj 2 Vij for 1 � j � k, vd 2 Vd; i1; :::; ik 2 f1; :::; nAg andij 6= ii for i 6= j: This kind of formula tells us that if the values of conditionalattributes are as speci�ed in the left part of the rule then the decision is as giveninthe right part (i.e. vd):2.2 Neural networksArti�cial neural networks are described in detail in many publications. Here wewill not provide detailed de�nition for all network paradigms to be used. Weonly briey outline the main facts about networks that will be further discussed.In most of the applications presented in this work the classical multilayer feed-forward network as described in [2] or [5] is utilized. The most commonly usedlearning algorithm is backpropagation. By a sigmoidal excitation function for aneuron we will understand a mapping of the form:f(x) = 11 + e��xwhere x represents weighted sum of inputs for a given neuron and � is thecoe�cient called gain, which determines the slope of our function.3 Pre-processing with rough setsOne method of combining those two approaches is to use rough sets as thepreprocessing tool for neural networks. This idea was investigated by severalresearchers and turned out to be e�ective for some applications. Herein someof them are presented together with the results of experiments that had beenperformed on di�erent datasets. More detailed description can be found in papersreferred to below.First of all, we need to understand the basic idea at the basis of our proposedapproach. We know that rough set methods allow us to reduce the size of datasetby removing some of the attributes while preserving information included inbasic system. We may consider the possibility of reducing the dataset and thenperforming construction and learning of the neural net.

Obviously, one has to consider several measurements that determine useful-ness of methods proposed. Here the ones that matter are:{ Change in the quality of classi�cation before and after using rough set meth-ods for data preprocessing.{ Change in network size measured in number of processing units (neurons)and weights.{ Change in learning e�ectiveness measured in time (number of steps) neces-sary to accomplish learning with desired e�ect.{ Flexibility of trained network (ability to recognize unseen objects).The main thing that has to be done is to �nd the connection between the waywe make reductions with rough sets and the characteristic of network constructedafter these reductions. We should possess some guidelines to avoid consideringall possible combinations. The attempts to that task were made and we will lookinto some of them.The straightforward approach to this task is based on the following procedure:1. Take the learning part of the decision table and calculate the set of possiblyshortest (preferably minimal) reducts and the core.2. Reduce the table using some reduct or sum of several calculated reducts i.e.remove from the table attributes not belonging to the reducts chosen.3. Construct the neural network over the reduced set of data.4. Perform network learning.5. Do steps 3-4 until there is no chance for signi�cantly better results of clas-si�cation with this network.6. Do steps 2-5 until satis�able quality is obtained.This procedure although very simple turned out to be e�ective for somedatasets.Below the results of experiments with data are presented. We will brieydescribe the nature of datasets used for those experiments, outlining also di�er-ences between the technique described above and approaches used in particularcases.Before we will discuss experimental results some fact have to be realized.First of all we have to understand the constraints of the process of reduction.The generic problem of �nding a minimal reduct for a given decision table belongto the NP-hard class. It is, in general, equivalent to the problem of minimal primeimplicant construction for a given boolean function (see [18]). Therefore, it isnecessary to use di�erent approximating techniques in order to obtain the set ofminimal or sub-minimal reducts for a table. Among them are heuristic methodsas well as genetic algorithms.In this work we deal with connections between neural networks and roughsets, so it is proper to mention here that an attempt to use neural network for�nding minimal reducts has been made. In [17] the method for constructing aBoltzmann machine which searches for a minimal reduct is described. It uses thetechnique of Simulated Annealing as the engine of optimization process.

Another constraint is the size of attribute value sets. If an attribute describessome continuous measurement then it can posses very large sert of possible val-ues. For the rough set approach this situation is unwanted because in such casesthere are many objects that di�er on this attribute. Sometimes such a di�erenceis negligible from the point of view of considered real world process, but still,due to equivalence condition in indiscernibility relation rough sets methods treatthem as separate cases. Such a property of rough set methods leads to modi�edapproaches that claim to resolve the mentioned problem. One of possible solu-tions is to use some preprocessing techniques to reduce the size of attribute valuesets. Another way of solving such a problem is to introduce somehow weakenedindiscernibility relation. We will discuss some of these methods further.Now let us look at some applications of rough set reduction.Example 1 Lymphography. This set of data is described in detail in [11]. It con-tains 148 objects. Each object is described by 18 attributes. Objects belong to4 decision classes and the distribution among classes is 2,4,61,81. The table isconsistent. This example is taken from [3].Example 2 Picture. This dataset was created from microscopic histological pic-tures. From every picture 155 binary features were extracted. Data table consistsof 216 such objects that are divided into 7 classes corresponding to di�erent typesof brain cancer. Table is consistent. Detailed description of this example can befound in [4].Example 3 Election. This example comes from [3]. The table contains 444 ob-jects. There are 30 conditional attributes. Objects belong to 2 decision classesand the distribution among classes is 211 to 233. The table is consistent.Example 4 Digits. This data table was created using some feature extractiontechniques from the set of 32�32 pixel images. Those images are part of NISTdatabase of handwritten digits. After extraction each of 1000 objects has 80binary descriptors. There are 10 decision classes representing digits from 0 to9. Distribution between classes is almost uniform. The table is consistent. Thiscase came from [20] and [21].Example 5 Onko. This data table describes e�ects of some oncological examina-tions. It contains 267 cases representing 12 decision classes. Each case is describedby 28 conditional attributes. The table is consistent. This example is describedin [3].Example 6 Volleyball. The important features were extracted from video-recordedgames of USA Men's Olympic Volleyball Team in 1993. The 144 cases with 13conditional attributes and binary decision were examined. The table and resultsare taken from [22].Example 7 Buses. This dataset collected at the Mechanical Department, Tech-nical University of Pozna�n consists of 76 objects. There are 8 attributes and 2decision classes with 30 and 46 objects respectively. Example came from [3].

