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Abstract

We describe a model based on continuum mechanics that reduces the study of a signifi-
cant class of problems of discrete dislocation dynamics to questions of the modern the-
ory of continuum plasticity. As applications, we explore the questions of the existence
of a Peierls stress in a continuum theory, dislocation annihilation, dislocation dissoci-
ation, finite-speed-of-propagation effects of elastic waves vis-a-vis dynamic dislocation
fields, supersonic dislocation motion, and short-slip duration in rupture dynamics.

1 Introduction

This paper explores some qualitative aspects of Field Dislocation Mechanics (FDM), a non-
linear, partial differential equation (pde)-based model of the mechanics of dislocations. The
physical phenomena explored correspond to behaviour of individual or a collection of few
dislocations. In particular, we analyse phenomena complementary to what can be dealt with
by the Discrete Dislocation Dynamics methodology in a fundamental manner. Specifically,
we explore

• Peierls’ stress effects in a translationally-invariant continuum theory like FDM.

• Dislocation annihilation and dissociation as consequences of fundamental kinematics
and energetics and not targeted constitutive rules for the phenomena.

• Dislocation dynamics in the presence of significant effects of material inertia, including
finite-speed-of-propagation effects of elastic waves and dislocation motion past sonic
speeds.

• Dislocation dynamics with nonlinear elasticity.

• Short-slip duration in rupture dynamics.

The question of the possibility of a Peierls-like threshold for onset of dislocation motion
in a translationally-invariant, time-dependent continuum theory was discussed in [Ach10].
The classical, static, argument going back to Peierls [Pei40] relies crucially on the fact that
such a threshold is directly related to changes in the total potential energy of the body
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induced by changes in position of the dislocation (naturally, then, viewed as a rigid object
or profile). Since in a homogeneous infinite continuum the total potential energy remains
invariant due to changes in position of the rigid dislocation profile, the conclusion is that
there cannot be a Peierls stress in a translationally-invariant continuum theory; breaking
translational invariance, possibly by modelling the effects of an atomic lattice (as was done
by Peierls [Pei40] and Nabarro [Nab47]) or by introducing a heterogeneous medium, can
introduce a Peierls stress. However, questions of stability of equilibria under perturbations
of loading in a time-dependent model of dislocation mechanics with a significantly different
notion of a driving force (that includes self stress effects) can be quite different, in particular
whether an unloaded equilibrium dislocation profile can serve as a traveling wave profile
under a continuous spectrum of finite loads tending to zero - and, if not, is there an interval
of loads about zero for which different equilibrium profiles can be attained parametrized by
the load. Such questions have to do intimately with changes in ‘shape’ of the dislocation
profile. In this paper we computationally explore this question - as a point of principle,
most of all - for three natural models that the structure of FDM makes available. These
correspond to a non-local Ginzburg Landau model, a non-local level set model and what
may be termed a generalized, non-local Burgers model. In Sections 4 and 7.1 we describe
these models and results in detail. Despite the great utility of analysis of traveling waves,
our results point definitely in the direction of avoiding an over-reliance on characteristics
of traveling wave solutions in making general statements about the non-existence of certain
types of predictions related to the representation of physical phenomena characterized by
fronts. After all, there is no reason why a traveling front necessarily has to be perfectly rigid
during motion, making an infinite-dimensional object (a profile allowed to change shape,
while still remaining localized) into one of dimension 1. A physical example related to this
paper is the onset of motion of screw dislocations in some BCC materials. There, it is
understood that the dislocation core is spread out on multiple planes and the core has to
be compacted further into a preferred slip plane before gross motion can ensue; once motion
stops, the multiple-plane equilibrium configuration is regained. In a qualitative sense, we
demonstrate such features, including differences between dynamic and equilibrium shapes in
Section 7.

With respect to dislocation annihilation, since the fundamental statement of evolution
in FDM is a conservation law for Burgers vector content of the dislocation density field,
the density field evolves by tensorial addition rules resulting in natural accumulation or
annihilation of non-singular localizations of net positive and negative Burgers vector when
physically expected. We demonstrate such results in Section 7.4.

The discussion of the possible dissociation of a dislocation of a certain Burgers vector
strength into two whose strengths vectorially sum up to that of the original one is a text-
book example of the phenomenology of dislocations related to the energy-decreasing feature
of dislocation mechanics. Due to the treatment of a dislocation core as either a formless or a
rigid singularity in classical versions of any sort of dislocation dynamics, dissociation cannot
be a prediction. The field setting is ideally suited for such explorations as we deomnstrate
in Sec. 7.1.7.

As for dislocation dynamics with material inertia, it is physically natural that a moving
dislocation induces elastic stress-waves that cannot transmit the stress signal instantaneously
to all parts of the body. This fact is naturally encoded in FDM and our simulations, without
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extra effort or computational expense beyond solving standard elastodynamics equations.
As discussed in [GLBD+13], when time intervals of observation are small (as in very high
rate deformations) this time delay in stress signal transmission due to stress-wave propaga-
tion can be of importance, and merely correcting for individual dislocation motion laws in
DD simulations by added-mass effects, while utilizing the static stress fields of dislocations,
is not sufficient; instead, dislocation stress fields utilizing the full dynamic Green’s function
have to be utilized and this becomes a significantly onerous task, especially with increase
in number of segments. We demonstrate the efficacy of FDM in dealing with such prob-
lems in Section 8.3. In addition, we show that there is no conceptual or practical problem
within FDM in dealing with dislocation motion past linear-elastic sonic speeds (in appro-
priate circumstances) as observed in the molecular dynamics (MD) experiments of [GG99],
or in dealing with nonlinear elasticity, with beneficial effect related to matching trends of
dislocation velocity vs. applied loading to MD results.

