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Abstract 

This paper introduces an efficient image identification 

method designed to be robust to various image modifications 

such as scaling, rotation, compression, flip and grey scale 

conversion.  Our method uses trace transform to extract a 1D 

representation of an image, from which a binary string is 

extracted using a Fourier transform. Multiple component 

descriptors are extracted and combined to boost the 

robustness of the identifier. Experimental evaluation was 

carried out on a set of over 60,000 unique images and one 

billion image pairs. Results show detection rate of over 92% 

at false-positive rate below 1 per million, with matching 

speed exceeding 4 million images per second. 

1 Introduction 

Large numbers of image databases now exist that contain 

multiple modified versions of the same image. An extreme 

example of this is the large number of modified (or even 

identical) versions of images on the web. There is a need to 

develop tools that will enable the identification of all of the 

original and modified versions of the same images. These 

tools can be used in applications such as database 

deduplication (both commercial and consumer), content 

linking and content identification. 

 

A typical approach involves extracting an identifier that in 

some way captures the features of the image. The identifier 

must be robust to common image processing modifications 

such as rotation, scaling, greyscale conversion, compression, 

blur and Gaussian noise. Other requirements are that the 

descriptor should be compact, it should not be excessively 

expensive for extraction and it must allow very fast searching. 

Image identifiers are also known by the terms image 

hashes[6], image signatures[1] and image fingerprints[8].  

 

There are several areas that are related to image identification. 

Although these areas are all related they are somewhat 

different in their requirements. The first, image similarity, 

involves looking for images that are perceptually similar in 

some sense (such as colour). The solution to similarity 

matching can be more relaxed about the results returned in 

terms of the false acceptance. 

 

 

 

 

 

 

 

 

 

 

Figure 1: The trace transform projects lines over the image. 

The lines are parameterised by the angle θ and distance d. 

 

Watermarking embeds a signal into the image in order that 

tampering can be detected. Watermarks can be susceptible to 

statistical analysis so an image identifier is sometimes used as 

part of the watermarking scheme. Authentication schemes 

rely on transmitting some information along with the image 

which allows verification of the originality of the image. The 

authentication information may be an encrypted image 

signature. One of the biggest disadvantages is that one can not 

search for images which were not watermarked, that is 

99.99% of the content.  

 

Work in the area of image identifiers can be broadly classified 

into three approaches by there support region, i) local feature 

point based , ii) region based and iii) global.  

 

Feature point based methods have the undesirable 

characteristic that they have high complexity in terms of 

searching. This is a result of the need to compare all points 

from one image with all point in another image[7]. 

 

Whilst region-based approaches overcome some of the 

complexity problems associated with feature-based 

approaches they suffer from a lack of invariance to 

geometrical transformations. Region-based approaches 

perform particularly poorly in the presence of significant 

rotation[4]. 

 

Global support region methods have shown some promise in 

terms of search complexity and robustness. One such method 

exploits the invariant properties of the Fourier-Mellin 

transform[1]. Whilst this method shows some interesting 

results it uses principal components analysis on a set of 

training images which leads to the signature being specific to 

a particular dataset.  
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Figure 2: Lena (a) and a Trace transform of Lena (b). 
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(b) IF6 

Figure 3: Circus functions resulting from applying different 

diametrical functionals. 

 

A number of methods based on line projection in images have 

been proposed. In [6] lines are projected through a centre 

point in the image to form a 180 sample feature vector. The 

DCT components of the feature vector are taken and then 

quantised to form an identifier. Matching is carried out using 

a peak cross-correlation method. The concept of the radial 

projections is similar to a method based on the Radon 

transform [8]. The Radon transform of the image is taken and 

then a number of steps including a 2D FFT are performed to 

extract a 2D 20x20 binary identifier for an image.  

 

Our approach is similar to [8], however there are several 

significant and beneficial differences. We use the more 

general Trace transform, rather than the Radon transform, 

allowing multiple component identifiers to be extracted. Also 

the intermediate steps are less computationally demanding, 

the 2D FFT is no longer necessary and a 1D FFT can be used. 

Lastly, the method presented here uses fewer bits for the 

image identifier which results in lower storage requirements 

and faster searching. 

 

An introduction to the trace transform, its properties and its 

relationship to other well known transforms (Hough and 

Radon) are given in Section 2. The method of extracting the 

binary string is described in Section 3. Section 4 presents the 

experimental results and then conclusions and some areas of 

further work are described in Section 5. 