Example 8 Production. This data table consist of some characteristics of auto-mated production process. The goal is to foresee the level of possible breakdownin production circuit. Every sample is described by 28 attributes. There are5 possible decisions. The table used for calculation was consistent but it maychange with possible new cases as the modeled situation is time-changing. Thisexample was published in [23] and [24].Example 9 Breast Cancer. This dataset originally collected at the University Med-ical Centre, Institute of Oncology, Ljubljana was taken from the well known Ma-chine Learning Database at the University of California, Irvine [10]. 285 casesare described by 8 conditional attributes. There are two possible decisions. Thisdataset contains some inconsistency. The example came from [3].The table below summarizes some results of experiments over presented de-cision tables.Name Inputbefore Inputafter Net sizebefore Net sizeafter ResultafterLymphography 35 18 40 24 -2.02%Picture 155 17 192 53 -1.96%Election 32 5 26 17 +3.38%Digits 80 58 189 134 +1.4%Onko 159 62 72 55 +6.37%V olleyball 13 6 20 13 -0.6%Buses 8 5 15 10 -5.27%Production 28 6 35 13 betterBreast Cancer 14 13 24 24 +0.7%The results shown in the table require some comments. First of all we haveto explain the meaning of particular columns:{ Input before corresponds to the number of inputs to the network before roughset reduction.{ Input after corresponds to the number of inputs to the network after at-tribute reduction.{ Net size before corresponds to the size of the network before reduction mea-sured in number of neurons. Sometimes also the number of weights is givenin braces.{ Net size after corresponds to the size of the network after reduction measuredin number of neurons. Sometimes also the number of weights is given inbraces.{ Results after. This column summarizes change in quality of network answersafter reduction. As the examples come from di�erent sources, it is in factimpossible to �nd the common format for representing results.The mostcommon measurement is the change in percentage of misclassi�ed objects.This will be explained separately.

We have to make one more important remark before we step to result ex-planation. Cautious reader will notice for sure that in some of the examplesthe number of network inputs (Input before) does not match the number ofattributes in decision table as described above. This situation occurs for follow-ing datasets: Lymphography, Election, Breast Cancer, Onko. It is the result ofapplying encoding procedure to some of the attributes.Authors in [3] distinguish among others those attributes which have symbolicunordered values. It means that it is impossible to arrange values of particularattribute along some axis of signi�cance. This kind of attributes is very inconve-nient for neural network. To resolve possible problems the one-from-n encodingis applied. This encoding creates a binary vector whose elements correspond tonetwork inputs. When an attribute takes a particular value, the correspondingvector element is equal to 1, while others to 0. Usage of such encoding allowed toperform extended reduction. If some attributes are encoded using the presentedmethod, then we can take the decision table extended in such way and reduceit (calculate reducts and core). In this case, in fact, we make not only attributereduction but also attribute domain reduction.Now we can discuss the results of experiments.In case of Lymphography, Election, Breast Cancer, Onko and Buses severalexperiments using reduction of attributes as well as reduction of attribute do-mains were performed. In the table the change in the missclassi�cation rate overwhole dataset is presented. In order to give better understanding we provide thetable below with more detailed description of those cases.Election BreastCancer Buses Lymphography OnkoChange inneurons(%) -34.6 -12.5 -33.3 -42.8 -23.6Change inweights(%) -83.2 -20 -59.6 -82.4 -77.4Errorbefore(%) 7.21 28.77 6.58 19.59 3.74Change inerror(%) +3.38 +0.70 -5.26 -2.02 +6.37Change in neurons in table below is calculated using (noldnnew � 100) � 100where nold; nnew represent number of neurons in network before and after reduc-tion respectively. In the same manner change in weights is calculated using(woldwnew � 100) � 100 where wold; wnew represent number of adjustable weights innetwork before and after reduction respectively.Error before represents percentage of missclassi�ed samples for networkbefore reduction.Change in error correspond to the di�erence in percentage of misclassi�edcases after and before reduction. We can easily see that in those cases presentedin our table signi�cant reduction of network size was achieved. Although theclassi�cation error was sometimes bigger for reduced network, the network itselfwas far more manageable from computational point of view.