Finally, we make a successful first attempt at modeling the observed phenomenon of
short-slip duration in earthquake rupture as well as the more conventional crack-like slip
response obtained from slip-weakening cohesive zone models of rupture dynamics. These
features are obtained without sophisticated constitutive modifications of velocity-weakening
or rate-and-state friction type, but simply by invoking a requirement of damage of elastic
modulus at a point on propagation of the rupture front past it.

In this work we utilize an ansatz to produce an exact, reduced, plane model of FDM.
Our model is built on the previous work of [Ach10] where a 1-d FDM model was derived
and further explored numerically in [DAZM13]. The 1-D model, taking the form of a non-
linear Hamilton-Jacobi equation, governs the evolution of plastic shear strain in a 1-d bar.
Mathematical analysis of traveling waves in the model for the scalar case was performed in
[AMZ10]; global existence and uniqueness for the 1-d space × time system was analysed in
[AT11]. Our work generalizes the 1-D model to plane strain where edge dislocations exist
and glide horizontally along a prescribed plastic layer. The plastic evolution is governed by
a similar 1-d model as derived in [Ach10], but now nonlocal if viewed solely as an equa-
tion in terms of the plastic strain, with the 3-d dissipation maintained non-negative without
approximation. This results in a useful model that is amenable to reasonably efficient and
accurate numerical simulation.

The rest of the paper is organized as follows: In Section 2 we settle on notational con-
ventions. In Section 3 we briefly recall the full 3-D FDM theory in the geometrically linear
framework. We describe the derivation of the 2-d model in Section 4. The numerical schemes
utilized in the paper are described in Section 5. Equilibrium aspects of the system are dis-
cussed in Section 6. Features of the model related to dislocation motion under quasi-static
deformations are presented in Section 7 and results on dynamics with inertia are presented
in Section 8. We end with some concluding remarks in Section 9.

2 Notation

Vectors are represented by boldface letters. A superposed dot represents a material time
derivative. A subscript x or t represents partial differentiation with respect to x or t, respec-
tively. The summation convention is implied. A second (or higher) order tensor A acting
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on a vector v is denoted by Av and the inner product of two second-order tensors A and
B is represented by A : B. The indicial form with respect to rectangular Cartesian bases
are Av = Aijvj and AB = AijBij respectively. Let c be a spatially constant vector field;
the cross product, divergence, and curl are defined as

(A× v)T c = (AT c)× v ∀c
(divA) c = div(AT c) ∀c
(curlA)T c = curl(AT c) ∀c,

(1)

with component representation with respect to rectangular Cartesian coordinate systems
given by

(A× v)im = emjkAijvk

(divA)i = Aij,j

(curlA)im = emjkAik,j,

(2)

where emjk are components of the third-order alternating tensor. In writing numerical
schemes, the discrete version of the scalar field φ(x, t) is represented by φk(xh) representing
the value of the function φ evaluated at the spatial location xh and at the kth discrete time
level.

3 Field Dislocation Mechanics

Field Dislocation Mechanics [Ach10, Ach11, Ach01, Ach03, Ach04] is a pde-based model for
understanding plasticity of solids as it arises from the nucleation, motion and interaction of
defects in the elastic deformation of the material. It builds on the pioneering works of Kröner
[Krö81], Mura [Mur63], Fox [Fox66], and Willis [Wil67] that almost exclusively develop the
static elastic theory of continuously distributed dislocations, and extends this body of work
to account for dissipative dislocation transport and non-linearity due to geometric and crys-
tal elasticity effects. Preliminary thoughts and early efforts in modeling time-dependent
dislocation dynamics within a pde framework are [WH74, CCHO97, CCV01]. More ma-
ture models are those of [WJCK01, SW03, RLBF03, XCSE03, Den04, AHLBM06] and the
variational framework of [KCO02], none with the generality to deal with all three physical
features of evolution of cores, nonlinear elasticity, and material inertia. Importantly, all of
these models agree, implicitly at least, on the relationship between elastic incompatibility
and the dislocation density given by curlU e = α. This kinematic relationship implies an
evolution statement for the total dislocation density tensor in the form of a conservation law
for a vector-valued 2-form (and that is all) that geometrically constrains conversions of, for
example, dislocations from one slip plane to another aided further by energetics and kinetics.
At the scale of resolving individual dislocations, such an evolution statement coupled with
the other laws of continuum mechanics, constitutive equations for the free energy density
and a single dislocation velocity field is sufficient to generate a closed theory. In FDM, we
work with exactly such a model. In the other models mentioned above the basic descrip-
tors of dislocation fields take a variety of different forms including the number of such fields
required, and a separate evolution statement for each such descriptor is prescribed for this
varying collection of fields. Of course, all such statements have to be consistent with the

4



fundamental conservation law for the total dislocation density mentioned above (which also
implies, more-or-less, an evolution for the whole plastic distortion tensor), and it is not clear
how this is attained in the various models.

In this paper, we largely work with the small deformation theory. The complete set of
equations of FDM is

U e := grad (u− z) + χ; U p := gradz − χ
curlχ = α = curlU e = −curlU p elastic incompatibility

divχ = 0

div (gradż) = div (α× V )

div [T (U e)] + b = ρü balance of linear momentum

α̇ = −curl (α× V ) conservation of Burgers vector content


on B. (3)

The various fields are defined as follows. χ is the incompatible part of the elastic distor-
tion tensor U e , u is the total displacement field, and u− z is a vector field whose gradient
is the compatible part of the elastic distortion tensor. U p is the plastic distortion tensor. α
is the dislocation density tensor, and V is the dislocation velocity vector. α × V (plastic
strain rate with physical dimensions of time−1) represents the flow of Burgers vector carried
by the dislocation density field moving with velocity V relative to the material. For the
sake of intuition, indeed, when α = b ⊗ l with b perpendicular to l (an edge dislocation)
and V in the plane spanned by b and l, α × V represents a simple shearing (strain rate)
in the direction of b on planes normal to l × V . The argument of the div operator in Eqs.
(3)5 is the (symmetric) stress tensor, b is the body force density, and the functions V , T
are constitutively specified. All the statements in Eqs. (3) are fundamental statements of
kinematics or conservation. In particular, Eqs. (3)6 is a purely geometric statement of con-
servation of Burgers vector content carried by a density of lines (see [Ach11] for a derivation)
and Eqs. (3)5 is the balance of linear momentum.