2 Trace Transform 

The Hough transform and its generalisation, the Radon 

transform are both well known for their uses in image 

processing. The Radon transform integrates over all possible 

lines in an image. If the line is parameterised by the angle θ 

and distance d (as shown in Figure 1) then the continuous 

Radon transform of an image ),( yxf can be expressed as  
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where 
22 , ℜ∈ℜ∈ rf and δ is the delta function. The 

Radon transform can be generalised to the recently developed 

trace transform [2].  

 

The Trace transform projects all possible lines over an image 

as the Radon transform does. However, where the Radon 

transform is limited to integrating over these lines the Trace 

transform is more general and applies functionals over these 

lines.  

 

The result of applying a Trace transform is a 2D function (see 

Figure 2b for an example). A further functional is then 

applied to the columns of the Trace transform to give a 1D 

function of the angle θ. This second functional is known as 

the diametrical functional and the resulting function is known 

as the circus function. Two example circus functions are 

given in Figure 3. The properties of the circus functions can 

be controlled by appropriate choices of the two different 

functionals (trace and diametrical). The circus functions do 

not necessarily have any physical or geometrical 

interpretation. 

 

A functional Ε of the function g(x) is invariant if 

)())(( xaxg Ε=+Ε .   (I1) 

It may also have the following properties 

 ))(()())(( xgbbxg Ε=Ε α ,  (i1) 

and 

 ))(()())(( xgcxcg Ε=Ε γ   (i2) 

 

For rotation, scaling & (cyclic) translation it can be shown [2] 

that with a suitable choice of functionals the circus function 

c(a) of image a is only ever a shifted or scaled (in amplitude) 

version of the circus function c(a’) of the modified image a’ 

 

 
)()'( θκ −= acac
.    (2) 

Figure 4 shows an example of how the circus function is 

shifted when the image is rotated. The property in (2) is 

exploited in [3] to obtain an object signature and it is also 

used here to obtain a visual identifier for a whole image. 

3 Visual Identifier Algorithms 

Invariance to shift and amplitude scaling can be achieved by 

taking the Fourier transform of (2)  
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(a) Original 

 
(b) Rotated 450 
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(d) Circus function of (b) 

 

Figure 4: The circus function (c) for an image (a) and the 

circus function for the same image rotated by 450. The 

circus function is shift to the right by 450 (π/4). 

  

 
(a) Original 

 
(b) Rotated 450 

 
(c) Difference between (a) and (b) 

 

Figure 5: The binary identifier for an image (a) and its rotated 

version (b). The difference between the identifiers is 

shown in (c). The identifier is 1D but has been mapped to 

2D for presentation purposes only. 

 

and then considering the magnitude of (5)  

 

[ ])()( acFF κ=Φ    (6)

 )(Φ= Fκ . 

 

 

From (6) it can be seen that the original image and the 

modified image give equivalent descriptors except for the 

scaling factorκ . 
 

A binary string is extracted by taking the sign of the 

difference between neighbouring coefficients,  
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The binary image identifier is then made up of these values 

{ }nbbB ,,0 K=
. Example identifiers are shown in Figure 5 

for an image and its rotated version. 

 

Results can be significantly improved by using different 

diametrical functionals to extract multiple component 

identifiers and concatenating them to obtain complete 

identifier as shown in Figure 6.  

3.1 Image Identifier Extraction Algorithm 

The identifier extraction is split into two stages; the first is a 

pre-processing phase that helps to improve the robustness of 

the identifier. The preprocessing steps are given in Table 1. 

The usefulness of the pre-processing steps has been found 

through experimentation and will now be justified. The image 

resizing (Step 1) limits the interpolation necessary in the 

Trace transform, by performing this once only as a pre-

processing step computational time is saved. The size of 192 

pixels was found to be the best balance between complexity 

and performance. The extraction of a circular region from the 

image improves robustness to content modifying rotation, that 

is a rotation where content both leaves and enters the image 

(see Figure 4 (a) and (b)). The application of the Gaussian 

filter helps to remove any noise or minor differences between 

images. 

 

1. Resize original image, maintaining aspect ratio, to 

192xN or Nx192, where N ≥ 192. 

2. Extract a circular region from the centre of the 

resized image, the circle has a diameter of 192. 

3. Filter the image with a Gaussian kernel of size 3x3.  

Table 1: Pre-processing 

 

The second stage is the main part of the identifier extraction. 