In case of Picture decision table authors constructed non-reduced neural net-work and performed some tests using the cross-validation technique. The averagequality of reclassi�cation over 10 repeats was 86.15%. After reduction the sizeof network decreased rapidly. The reduced set of attributes was almost 10 timessmaller than original. It allowed to perform more attempts to construct a net-work. The best one had two hidden layers and achieved 88.07 % accuracy ofreclassi�cation on whole set of examples.The Digits example di�ers slightly from others in method of reduction. Forconstruction of reduced data set several reducts were used. The shortest reducthad 24 attributes. But experiments showed that it would be extremally di�cultto construct the network in case only one reduct is used. Therefore reductionwas done using the union of several reducts. After several experiments reductionfrom 80 to 58 attributes turned to be optimal. The loss of quality measuredover several cross-validation tests dropped by 1.4% on whole data (1.9% ontesting set) and was equal to 93.6% (85.6% respectively). But size of the networkwas signi�cantly smaller. Moreover the number of learning steps necessary toachieve good classi�cation dropped from 8000 to 4000. Stronger reduction gavebetter improvement in computational aspects but loss of classi�cation qualitywas signi�cant.In the Volleyball example the reduction of attributes was compared with otherprediction techniques, in particular, with basic rough set approach i.e. calculationof reducts and decision rules. The combination of rough set reduction and neuralnetwork produced best classi�er among considered. The error rate dropped from13.73% to 12.67% on the training set. On the testing set, the quality was worsethat for non-reduced network by less than 1%. So, overall performance was betterbut the reduced network lost some ability to recognize unseen objects.The Production data is an example of making time prediction using neuralnetwork. In this particular case the goal was not the quality of classi�cation forseparate objects, but the degree of similarity between actual curve representingdynamics of production (and possible breaks in circuit) and the one approxi-mated using neural predictor. According to the detailed explanation presentedin [23], [24] the neural network based on reduced set of attributes behaved betteras it showed better stability. As the unimportant features have been removed,the reduced network reacted only slightly to noisy information.Summarizing the outcome of presented examples we may say that rough setreduction of network input data turned to be e�ective especially if we could notovercome the computational problems related to the size of the neural network.It is understandable that for some application we have to accept the trade-o�between quality and computational ability.We mentioned earlier that for some data, especially in case of continuously-valued attributes, rough set methods face some problems. As we will returnto this topic further here we would like to provide simple example in order toillustrate the hard part.Let us consider the well-known simple dataset Iris of iris classi�cation. It was�rst published in 50's by R.A.Fisher and now is available in [10]. The decisiontable consists of 150 objects, each described by four conditional attributes and

one decision attribute. The conditional attributes have numerical values, thedecision takes one of three possible states. The simple calculation shows that anythree-element subset of the set of attributes is a reduct. Such a situation is easyto predict as the conditions have many di�erent values (large attribute domains).Several computational experiments have been made in attempt to use rough setreduction in this case. But results of experiments clearly showed that removalof any of the attributes causes rapid decrease of network classi�cation quality.In non-reduced case simple network of 14 neurons with two hidden layers gavealmost 100% accuracy for learning, testing sets being halves of the whole table.After reduction the best network gave only 75% accuracy on the whole table (asfew as 55% on the testing set) even for a network signi�cantly larger than theoriginal, non-reduced one. The only possible conclusion is that rough set methodsshould be applied to the cases when attributes have large domains together withother methods that allow to preserve the important part of information whichis redundant in straightforward rough set approach.4 Rough set neurons and networksWe have already seen the de�nition of upper and lower approximations for agiven set X of objects in the information system (decision table). To get someintuition about those approximations, it is convenient to think about the upperapproximation as the set of object that are possibly (plausibly) similar to those inX according to the knowledge taken from decision table. The lower approxima-tion of X is a set of objects that are with certainty similar only to the elements ofX . The elements that belong to the boundary region are treated as those whichmay or may not belong to our set.Driven by the idea of decomposing the set of all objects into three parts: thelower approximation, the boundary region and the outside area with respect togiven X; Lingras ([8],[9]) introduced the idea of a rough neuron. Following hisde�nitions we will now show the idea of rough neural network and present someapplication.A rough neural network consists of both conventional and rough neurons.They form the classical multilayer structure with connections coming from layerto layer.A rough neuron r may be understand as a pair of usual neurons. One ofthose two is referred as the upper bound denoted as r; the other is called lowerbound and denoted r. The upper and lower bounds for a given rough neuron r"overlap" i.e. those two neurons exchange information.The connections between classical and rough neurons are made as in usualcase. While connecting rough neuron with classical one, we connect r and rseparately. The situation starts to be more interesting when we want to connecttwo rough neurons. As each of rough neurons r; s is in fact a pair r; r ands; s respectively, we will distinguish three kinds of possible connections betweenthem. The full connectionism occurs i� each of the components of r is connectedboth to s and s: So in the situation of full connectionism we have together four