As for boundary conditions,

χn = 0

(grad ż −α× V )n = 0

}
on ∂B (4)

are imposed along with standard conditions on displacement and/or traction.
The equations of FDM outlined above can be shown to imply a non-local continuum

plasticity model whose stress response and plastic strain response are given as [Ach10]

T = T̂ (gradu−U p)

U̇ p = −curlU p × V̂ (T ,U p, curlU p)
(5)

where the constitutive functions T̂ ,V̂ are, in large part, guided by the structure of FDM.
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4 2-D Straight edge dislocation model derived from

FDM1

Figure 1: Geometry of the problem.

We consider the geometry shown in Fig. 1;

Ω = {(x, y) : (x, y) ∈ [−W,+W ]× [−H,+H]} ,
L = {(x, y) : (x, y) ∈ [−W,+W ]× [−b,+b]} ,
0 < b < H, W > 0.

In our notation we use x ≡ x1 and y ≡ x2, synonymously. The model may be viewed as a
composite comprising two outer regions, Ω \L, whose stress response is purely linear elastic,
and the layer L, of width 2b, whose response is elastic-plastic and where edge dislocations
exist and FDM is active. The displacement fields u is continuous on the entire domain. We
interpret the slip field in the layer as:

δ(x, t) =

∫ +b

−b
u1,2(x, y, t)dy = u1(x, b, t)− u1(x,−b, t). (6)

This field does not play an explicit role in the constitutive modeling, due to the latter’s
inherently bulk nature in our model, but we use it for discussing results related to tectonic
rupture dynamics in Section 8.4. The dissipation on the whole body, defined as the difference
of the rate of working of external forces and the rate of stored energy in the body, arises only
from the layer (since everywhere else the body is elastic). Assume a stored energy density
function of the form

ψ (εe,α) + η (U p) , (7)

1The content of this section with the exception of Sections 4.1 and 4.2 is excerpted from [AZ14] and
included here for completeness.
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with stress given by T = ∂ψ/∂εe , where εe is the symmetric part of the elastic distortion U e.
The function ψ is assumed to be positive-definite quadratic in εe and the function η is multi-
well non-convex, endowing the energy function with barriers to slip and conferring preferred
energetic status to certain plastic strains than others. Together, these two functions enable
the robust modeling of overall total strain distributions in the layer displaying localized,
smooth transitions between slipped and unslipped regions (or between the preferred strain
states encoded in η). This crucially requires adding an energetic penalty to the development
of high values of the dislocation density α, referred to as a core energy. In effect, the linear
elastic stress and the core term tend to prevent a sharp discontinuity and the driving force
from the non-convex η term promotes the discontinuity, and it is the balance between these
thermodynamic forces that sets the dislocation core width at equilibrium. Interestingly, it
can be shown that while in the presence of just one component of plastic distortion only
the linear elastic term suffices to give a finite core width (paralleling a fundamental result
due to Peierls [Pei40]), with more than one component, the core regularization from the
α term is essential [AT11, LS08]. It is to be noted that the core energy is a fundamental
physical ingredient of our model and not simply a mathematical regularization. In general,
it is not expected to have the simple ‘isotropic’ form assumed here and, in fact, its character-
ization furnishes our model with a direct route of making contact with (sub)atomic physics
[MPBO98, IRG15].

The dissipation in the model can be written as

D =

∫
L

(
T − ∂η

∂U p

)
: U̇ pdv +

∫
L

∂ψ

∂α
: curl (α× V ) dv

=

∫
L

(
T − ∂η

∂U p

)
: (α× V ) dv +

∫
L

curl

(
∂ψ

∂α

)
: α× V dv

+

∫
∂L

∂ψ

∂α
: (α× V )× nda

where n is the outward unit normal field to the body.
In the layer assume the ansatz

U p (x, y, t) = Up
12 (x, y, t) e1 ⊗ e2 + Up

22 (x, y, t) e2 ⊗ e2

:= φ(x, t)e1 ⊗ e2 + ω(x, t)e2 ⊗ e2

(8)

where the functions φ(x, t), ω(x, t) need to be defined.
Then

α (x, y, t) = − curlU p (x, y, t) = −φx (x, t) e1 ⊗ e3 − ωx (x, t) e2 ⊗ e3 (9)

and
curlα (x, y, t) = φxx (x, t) e1 ⊗ e2 + ωxx (x, t) e2 ⊗ e2.

In keeping with the 2-d nature of this analysis and the constraint posed by the layer on the
dislocation velocity, we assume

V (x, y, t) = V1 (x, y, t) e1 := v(x, t)e1

7



where v(x, t) needs to be defined.
Note that with these assumptions, the boundary term in the dissipation vanishes for the

horizontal portions of the layer boundary. We also assume

∂ψ

∂α
= εα,

where ε is a parameter with physical dimensions of stress× length2 that introduces a length
scale and essentially sets the width of the dislocation core, at equilibrium. For specific
simplicity in this problem, we impose α = 0 on vertical portions of the layer boundary by
imposing φx (±W, t) = ωx (±W, t) = 0.

With the above ansatz, the conservation law α̇ = − curl (α× V ) reduces to

φt (x, t) = −φxv (x, t) or α̂1t = − (α̂1v)x
ωt (x, t) = −ωxv (x, t) or α̂2t = − (α̂2v)x ,

(10)

where α̂1 := −φx = α13 and α̂2 := −ωx = α23. Equation 10 defines the evolution equations
for the plastic distortion components φ, ω once v is defined as a function of (x, t).