Steps 1 and 2 are the application of the trace and diametrical 

functionals respectively. The algorithm is presented here with 

one trace functional and two diametrical functionals which all 

obey the following properties (I1), (i1) and (i2), so the 

resulting circus functions obey the property (2). Step (3) 

removes any shift in the 1D circus functions, see (6). Finally 

an invariant binary identifier is extracted in step 4.  

 

1. Take the trace transform of the image using the 

functional  

∫ dttf )( ,                                                  (IF1) 

i.e. integrating over all lines in the image. 

2. Obtain the first two circus functions by applying the 

following diametrical functionals to the columns of 

the 2D matrix resulting from step 1, 



a. dttg∫ )'( ,                                   (IF3) 

where ` denotes the gradient  

b. ))(max( tg .                                (IF6) 

3. Take the magnitude of the Fourier transform of the 

two circus functions. 

4. Binary strings from each circus function come from 

taking the difference of neighbouring coefficients 

)1()()( +−= ωωω FFc , 

and then applying a threshold such that  
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5. The identifier is made up of the first 64 bits from 

each of the identifiers. 

Table 2: Processing 
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(b) 

Figure 6: Combinations of Trace and diametric functionals 

are used to obtain multiple identifiers (a). Identifiers are 

then concatenated to form a final image identifier (b). 

 

3.2 Identifier Matching & Searching 

To perform identifier matching between two different binary 

identifiers 1B and 2B , both of length N, the normalised 

Hamming distance is taken 

∑ ⊗=
N

BB
N

BBH 2121

1
),( ,   (10) 

where ⊗  is the exclusive OR (XOR) operator. If the 

Hamming distance ),( 21 BBH is less than some pre-defined 

threshold the images are classified as ‘matching’, if the 

Hamming distance is above the threshold then the images are 

classified as ‘different’. The use of the Hamming distance 

makes the method very fast for searching through large image 

datasets. 

3.3 Bit Selection 

The lowest bits in the identifier are the most robust and the 

higher bits provide the most discrimination. It has been found 

that the best performance is obtained by using a careful 

choice of the bits from the identifiers. An optimisation 

procedure is used on a test dataset to select the best 

performing bits. For an identifier of length N a binary mask 

[ ]nmmM ,,0 K=  is defined, where { }1,0∈xm ,  zero 

indicates the bit is not selected (used); one that the 

corresponding bit is used. 

 

At the start of the procedure [ ]0,,0K=M .  

1. For i=1,…,N, set 1=im  

a. Find the distance H between all independent images and 

between the modified images using the bit mask M.  

b. Build a histogram of distances between the independent 

images and a histogram of the distance between the 

modified images. 

c. Find the error rate using the two histograms 

d. Set 0=im  

2. Find i, the bit that gives the lowest error rate and set 

1=im . 

Steps 1 and 2 are repeated until all bits have been selected, 

then the bit combination with lowest error can be chosen.  

 

This procedure need only be performed once and it has been 

verified that it is independent of the training dataset used. 

3.4 Complexity Analysis – Identifier Extraction 

The Trace transform step dominates the computation for the 

identifier extraction and is of order O(NMR) for an NxM 

image sampled a R angles.  

 

The current implementation of the identifier extraction 

process takes approximately 0.3 seconds on a 2.9 GHz Intel 

Xeon processor. 

 

Since the significant cost of the algorithm is in computing the 

Trace transform, extracting multiple circus functions adds 

very little additional cost.  

3.5 Complexity Analysis – Matching/Searching 

The matching algorithm uses the Hamming distance of the 

two identifiers, this can be calculated using a simple XOR 

operation and then summing the bits and is therefore of order 

O(N), where N is the number of bit in the identifier.  

 

The current implementation can compare over 4 million 

image pairs per second on a 2.9 GHz Intel Xeon processor. 

4 Experimental Results 

The increasing size of image databases, even for consumer 

applications, means that the false acceptance rate must be low 

to avoid returning large numbers of erroneous matches.  

 

Results are firstly presented at the equal error rate; that is the 

point at which the false negatives and false positives are 

equal. Further results are then presented for the point at which 

false positives are below one part per million (ppm). 
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Figure 7: The independence of the identifier is tested on over 

60,000 images (1.8x109 image pairs). 