connections between r and s:Two more possible ways of connecting such neuronsare called excitatory and inhibitory. If the rough neuron r excites the activityof rough neuron s (i.e. increase in the output of r will result in the increase ofthe output of s) then we connect only s with r and s with r: In the oppositesituation, if r inhibits the activity of s (i.e. increase in the output of r correspondsto the decrease in the output of s) we connect only s with r and s with r:The classical neurons in our rough set network behave as usual. For calcu-lation of their output we use sigmoidal function taken over a weighted sum ofincoming signals. In case of the rough neuron we calculate outputs of upper andlower bound neurons using:outputr = max �f (inputr) ; f �inputr��outputr = min �f (inputr) ; f �inputr��where f stands for a sigmoidal function and inputr; inputr denote collectedweighted input i.e.inputi = Xj: j connected with iwij � outputjfor a neuron i.If two rough neurons are partially connected then the excitatory or inhibitorynature of such connection is determined dynamically by polling the connectionweights. At the beginning, we can make some assumptions about initial character(excitatory or inhibitory) of the connections. If we have assumed that the partialconnection from rough neuron r to another rough neuron s is excitatory andwrs < 0 and wrs < 0, then the connection from rough neuron r to s is changedfrom excitatory to inhibitory by assigning wrs = wrs and wrs = wrs: The links(s; r) and (s; r) are disabled while links (s; r) and (s; r) are enabled. On the otherhand if neuron r is assumed to have an inhibitory partial connection to s andwrs > 0 and wrs > 0 then the connection between rough neurons r and s ischanged from inhibitory to excitatory by assigning wrs = wrs and wrs = wrs:The links (s; r) and (s; r) are disabled while links (s; r) and (s; r) are enabled.The learning process for the network introduced above is based on the clas-sical backpropagation paradigm. We tend to decrease the rate of error over thepart of available examples that form the training set. As we perform the super-vised learning and the desired values of network outputs over training samplesare known, calculation of error is not a problem. In most cases this error isjust a di�erence between expected and received network output. As all the neu-rons, both classical and rough in our network, use sigmoidal excitation function,the backpropagation step in learning process is also relatively easy to perform.Weights in the network are adjusted according to the simple backpropagationscheme (no momentum, no cumulative e�ects) using the equation:wnewji = woldji + � � erri � f 0(inputi)

where f 0 is the derivative of sigmoidal function, � is the learning coe�cient anderri is an error for i-th neuron. Due to the properties of sigmoidal function,calculation of f 0 (x) = f (x) � (1� f (x)) is also easy. We perform learning bychecking if trained network gives the required result for cases from testing setthat were not presented to the network during training.Having in mind the above construction of rough neurons let us look howthis idea was utilized in some practical application. In [8] the dataset containinginformation about tra�c parameters called DHV is described. The task is topredict the volume of tra�c using data about this volume from the last week.The classical neural network (Conventional) constructed for this task hasseven input neurons corresponding to the values in particular days of previousweek, four neurons in hidden layer and one output neuron. The neurons in thistypical network are fully connected.Two di�erent networks to solve this problem were constructed using the ideaof rough neuron. First of them (Rough 1) had rough neurons only in inputlayer. This network had seven input rough neurons, eight hidden conventionalneurons and one output conventional neuron. In fact this particular networkwas only an extension of the normal model because it contained no connectionsbetween rough neurons. The second rough network model (Rough 2) had seveninput neurons, four hidden rough neurons and one output classical neuron. Theimportant di�erence in rough network approach is that they take as the inputsthe upper and lower bounds for attributes. So in fact this network has twice thenumber of inputs as compared to the conventional one.The table below presents results obtained for the tra�c data using threedescribed networks.Network model T raining setMax: Error Training setAvg: Error Testing setMax: error Testing setAvg: errorConventional 46.2% 9.6% 28.1% 9.7%Rough1 17.5% 5.5% 24.9% 8.1%Rough2 13.7% 5.8% 23.0% 8.0%5 Rough sets and discretization in network constructionSo far, we have seen utilization of some simple rough set concepts in creation ofneural networks. Now we would like to deal with a little bit more complicatedtask. Rough set methods give us the possibility to search for classi�ers de�ned interms of decision rules, reducts, discernibility etc. It is natural that equipped withsuch a knowledge we should be able to construct the neural network with betterinitial architecture than the one constructed without such guidelines. We areeager to reduce the exhausting stage of designing proper network architectureby applying some automated technique which utilizes knowledge about datathat we already have. Secondly, the network itself does not provide us with clearinterpretation of knowledge it contains ([19]). Fortunately, rough set methods([15],[18]) can help to construct initial network in terms of such parameters like

the numbers of scaling conditions, minimal decision rules and decision classes indiscrete case.As mentioned above the classical rough set approach faces di�culties whenconfronted with continuously valued attributes. Therefore we will present somediscretization (quantization) techniques that allow to produce attributes withsmall, discrete sets of values preserving information included in original, real-valued decision table. The presented approach comes from [16].5.1 Hyperplane discretizationThe main problem of such discretization is how to approximate decision classesfC1; :::; Cndg by possibly small and regular family of subsets �k � <nA , whereany k points to some decision value vl(k) e.g. in terms of its high frequency ofoccurrence for objects in �k.In [14] searching for such decision rules was performed by de�ning hyper-planes over <n. Any hyperplaneH = f(x1; x2; :::; xn) 2 <nA : �0 + �1x1 + � � �+ �nAxnA = 0gwhere �0; �1; �2; : : : ; �nA 2 <splits Cl into two subclasses de�ned by:CU;Hl = fu 2 Cl : H (u) � 0gCL;Hl = fu 2 Cl : H (u) < 0gwhere, for a given hyperplane, the functionH : U ! <is de�ned by H (u) = H (InfA (u))Let us propose some measures estimating the quality of hyperplanes with respectto the decision classes C1; C2; :::; Cnd . Consider the function award(H) =Xl16=l2 card�CU;Hl1 � � card�CL;Hl2 � (1)If award(H) > award(H 0) for some hyperplanes H;H 0, then the number ofdiscernible pairs of objects from di�erent decision classes byH is greater than thecorresponding number de�ned by H 0 . Thus, this is H which should be consideredwhile building decision rules.In view of large complexity of searching for �xed number of hyperplanessimultaneously, the following sequential algorithm was implemented.1. Find optimal hyperplane H1 with respect to award.