We now consider the dissipation

D =

∫
L

V1

{
e1j3

(
T − A+ ε(curlα)T

)
jr
αr3

}
dv Ajr :=

(
∂η

∂U p

)
jr

=

∫
L

v (x, t)

{
[T12 (x, y, t)− A12 (x, t) + εφxx (x, t)] (−φx (x, t))

+ [T22 (x, y, t)− A22 (x, t) + εωxx (x, t)] (−ωx (x, t))

}
dv.

We make the choice

v(x, t) :=
−1

Bm lm−1 |α̂|m (x, t)

{
φx(x, t)

[
τ(x, t)− τ b(x, t) + εφxx(x, t)

]
+ωx(x, t)

[
σ(x, t)− σb(x, t) + εωxx(x, t)

]}
m = 0, 1 or 2

τ(x, t) :=
1

2b

∫ b

−b
T12(x, y, t)dy; τ b := A12

σ(x, t) :=
1

2b

∫ b

−b
T22(x, y, t)dy; σb := A22

(11)

(i.e. kinetics in the direction of driving force [Ric71], in the context of crystal plasticity
theory), where B̂ = Bm l

m−1|α̂|m is a non-negative drag coefficient that characterizes the
energy dissipation by specifying how the dislocation velocity responds to the applied driving
force locally and l is an internal length scale, e.g. Burgers vector magnitude of crystals. For
simplicity, we assume the drag to be a scalar but in general its inverse, the mobility, could
be a positive-semidefinite tensor. In general, it is in B̂ that one would like to model the
effect of layer structural inhomogeneities impeding dislocations as well as the effect of other
microscopic mechanisms of energy dissipation during dislocation motion.

The parameter Bm is expected, in general, to be a function of m; however, for all values
of m, Bm has physical dimensions of stress× time× length−1, and introduces another length
scale related to kinetic effects.
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Then the dissipation becomes

D =

∫
L

1

Bm lm−1|α|m(x, t)

{
φx(x, t)

[
τ(x, t)− τ b(x, t) + εφxx(x, t)

]
+ωx(x, t)

[
σ(x, t)− σb(x, t) + εωxx(x, t)

]}2

dxdy

+ R,

where

R =

∫ x=+W

x=−W
−v(x, t)


φx(x, t)

∫ b

−b
[T12(x, y, t)− τ(x, t)] dy

+ωx(x, t)

∫ b

−b
[T22(x, y, t)− σ(x, t)] dy

 dx.

Recalling the definitions of the layer-averaged stresses τ, σ in (11), we observe that

R = 0 and D ≥ 0.

To summarize, within the class of kinetic relations for dislocation velocity in terms of driving
force, positive dissipation along with the (global) conservation of Burgers vector content
governs the nonlinear and nonlocal slip dynamics of the model. Essentially, slip gradients
induce stress and elastic energy and the evolution of the dislocation is a means for the media
to relieve this energy, subject to conservation of mass, momentum, energy, and Burgers
vector.

To further simplify matters, we make the assumption that ω ≡ 0, i.e. no normal plastic
strain in the composite layer. Suppressing the argument (x, t), the governing equation for
the plastic shear strain now becomes

φt =
|φx|2

Bm lm−1|α|m
(τ − τ b + εφxx).

The parameter m can be chosen to probe different types of behaviour. Especially, m = 0
corresponds to the simplest possible (linear) kinetic assumption. Recall that

τ(x, t) :=
1

2b

∫ b

−b
T12(x, y, t)dy and τ b(x, t) =

∂η

∂φ
.

For the stored energy, we assume the form

1

2
εe : Cεe + η(U p) +

1

2
ε|α|2, (12)

where εe is the elastic strain tensor. The non-convex energy density function is chosen to be
a multiple well potential, with the plastic shear strain values at its minima representing the
preferred plastic strain levels. A typical candidate that we utilize in this paper is

η =
µφ̄2

π2

(
1− cos(2π

φ

φ̄
)

)
. (13)

The displacement field in the model satisfies

ρüi = Tij,j in Ω

9



where, for an isotropic material,

Tij = λεekkδij + 2µεeij,

λ, µ being the Lamé parameters and

Eij :=
1

2
(ui,j + uj,i)

εeij = Eij in the elastic blocks, i.e. Ω \ L

εe12 = εe21 = E12 −
φ

2
; all other εeij = Eij in the fault layer L,

where i, j take the values 1, 2. The governing equations of the system are thus
ρ
∂2ui
∂t2

=
∂Tij
∂xj

in Ω

∂φ

∂t
=

1

Bm lm−1

∣∣∣∣ ∂φ∂x1

∣∣∣∣2−m(τ − τ b + ε
∂2φ

∂x1
2

)
in L.

(14)

We make the choice l = b (fault zone width in rupture dynamics; in crystals, a measure
of the interatomic spacing). Then dimensional analysis suggests introducing the following
dimensionless variables:

x̃ =
x

b
, t̃ =

Vst

b
, ũ =

u

b
, T̃ =

T

µ
, τ̃ b =

τ b

µ
, ε̃ =

ε

µb2
, B̃m =

Vs
µ/Bm

(15)

where µ is the shear modulus and Vs =
√
µ/ρ is the elastic shear wave speed of the material.

The non-dimensional drag number B̃m represents the ratio of the elastic wave speed of the
material to an intrinsic velocity scale of the layer material. The non-dimensionalized version
of Eqs. (14) reads as:

∂2ũi

∂t̃2
=
∂T̃ij
∂x̃j

in Ω

∂φ

∂t̃
=

1

B̃m

∣∣∣∣ ∂φ∂x̃1

∣∣∣∣2−m(τ̃ − τ̃ b + ε̃
∂2φ

∂x̃1
2

)
in L.