 

 

(a) Original 

 

(b) Blur 

 

(c) Left-Right Flip 

 

(d) Brightness 

 

(e) Rotation 250 

 

(f) Rotation 900 

Figure 8: Examples of common image modifications that the 

identifier is robust to. 

 

Results are presented for identifiers based on the functional 

(IF1) in the Trace transform and (IF3) and (IF6) as the 

diametrical functionals as described in Section 3.1. The two 

combinations of functionals are referred to as IF1IF3 and 

IF1IF6. 

4.1 Independence 

The first stage in evaluating the results is to investigate the 

independence of the identifier for pairs of different images. In 

these experiments over 60,000 images are used, this results in 

1.8x109 image pairs. Figure 7 shows the distribution of 

similarity values for all image pairs using IF1IF3 & IF1IF6 

combined. Based on this distribution, one can select a 

similarity threshold corresponding to the required false-alarm 

rate; for example a threshold of 0.26 corresponds to 1 error 

per million comparisons.  

4.2 Equal Error Rate 

To test the performance of the identifier a set of 4,000 

original images are used. Each image is modified in 15 

different ways to create a dataset of 4,000x16 images 

(=64,000). Some example image modifications are shown in  

 
IF1IF3 IF1IF6 

IF1IF3 & 

IF1IF6 

Blur 3 99.23% 99.44% 99.89% 

Blur 5 98.44% 98.96% 99.73% 

Bright +5% 99.66% 98.81% 99.84% 

Bright +10% 99.25% 96.51% 99.45% 

Bright +20% 97.15% 89.37% 98.02% 

Flip 98.22% 97.00% 99.00% 

JPEG 95% 99.99% 100.00% 99.99% 

JPEG 80% 99.66% 99.61% 99.94% 

JPEG 65% 99.27% 99.06% 99.73% 

Rotate 10
0 96.59% 94.61% 97.98% 

Rotate 25
0
 96.85% 94.89% 98.08% 

Rotate 45
0
 96.98% 94.71% 98.22% 

Scale 50% 94.87% 94.82% 97.28% 

Scale 70% 97.15% 96.96% 98.46% 

Scale 90% 96.83% 96.62% 98.23% 

Mean 98.01% 96.76% 98.92% 

Figure 9: Detection rate under different modifications at the 

equal error rate. 

 

Figure 8. All results are presented in terms of the detection 

rate, which is defined as 

 

A

a
×100 ,     (11) 

 

where A is the total number of images and a is the number of 

images correctly identified as matching. 

 

Figure 9 presents the detection rate when the false positive 

and false negative rates are equal. It is clear that the results 

are significantly improved by combining the two identifiers. 

4.3 1 Part per Million False Acceptance Rate  

Results are presented in Figure 10 for the detection rate when 

the false positive rates are less than 1ppm. The benefit of 

using multiple identifiers can be seen more significantly at 

1ppm than at the equal error rate.  

5 Conclusions 

A new image identifier has been presented that is based on 

the Trace transform. Multiple component identifiers are 

extracted and combined to significantly boost performance. 

The experimental results on very large database demonstrate 

that this approach achieves excellent robustness to many 

common image processing manipulations, while keeping false 

alarm rate low. The new identifier has reasonable extraction 

complexity and allows extremely fast image matching. 

 

Future work will investigate improving the robustness at a 

false acceptance rate of one in a million and lower and 

improving the robustness to modifications such as cropping. 

 



 
IF1IF3 IF1IF6 

IF1IF3 & 

IF1IF6 

Blur 3 44.65% 91.89% 98.94% 

Blur 5 18.13% 80.91% 95.44% 

Bright +5% 93.03% 93.34% 99.19% 

Bright +10% 85.50% 79.59% 95.74% 

Bright +20% 62.96% 52.18% 82.61% 

Flip 52.36% 66.94% 92.52% 

JPEG 95% 100.00% 100.00% 100.00% 

JPEG 80% 87.45% 97.36% 99.52% 

JPEG 65% 77.84% 93.76% 98.73% 

Rotate 10
0 33.19% 58.65% 87.17% 

Rotate 25
0
 29.56% 56.77% 87.63% 

Rotate 45
0
 24.72% 53.12% 87.25% 

Scale 50% 15.67% 45.59% 77.99% 

Scale 70% 31.97% 63.41% 89.73% 

Scale 90% 30.17% 58.77% 88.67% 

Mean 52.48% 72.82% 92.08% 

Figure 10: Detection rate under different modifications at the 

point of one false detection per million. 
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