2. Find hyperplane H2 by maximizing function award(H=H1) =Xcase=L;U Xl16=l2 card�CU;Hl1 \ Ccase;H1l1 � � card�CL;Hl2 \ Ccase;H1l1 �3. Repeat the above step considering function award(H=H1; :::; Hj) constructedfor hyperplanes found step by step, until obtaining satisfactory degree of de-cision classes' approximation for some number nh of hyperplanes.Remark. Function (1) can be combined with parameters like e.g.penalty(H) = ndXl=1 card�CU;Hl � � card�CL;Hl �or replaced by others, with respect to requirements.Remark. The number of decision rules, equal to 2nh due to all possible combi-nations of position of objects with respect to nh hyperplanes, can be reduced tothe number nr � 2nh of minimal decision of the form �k) d = vl(k), where nocomponent �kj corresponding to hyperplane Hj can be rejected without decreasein given degree of approximation.A method for generating hyperplanes, its advantages and limitations is alsodescribed in detail in one of the chapters in this book, namely the one authoredby Nguyen Hung Son.5.2 Hyperplane-based networkOnce the hyperplanes and decision rules are constructed for a given A, we mayput them into the neural network.Proposition1. Given a decision table A = (U;A [fdg) and the set of nh hy-perplanes inducing nr decision rules, one can construct four-layer neural networkwith nA+1 inputs, nh and nr neurons in hidden layers respectively, and with ndoutputs, such that it recognizes objects in U just like in the case of correspondinghyperplane decision tree.Proof. The network has nA inputs corresponding to conditional attributes. Thereis also one additional constant input called bias. Every input neuron sends itssignal to all neurons in hidden layer. For each hyperplane H we construct oneneuron in hidden layer. This neuron has weights equal to coe�cients describingcorresponding hyperplane.For all neurons in the �rst hidden layer the threshold functions have the sameform hj (x) = � 1 for x � 0�1 for x < 0

This is also the case for thresholds in the second hidden layer, which are givenas rk (x) = �1 for x � 10 for x < 1Neurons in this layer correspond to binary hyperplane decision rules. The weightsconnecting these two layers correspond to the way of occurrence of hyperplaneattributes in rules. For instance, let the 5-th minimal decision rule �5 be of theform (H2 (u) < 0) & (H4 (u) � 0) & (H7 (u) < 0)) d (u) = v4 (2)Then the corresponding weights leading to the 5-th neuron in the second hiddenlayer take the following values:wj5 = 8<: 13 for j = 4� 13 for j = 2 or 70 otherwise (3)Thus, according to the above example, the 5-th neuron in the second hiddenlayer will be active (its threshold function will reach 1) for some u 2 U i� usatis�es conditions of the above decision rule.For every decision value we construct one neuron in output layer, so togethernd outputs from the network. The l-th output is supposed to be active i� givenobject put into the network belongs to corresponding decision classCl. To achievesuch a behavior we link every decision rule neuron only with the output neuroncorresponding to decision value indicated by decision rule. Thus, in case of ourexample, the weights between the 5-th neuron in the second hidden layer andthe output layer are as follows:w5l = � 1 for l = 40 otherwiseAll neurons in the output layer receive threshold functionsoutl (x) = �1 for x � 10 for x < 1To give some intuition how this method of network construction works, let ustake a brief look at the iris classi�cation example presented above. As decision inthis case has three possible values, our universe should be decomposed into threedecision classes. For Iris data, decision classes are linearly separable except fortwo objects. But there exists a single hyperplane distinguishing one of decisionclasses from the others. The remaining two classes can be distinguished usingsimple hyperplane if we allow two mentioned objects to be missclassi�ed or elsewe have to use more than one hyperplane. In case we want 100% accuracy thenetwork constructed using technique from above will have 4 inputs, 4 neuronsin �rst hidden layer (as 4 hyperplanes are necessary to completely decomposeuniverse), 5 neurons in second hidden layer corresponding to decision rules and�nally 3 output neurons corresponding to the decision.