(16)

The system (16) admits initial conditions on the displacement and velocity fields ũi, ˙̃ui
and the plastic strain φ. As mentioned before, we apply the Neumann condition φx = 0
on the left and right boundaries of the layer L and for (161) we utilize standard prescribed
traction and/or displacement boundary conditions.

4.1 B̃m � 1: Quasi-static, rate-dependent response

We consider a generic, appropriately nondimensionalized, loading parameter (either applied
traction or displacement b.c.s) that evolves as

dτa

dt̃
= Γ, (17)
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where Γ � 1 is a dimensionless loading rate, assumed to be tunable to be as small as required.
The restriction to monotonic loading is not essential, but will suffice for our purposes in this
paper. We now introduce a slow time scale

s =
t̃

B̃m

(18)

and pose the governing system (16) in this slow time scale:

1

B̃2
m

∂2ũi
∂s2

=
∂T̃ij
∂x̃j

∂φ

∂s
=

∣∣∣∣ ∂φ∂x̃1

∣∣∣∣2−m(τ̃ − τ̃ b + ε̃
∂2φ

∂x̃1
2

)
dτa

ds
= ΓB̃m.

We note that B̃m � 1, and require Γ ≤ B̃−1
m . Moreover, we assume evolutions restricted to

∂2ũi
∂s2

= O(1) (in the limit B̃m →∞) to obtain the quasi-static system

0 =
∂T̃ij
∂x̃j

∂φ

∂s
=

∣∣∣∣ ∂φ∂x̃1

∣∣∣∣2−m(τ̃ − τ̃ b + ε̃
∂2φ

∂x̃1
2

)
dτa

ds
= O(1).

(19)

For m = 2, (192) has the form of a nonlocal Ginzburg-Landau (NGL) equation and for
m = 1, that of a nonlocal level set (NLS) equation. To our knowledge, the case m = 0
corresponding to the simplest and most natural constitutive assumption for the dislocation
velocity (i.e. a linear kinetic ‘law’) seems not to have been previously considered. We name it
the nonlocal generalized Burgers (NGB) equation based on the following reasoning: when the
coefficient of the first derivative term is a constant, the equation is indeed, up to a rescaling
in time, the inviscid Burgers equation in Hamilton-Jacobi form. Of course, the coefficient
is not a constant and contains a ‘viscous regularization’ that comes not as a uniform, linear
parabolic term as in Burgers’ original equation, but in a degenerate quasilinear parabolic
form (see [AT11] for some implications), along with nonlocal and nonmonotone contributions.
Regardless, for the lack of a better choice, the necessity of having a name to refer the equation
by, and a desire to note the wonderful confluence of J. M. Burgers’ contributions in fluid
dynamics and crystal dislocations within our model, we christen the equation by the name
we have adopted. Indeed, a distinguishing feature of Burgers equation is the modeling of
shape-change of a wave profile with time-evolution and we find that it is this property of our
NGB equation that allows it to predict a Peierls stress-like threshold for dislocation motion.

The quasi-static system (19) evolves on a time scale set by the drag coefficient under very
slow or static loadings. Physically, we may expect this model to be of relevance to slipping
in geomaterials and special situations in rupture dynamics [RCF04, CAS99], and polymeric
composites under very slow loading rates.

11



4.2 B̃m < 1: Quasi-static, rate-independent response

This case is relevant to dislocation motion in crystalline materials under slow loadings. For
dislocation motion well below the speed of sound, a typical value of the dislocation drag
coefficient used in discrete dislocation methodology is 10−4Pa · s for Aluminum [KCC+92].
The ratio of the product of the magnitudes of the shear stress acting on a discrete dislocation
and its Burgers vector to this parameter, say BDD, is assumed to be the constitutive equation
for the magnitude of the discrete dislocation’s velocity. In order to estimate the magnitude
of Bm for our model corresponding to crystalline materials, we consider (14)2 for m = 1 and

observe that the coefficient of
∣∣∣ ∂φ∂x1 ∣∣∣ corresponds to the velocity of a slip front (whose derivative

represents a dislocation herein) since, for a φ profile monotone increasing/decreasing in x,
this is just the first-order wave equation (cf. [VBAF06]). In particular, if τd is a constant
applied stress value and b the Burgers vector magnitude,

τd
B1

=
τd b

BDD

,

which is just the statement of equality of speeds of dislocations in discrete dislocation method-
ology and our model, for m = 1. Using the abovementioned value of BDD from [KCC+92],
we obtain

B̃1 = 0.0297 (20)

after non-dimensionalization according to (15). As mentioned earlier, Bm, for all values
of m, has the same physical dimension as B1 and in the following we assume them as
having a common value except in one instance which we explicitly mention in Section 8.1.
The non-dimensional, quasi-static systems analyzed herein (19, 22) do not require explicit
consideration of the values of Bm.

We consider slow loading of the type (17) with Γ � 1, and a slow time scale of the form

s = Γ t̃.

On this time scale, the governing equations (16) take the form

Γ 2∂
2ũi
∂s2

=
∂T̃ij
∂x̃j

ΓB̃m
∂φ

∂s
=

∣∣∣∣ ∂φ∂x̃1

∣∣∣∣2−m(τ̃ − τ̃ b + ε̃
∂2φ

∂x̃1
2

)
dτa

ds
= 1.

(21)

Noting that Γ � 1 and B̃m < 1, we obtain the following quasi-static system:

0 =
∂T̃ij
∂x̃j

0 =

∣∣∣∣ ∂φ∂x̃1

∣∣∣∣2−m(τ̃ − τ̃ b + ε̃
∂2φ

∂x̃1
2

)
dτa

ds
= 1.

(22)
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On time intervals in which (22) is an accurate approximation of the actual dynamics, the
equivalent dynamics viewed on the fast time scale is (16), appended with

dτa

dt̃
≈ 0.

We note an important fact related to the appropriateness of quasi-static systems like (22).
Consider Υ and Φ as the ũi(·) and ϕ(·) fields on the body (viewed as functions of spatial
coordinates alone) that satisfy the first two equations of (22) subject to boundary conditions
for a particular value of the load τa (the load here can be thought of as a function on the
boundary of the body). This can be stated abstractly as the fact that (Υ, Φ, τa) satisfy the
functional equations

F (Υ, Φ, τa) = 0.

Suppose now that the solution set of (Υ, Φ, τa)-triples of the functional equation F =
0 (the equilibrium set) admits connected one-dimensional paths. Let one such path be
(Υ (s), Φ(s), τa(s)), where the function τa satisfies (223). Then one can compute first and
second partial derivatives with respect to s of the fields ũi and ϕ corresponding to this
‘equilibrium’ path and, in general, these are not expected to vanish, even though the path
belongs to the equilibrium set. However, due to the availability of the small parameters in
(21), such a time-dependent ‘solution’ may be considered an appropriate approximate solu-
tion of the system (21). It is a remarkable fact that the full dynamics often does follow these
equilibrium paths to a very good approximation. However, situations arise when states are
reached along such paths where dτa

ds
can no longer be linked uniquely to (dΥ

ds
, dΦ
ds

). In these
circumstances, the quasi-static system (22) provides no guidance on the actual evolution
and only the full dynamics can decide whether jumps, on the slow time scale, between two
equilibrium paths take place (if the τa corresponds to multiple states on the equilibrium set
at the instant of the jump) or a single equilibrium path can be followed, or the equilibrium
set is abandoned forever by the actual dynamics. At such instants, the time-derivatives in
(21) become unbounded and (22) is no longer an appropriate representation of the dynamics
(21). The time derivatives in the fast system (16) remain well-behaved, and it is this system
that needs to be considered for accurate information on the actual dynamics.

When (22) is valid, (dΥ
ds
, dΦ
ds

) associated with any state on an equilibrium path is related
to dτa

ds
through a linear operator that solely depends on the said state. This represents rate-

independent response where the model has no internal time-scale and the evolution of fields
depend on the rate of loading through a homogeneous function of degree 1.

5 Numerical Schemes

We gather the dimensionless governing equations in one place for convenience and then
provide the numerical schemes for solving the equations:

∂2ui
∂t2

=
∂Tij
∂xj

in Ω

∂φ

∂t
=

1

B̃m

∣∣∣∣ ∂φ∂x1

∣∣∣∣2−m(τ − τ b + ε
∂2φ

∂x1
2

)
in L

(23)
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where
Tij = Cijkl (uk,l − Up

kl)

Cijkl = λδijδkl + µ (δikδjl + δilδjk)

τ b =
2µφ̄

π
sin

(
2π
φ

φ̄

)
.

Material properties are controlled by the Lamé constants λ, µ and the dimensionless drag
coefficient B̃m together with the core energy ε ≈ µb2. In general, the Finite Element Method
(FE) is used to solve the equation for balance of linear momentum in a staggered scheme
that utilizes the plastic distortion U p as a given quantity obtained by evolving U p (or φ) in
the remaining part of the scheme. The general computing flow is shown in Fig. 2.

Given material properties, initial conditions
(φ0 and u0), boundary conditions, total time
TT , loading history, initial time t = 0

Given uk and φk, calculate φk+1 with upwind-
ing finite difference method. Solve div T = ρü

for uk+1 with standard Galerkin and cen-
teral difference method based on φk and uk

k = k + 1, t = t + 4t. repeat until t ≥ TT

(a) dynamic equations

Given material properties, initial condi-
tions (φ0), boundary conditions, total time
SS, loading history, initial time s = 0

Given uk and φk, calculate φk+1 with upwinding finite
difference method. With φk+1 solve div T = 0 for

uk+1 using standard Galerkin method based on φk+1

k = k + 1, s = s + 4s. repeat until s ≥ SS

(b) quasi-static equations

Figure 2: Flow charts for dynamic (Eqs. (16)) and quasi-static (Eqs. (19)) models: φ and u are
unkonwn plastic strain and displacement fields. T is Cauchy stress.

An FE mesh with an embedded 1-d finite difference grid is used. We use linear quadri-
lateral elements, with 5× 5 Gauss quadrature points. Two types of FE meshes are created
and used:

1. Mesh A: elements are of uniform size over the whole domain.

2. Mesh B : elements are refined in and around the layer area.

Mesh A is used in Sec. 8 as it allows capturing stress wave propagation accurately over the
whole body. Mesh B is used primarily to study the Peierls’ stress problem, e.g., in Sec. 7.1.2
and 7.1.5. This is because we need a highly refined mesh in the layer to make statements
independent of mesh size. We utilize regular quadrilateral elements of uniform size within
the layer. Outside the layer, the size of the elements increases gradually as they get further
from the layer. The layer is discretized up to 40 elements per Burgers vector, as required,
while keeping the overall number of elements less than 150× 103 (Fig. 3).

The 1-d, finite difference grid is embedded in the layer, coincident with the line y = 0.
Recall that the layer L is always uniformly meshed (for both meshes A and B). Suppose
that the layer is meshed into M rows and N columns, where N is the total number of 1-d
grid points and M is always an odd number so that the middle row of elements always have
centres on y = 0. Each column of FE elements in the layer correspond to exactly one grid
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point. Let xk be the x coordinate of the kth 1-d grid point, which is at the center of the kth
element in the (M + 1)/2 row of layer elements. The value of U p at each Gauss point within
column k is then set to be φ(xk)e1 ⊗ e2, where φ(xk) is the value of φ evaluated at the kth

grid point. Recall that the layer stress τ(xk) is defined as 1
2b

∫ b
−b T12(x, y, t) dy. Let T12(I, k)

denote the stress component T12 at the I th Gauss point whose x coordinate is xk, and let Nk

be the total number of such Gauss points. Then τ(xk) is calculated as

τ(xk) =
1

Nk

(
Nk∑
I=1

T12(I, k)

)
.