5.3 Modi�cations of the weightsThe above neural network, although clear and valid in its construction, doesnot express as much yet as it could. First of all, it does not deal with non-deterministic decision rules which are often the only way to derive any informa-tion from data. Let us go back to the example of decision rule (2) and assumethat it was stated with some degree of approximation not less than 0:9, wherethe value P (d = v4 jH2 < 0; H4 � 0; H7 < 0) = 0:9corresponds to the frequency of occurrence of v4 as a decision value for thesubspace CL;H24 \ CU;H44 \ CL;H74corresponding to conditions of decision rule. In this case we propose to replaceprevious output functions by outl (x) = xand link output neurons with weights wkl corresponding to frequency of decisionvalue vl conditioned by decision rule �k. Then, answering with a decision valuewith the highest value of the output function, we obtain the same classi�cation asin case of decision rules. Additional information about degrees of approximationfor applied rules can be derived as well.One should realize that in case of non-deterministic rules frequencies of de-cision values may be often similar under given conditions. In fact, to evaluatedegrees of approximation for non-deterministic decision rules, we need a measurenot corresponding to concrete decision values, like e.g.Q (�k) = Xvl2Vd (P (d = vlj�k))q (4)where q > 1; �k decision rule. Now, one can express the meaning of particularhyperplanes with respect to the given decision rule by computing the change ofQ caused by rejecting particular hyperplane conditions. Let us denote by �kjdecision rule �k without the j-th component �kj . Then, for any j = 1; ::; nh andk = 1; ::; nr we would like to putwjk = � 1Nk � (Q (�k)�Q (�kj))Remark. If one regards function (4) as the degree of approximation of decisionclasses, then the factor 1=Nk is due to normalize weights coming into the neuroncorresponding to the k-th decision rule. Due to remark 5.1, each decision rule isminimal in the sense that Q may only decrease after rejecting any hyperplanecondition. Thus, the sign � is adjusted just for denoting the position of pointsin �k with respect to the j-th hyperplane (compare with (3)).

5.4 Interpretation of neuron functionsTo improve exibility of learning, replacing original threshold functions withcontinuous ones should be performed. In fact, such a change enables to en-code more information within our network model. Let us consider the class of(rescaled) bipolar sigmoidal functions of the formhj (x) = 21 + e��jx � 1for hyperplane layer. Parameters �j express degrees of vagueness for particularhyperplanes. Parallel nature of computations along the neural network justi�essearching for such parameters locally for each Hj with respect to other hyper-planes, by applying adequate statistical or entropy-based methods (compare with[6],[25]).Degrees of vagueness, proportional to the risk of basing on correspondinghyperplane cuts, �nd very simple interpretation. Let us weaken decision rulethresholds by replacing the initial function rk byrk (x) = �1 for x � 1� "k0 for x < 1� "kwhere parameter "k expresses the degree of belief in decision rule supported by�k or, more precisely, in the quality of hyperplanes which generate it. Then,for �xed "k, increasing �j for some Hj occurring in �k implies that for objectswhich are "uncertain" with respect to the j-th cut function rk equals to 0 andno classi�cation is obtained.If one wants to modify functions in the second hidden layer similarly as inthe �rst, the idea of extracting initial weights from the degrees of precision forreasoning with given hyperplanes as conditions should be followed. We claimthat formulas for the decision rule functions should be derived from the shapesof functions in the previous layer. Thus, for functionrk (x) = 11 + e��kxcorresponding to the decision rule �k, the quantity of �k is given by formula�k = hXj=1 �j � jwjk j5.5 Tuning of conditional hyperplanesModi�cations introduced for initial model of hyperplane-based neural networkenable to include necessary information for improvement of decision classi�ca-tion. Obviously, described changes may cause that our network becomes inconsis-tent with decision rules for some part of training objects. It means that, e.g. formajority frequency rules, the output corresponding to a decision value pointedby some rule may not be the one with the highest value of the output function.

Such inconsistency, however, is justi�ed by computing all weights and neuronfunctions from decision table itself. Moreover, we have still possibility of tuningthe network by the wide range of learning techniques.In classical backpropagation networks ([2],[5]) update of weights is based ongradient descent technique. The backpropagation method allows us to performlearning by minimizing any di�erentiable error function �. The update for anyweight w in the network is given by:�w = �� @�@wwhere � is a learning coe�cient.To be in agreement with the way of computing initial weights in the learningprocess, we consider error functions of the form� (u) = 1q X1�l�nd (outl (u)� inl (u))qwhere outl (u) =X1�k�nr wkl0@1 + exp0@��k X1�j�nh wjk � 21 + exp (��jHj (u)) � 1�1A1A�1and inl (u) = �1 for d (u) = vl0 otherwiseWe can also use the cumulative error given by � (U) =1q � card (U) Xu2U X1�l�nd (outl (u)� inl (u))qIn this case we back-propagate the global error from the whole set of objects.Once more we would like to stress that error functions given above corre-spond to the quality measure Q introduced before. Thus, if one would like toconsider hyperplane decision rules minimal in sense of another criterion, the wayof measuring classi�cation error should be veri�ed properly.In classical neural network learning we may manipulate with some coe�cientsto control the learning process ([2],[5]). In presented approach we may use thisability in order to introduce some meaning for such operations. Change of weightsin the �rst hidden layer corresponds to the change of elevation of hyperplanes.Hence, by setting constraints for value of learning coe�cients we may induce thelearning in case we e.g. do not want the hyperplanes to change too rapidly. Thestandard heuristics in the area of network learning, like momentum factor ([5]),can also be used, although they do not have explicit interpretation in terms ofhyperplanes and decision trees.During the learning process we should still remember about the interpretationof weights and functions. Starting from the initial structure obtained from data