Figure 3: An example of FE mesh used in section 7.1. Elements are refined in and around the
layer.

5.1 Algorithm for evolution problems

The numerical scheme developed in [DAZM13] is adopted and improved to solve (23)2, the φ
evolution2. The basic idea is to infer the direction of wave propagation from the linearization
of (23)2 and use this direction in the actual nonlinear equation. Let 4t be the time step
and 4h the spatial grid size of the finite difference grid. Due to the necessity of very small
element sizes to demonstrate convergence, an explicit treatment of the diffusion term in (23)2

becomes prohibitive because of a 4t = O(4h2) scaling. This is circumvented by treating
the φxx term implicitly, resulting in a linearly implicit scheme as follows. We first linearize

2We thank Dr. Amit Das for his help regarding certain aspects of the implementation described in this
Section.
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(23)2 and discretize:

δφkt (xh) = −(2−m)

(
−sgn

(
φkx (xh)

)
B̃m

)∣∣φkx(xh)∣∣1−m [τ k (xh) + εφk+1
xx (xh)−

(
τ b (xh)

)k]
δφkx (xh)

+

∣∣φkx (xh)
∣∣2−m

B̃m

[
εδφkxx (xh)

]
+

∣∣φkx (xh)
∣∣2−m

B̃m

[
τ b
′
(xh) δφ

k(xh)
]
,

(24)
where a quantity such as φkx(xh) implies the value of φx(x) evaluated at hth grid point at kth

time step. The first term in (24) provides an advection equation with wave speed

ck(xh) = (2−m)

(
−sgn

(
φkx (xh)

)
B̃m

)∣∣φkx(xh)∣∣1−m [τ k (xh) + εφk+1
xx (xh)−

(
τ b (xh)

)k]
.

φkx(xh) and φkxx(xh) are obtained from central finite differences:

φkx(xh) =
φk(xh+1)− φk(xh−1)

24h

φkxx(xh) =
φk(xh+1)− 2φk(xh) + φk(xh−1)

4h2
.

(25)

Based on the sign of ck, φ
k
x is then computed by the following upwinding scheme:

φkx =


φk(xh+1)−φk(xh)

4h if ck(xh) < 0
φk(xh)−φk(xh−1)

4h if ck(xh) > 0
φk(xh+1)−φk(xh−1)

24h if ck(xh) = 0.

(26)

The time step is governed by a combination of a CFL condition and a criterion for stability
for an explicit scheme for a linear ordinary differential equation:

4tk = min

(
4h
ck(xh)

,
B̃m

|φkx(xh)|2−m(−(τ b′(xh))k

)
. (27)

Note that if φxx was evaluated at k, then the step size would also be bounded by 4h2B̃m

ε|φkx(xh)| ,

leading to a quadratic decrease in 4tk with element size. Treating φxx implicitly eliminates
this constraint resulting in significant savings in computation time. φk+1

h is updated according
to

φk+1(xh)− φk(xh)
4tk

=
|φkx(xh)|2−m

B̃m

[
τ k + εφk+1

xx − (τ b(xh))
k
]

⇒φk+1(xh)− ε4tk
|φkx(xh)|2−m

B̃m

φk+1
xx (xh) = φk(xh) +4tk |φ

k
x(xh)|2−m

B̃m

[
τ k − (τ b(xh))

k
]
.

(28)
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The right hand side of the equation is known at current time k. But noting that φk+1
xx (xh) is

again computed from φk+1 at xh+1, xh and xh−1, a system of linear equations of size N has
to be solved to get φk+1. The computational expense of the linear solve is small compared
to the savings obtained by relaxing 4tk corresponding to the explicit treatment of diffusion.

5.2 Algorithm for equilibria

In this section we record the derivation of a Quasi-Newton scheme for system (22), specifically
the φ equation. In Sec. 6, we use this method to determine equilibrium states under zero or
finite loads.

In the following, when we refer to φI we mean the discrete nodal list of values of the
approximation to the function φ on a finite difference grid, corresponding to the I th iterate
in the Quasi-Newton scheme. Consider the case m = 0 (NGB) first. The residual for the
φ-equation is denoted by F and defined as

∣∣φiJx∣∣2 [τ iJ + εφiJxx −
∂η

∂φ

(
φiJ
)]

=: F i(φJ). (29)

Here, τ iJ is a function of φJ only through φiJ . The notation (·)iJ ··· denotes the value of the
discrete approximation to the function (·)··· corresponding to the J th iterate for φ at the ith

node. The second spatial derivative appearing in (29) is defined as in (25). For the first
spatial derivative, the following scheme is used. Define

ciJ := −2sgn(φiJx)
∣∣φiJx∣∣ [τ iJ + εφiJxx −

∂η

∂φ

(
φiJ
)]
, (30)

where both φiJx and φiJxx are evaluated from φJ according to (25). With the value of the
array cJ in hand, φiJx is redefined as

φiJx =



φi+1
J − φiJ
4h

, if ciJ < 0

φiJ − φi−1
J

4h
, if ciJ > 0

φiJx =
φi+1
J − φi−1

J

24h
, if ciJ = 0.

(31)

This array of values of φJx is then used in defining the residual (29).
The Newton-Raphson scheme obtained from the residual (29) is

−F i(φJ) = −ciJδφix +
∣∣φiJx∣∣2 [µδφi + εδφixx −

∂2η

∂φ2

(
φiJ
)
δφi
]

φiJ+1 = φiJ + δφi,

(32)
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where the element δφix of the array of corrections δφ is defined as

δφix =



δφi+1 − δφi

4h
, if ciJ < 0

δφi − δφi−1

4h
, if ciJ > 0

δφi+1 − δφi−1

24h
, if ciJ = 0.