by the sequential algorithm for �nding hyperplanes, we begin to modify weightsdue to given learning method. Then, however, for possibly improved classi�cationwe cannot determine how the decision rules behave over data actually. Anotherpoint is to keep decision rules minimal for foregoing hyperplane weights to makethe whole process more clear. Thus, it turns out to be very important to preservethe balance between what is derived from the learning process and what isobtained from described construction.5.6 Searching for optimal decision scalingFrom the very beginning of this section we considered decision tables with real-valued conditions and discrete decision with nd possible values. Such a case, oc-curring in many classi�cation problems, becomes much more complicated whendecision attribute d is real-valued as well. Obviously, one can assume some ini-tial scaling over d and perform the decision process just like before. However,although sometimes such a scaling is given, in many applications we do not needto scale properly but also reason with real values after obtaining decision rules.Objectives of proper decision scaling create wide range of often contradictiverequirements. One of possible methods is to scale decision attribute to obtaina small number of hyperplane-based decision rules. In such a case, however,derived rules may be not precise or safe enough to apply in real-life situation.One solution is to scale decision attribute uniformly under some assumed degreeof scaling precision expressed by nd and to construct hyperplane-based neuralnetwork for nd outputs. Then, we obtain some kind of parallel fuzzy inferencemodel with continuous excitation functions corresponding to the states of binaryfuzzy variables ([7],[19]).Now, there are two methods of obtaining the proper decision system for agiven data table. The �rst one is to synthesize a corresponding neural networkby methods described previously, where the new error function is de�ned by� (u) = 1q P1�l�nd vl � (outl (u)� inl (u))P1�l�nd outl (u) !q (5)The main disadvantage of such an approach is, however, the lack of informationabout the quality of initial decision scaling. Thus, although we can obtain quitee�ective model for reasoning, it is a black box because our knowledge aboutdependencies within data becomes unclear.Another possibility is to use the network constructed and tuned for the scaleddecision attribute to improve the scaling itself. In this case we tune the valuesvl corresponding to particular outputs to minimize function (5). As such a op-timization process is very complex, we propose to use some heuristics like e.g.genetic algorithm ([12]), where each chromosome in any evolution step corre-sponds to some scaling of decision attribute. The length of chromosomes is dueto initially assumed exactness of scaling and the �tness of any individual isoppositely proportional to the quantity (5) computed from the network.

Remark. During the evolution process the weights of the neural network remainconstant as expressing linguistic rules ([19]) corresponding to such a fuzzy-neuralinference. However, parameters of excitation functions may be sometimes modi-�ed according to the changes of the scaled decision values for the points in <nA .Another solution is to optimize these parameters in parallel with decision scaling.It leads, however, to considering longer chromosomes in population steps.The presented above methodology is still in the process of development andit does require thorough experimental veri�cation. There are some other recentresults of application of rough set methods in design of fuzzy MLP's (Multi LayerPerceptrons), but they do not touch the problem of real-valued attributes anddecisions. For reference see [1].Acknowledgement First of all I want to thank professor Andrzej Skowron forthe invitation to write this text. I want to thank the authors of papers I citein this work. They really did me a favor by providing the information abouttheir previous and current research. Many thanks to my colleagues NguyenHung Son and Dominik �Sl�ezak who contributed a lot to my work.This work was partially supported by the grant No 08T11C01011 from Na-tional Committee for Scienti�c Research and by the ESPRIT project 20288CRIT-2.References1. Banerjee, M., Mitra, S., Pal, S.K. Rough fuzzy MLP: Knowledge encoding andclassi�cation. IEEE Transactions on Neural Networks(1997) (submitted)2. Hecht-Nielsen, R.: Neurocomputing. Addison-Wesley, New York (1990)3. Jelonek, J., Krawiec, K., S lowi�nski, R.: Rough set reduction of attributes and theirdomains for neural networks, Computational Intelligence 11/2 (1995) 339{3474. Jelonek, J., Krawiec, K., S lowi�nski, R., Stefanowski, J., Szyma�s, J.: Rough sets asan intelligent front-end for the neural network. In: Proceedings of First NationalConference "Neural Networks and their Applications", April 12-15, Kule (1994)268{2735. Karayiannis, N.B., Venetsanopoulos, A.N.: Arti�cial neural networks: Learningalgorithms, performance evaluation and applications. Kluwer, Dortrecht (1993)6. Kohavi, R., Sahami, M.: Error{based and entropy{based discretization of continu-ous features. In: E. Simoudis, J. Han, and U.M. Fayyad (eds.): Proc. of the SecondInternational Conference on Knowledge Discovery & Data Mining. Portland, Ore-gon (1996) 114{1197. Kruse, R., Gebhardt, J., Klawonn F.: Foundations of fuzzy systems. Wiley, Chich-ester (1994)8. Lingras, P.: Rough neural networks. In: Proceedings of the Sixth InternationalConference, Information Procesing and Management of Uncertainty in Knowledge-Based Systems (IPMU'96), July 1-5, Granada, Spain (1996) 3 1445{14509. Lingras, P.: Comparison of neofuzzy and rough neural networks. In: P.P. Wang(ed.): Proceedings of the Fifth International Workshop on Rough Sets and SoftComputing (RSSC'97) at Third Annual Joint Conference on Information Sciences(JCIS'97), Duke University, Durham, NC, USA, Rough Set & Computer Science3, March 1{5 (1997) 259{262

10. Machine learning databases, University of California, Irvine.ftp://ics.uci.edu/machine-learning-databases11. Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N.: The multi{purpose incrementallearning system AQ15 and its testing applications to three medical domains. In:Proc. of 5 National Conference on Arti�cial Intelligence, Philadelphia, Morgan-Kaufman, (1986) 1041-104512. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs.Springer{Verlag, Berlin (1992)13. Nguyen, H.Son, Nguyen, S. Hoa: From optimal hyperplanes to optimal decisiontree. In: S. Tsumoto, S. Kobayashi, T. Yokomori, H. Tanaka, and A. Nakamura(eds.): Proceedings of the Fourth International Workshop on Rough Sets, FuzzySets, and Machine Discovery (RSFD'96), The University of Tokyo, November 6{8(1996) 82{8814. Nguyen, H. Son., Nguyen, S. Hoa, Skowron, A.: Searching for features de�ned byhyperplanes. In: In: Z.W. Ras, M. Michalewicz (eds.), Ninth International Sym-posium on Methodologies for Intelligent Systems. Zakopane, Poland, June 9{13,Lecture Notes in Arti�cial Intelligence (ISMIS'96) 1079, Springer{Verlag, Berlin(1996) 366{37515. Nguyen, H.Son, Skowron, A.: Quantization of real-valued attributes. Rough Setand Boolean Reasoning Approaches. In: P.P. Wang (ed.): Second Annual JointConference on Information Sciences (JCIS'95), Wrightsville Beach, North Car-olina, 28 September - 1 October (1995) 34{3716. Nguyen, H. Son, Szczuka, M., �Sl�ezak, D.: Neural networks design: Rough setapproach to real-valued data. In: J. Komorowski, J. Zytkow, (eds.), The FirstEuropean Symposium on Principle of Data Mining and Knowledge Discovery(PKDD'97), June 25{27, Trondheim, Norway, Lecture Notes in Arti�cial Intel-ligence 1263, Springer-Verlag, Berlin (1997) 359{36617. Sapiecha, P.: An approximation algorithm for certain class of NP-hard problems.In: ICS Research Report 21/92 Warsaw University of Technology (1992)18. Skowron, A., Rauszer, C.: The discernibility matrices and functions in informationsystems. In: R. S lowi�nski (ed.): Intelligent Decision Support { Handbook of Ap-plications and Advances of the Rough Sets Theory, Kluwer Academic Publishers,Dordrecht (1992) 331{36219. Szczuka, M., �Sl�ezak, D.: Hyperplane-based neural networks for real-valued decisiontables. In: P.P. Wang (ed.): Proceedings of the Fifth International Workshop onRough Sets and Soft Computing (RSSC'97) at Third Annual Joint Conference onInformation Sciences (JCIS'97), Duke University, Durham, NC, USA, Rough Set& Computer Science 3, March 1{5 (1997) 265{26820. Szczuka, M.: Aproksymacja funkcji za pomoc�a sieci neuronowych z wykorzys-taniem metod zbior�ow przybli_zonych. Master Thesis, Faculty of Mathematics,Informatics and Mechanics, The University of Warsaw (1995)21. Szczuka, M.: Rough set methods for constructing arti�cial neural networks. In:B.D. Czejdo, I.I. Est, B. Shirazi, B. Trousse (eds.), Proceedings of the ThirdBiennial European Joint Conference on Engineering Systems Design and Analysis7, July 1-4, Montpellier, France (1996) 9{1422. �Swiniarski, R., Berzins, A.: Rouh sets expert system for on-line prediction of vol-leyball game progress. In: B.D. Czejdo, I.I. Est, B. Shirazi, B. Trousse (eds.),Proceedings of the Third Biennial European Joint Conference on EngineeringSystems Design and Analysis 7, July 1-4, Montpellier, France (1996) 3{8

23. �Swiniarski, R., Hunt, F., Chalvet, D., Pearson, D.: Prediction system based onneural networks and rough sets in a highly automated production process. In:Proceedings of the 12th System Science Conference, Wroc law, Poland (1995)24. �Swiniarski, R., Hunt, F., Chalvet, D., Pearson, D.: Intelligent data processingand dynamic process discovery using rough sets, statistical reasoning and neuralnetworks in a highly automated production systems. In: Proceedings of the FirstEuropean Conference on Application of Neural Networks in Industry, Helsinki,Finland (1995)25. Vapnik, V.N.: The nature of statistical learning theory. Springer{Verlag, New York(1995)

This article was processed using the LATEX macro package with LMAMULT style