(33)

This Newton-Raphson scheme leads to an asymmetric tridiagonal Jacobian matrix, which is
also singular because the leading term φJx vanishes in dislocation free regions. To deal with
that, we observe the residual also has a multiplier of |φix| and cancel it from both sides of the
equation. This results in a Quasi-Newton method where the Jacobian matrix is modified.
Of course, the residual is kept exactly in the form (29) without modification. Quasi-Newton
iterations are continued until the l∞ norm of the residual, |F |∞, vanishes (up to a small
tolerance).

For the NGL (m = 2) equation we use the exact Jacobian for the Newton-Raphson
method given by

−F i(φJ) = µδφi + εδφixx −
∂2η

∂φ2

(
φiJ
)
δφi. (34)

For the NLS equation, we use a Quasi-Newton method based on the Jacobian matrix
(34).

We follow a conventional nonlinear plasticity approach to solve the system (22). Fig. 4
shows the associated flow chart.

Set an initial guess φ = φ0. Solve
divT = 0 for u0 and calculate τ0.

Apply quasi-Newton scheme 32 or
34 to get equilibrated φ1 with τ0.

Solve divT = 0 again with φ1 to obtain
u1. Calculate |4u|∞ = |u1 − u0|∞.

Check if |divT |∞, |4u|∞ and
|F |∞ are below selected tolerances.

Compute
τ0 from u1

and φ1.
u0 := u1,
φ := φ0

Equilibrium of the system is achieved. Exit.

No

Yes

Figure 4: Flow chart for equilibrium problems: φ and u are unkonwn plastic strain and displace-
ment fields. T is Cauchy stress. The initial guess φ0 is obtained from a pre-equilibrium solution.
Note the repeated initialization of φ to φ0, which is found to be crucial for convergence.

For later reference, we record the definition of residuals used for determining system
equilibria. For each finite difference node i and a discrete function φJ , the residual F i(φJ)
is defined through Eq. (29). The vector of FE, nodal displacement degrees of freedom is
denoted by u and 4u is defined as the difference between two consecutive calculations as
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defined in Fig. 4. Both vectors F and 4u are measured by their l∞ norm, i.e., suppose N is
the total number of nodes on the FE mesh (not including nodes on which Dirichlet boundary
conditions are specified) and M is the total number of finite difference grid points, then

|4u|∞ := max
1≤i≤2N

|ui|, |F |∞ := max
1≤i≤M

|F i| (35)

6 Equilibrium Aspects

We solve some key problems of classical dislocation theory [Nab87, HL82] in this Section,
approached as equilibrium states of our dynamical model (16). While the classical theory in-
volves singular dislocations with infinite-energy elastic fields (even on finite bodies), our solu-
tions have finite energies and nonsingular cores. It is worth emphasizing that our equilibrium
core distributions of dislocation density for a single dislocation are not a model assumption
as in [Ach01, PLSG14, CAWB06]. These fields in our case, along with their corresponding
non-singular stress distributions, correspond to equilibrium states of a dynamic theory where
both the dislocation (core) distribution and the stress evolve to decrease the free energy of
a body; the solutions in the aforementioned works, in particular the core distributions, have
no such thermodynamic status. The larger implication of this feature is that FDM can serve
as an idealized model for studying complex questions related to equilibrium and dynamic
evolution (at realistic time-scales) of core structures of single and interacting dislocations
under loads, utilizing input from finer length-scale models like Density Functional Theory
[IRG15] and Molecular statics [Vit68, SW03, MPBO98] in defining its energetic constitutive
ingredients (7), (12). Our model for m = 2 (NGL), up to the definition of the layer stress
τ and the use of the core energy, is essentially identical to that of the phase field model of
dislocations [WL10, Den04].

6.1 Equilibria of single edge dislocations

The stress field of a single edge dislocation in an infinite domain is calculated, which is then
validated by comparing with the closed-form classical solution for a single edge dislocation
at the center of a finite cylindrical solid [HL82]

σ11 = −Dx2

(
− 3

a2
− 2x2

2

(x2
1 + x2

2)2
+

3

x2
1 + x2

2

)
σ22 = −Dx2

(
− 1

a2
− 2x2

1

(x2
1 + x2

2)2
+

1

x2
1 + x2

2

)
σ12 = Dx1

(
− 1

a2
− 2x2

2

(x2
1 + x2

2)2
+

1

x2
1 + x2

2

) (36)

where D = µb/2π(1 − ν) with ν the Poisson’s ratio, and a is the radius of the cylinder
(assumed to be ∞ here). x1, x2 are the in-plane coordinates measured from the center of
the dislocation.

We solve for the stress field of a single dislocation in an infinite domain under no ap-
plied loads by utilizing a 2-D body of finite size and applying traction boundary conditions
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according to the analytical stress field. Specifically, we compute the analytical stress σ∗ of
boundary points according to Eqs. (36) and then apply a boundary traction t = σ∗n, where
n is the outward unit normal to the boundary. The rigid deformation of the body is removed
by fixing u1 and u2 at the corner (−W,−H) as well as fixing u2 at (W,−H).

We are interested in obtaining special equilibria of the system (16) corresponding to the
field of a single dislocation. Because of the degenerate and nonlinear nature of the equilibrium
equations for m = 0, 1, approaching the question by directly trying to approximate equilibria
is a formidable task. Instead, evolution to equilibrium could be a desirable route. However,
the time scale of evolution of (16) is extremely restrictive and since equilibrium states are
the only items of concern here, the question could as well be approached by evolving the
quasi-static dynamics (19) from suitably close initial conditions. There is a complication in
that the system (19) belongs to a class in which simpler versions [CP89, DAZM13] exhibit
extremely sluggish dynamics out of states which, nevertheless, are known not to be equilibria.
Thus, we adopt the following approach:

1. We consider all m = 0 (NGB), m = 1 (NLS) and m = 2 (NGL) models. The initial
condition on φ is a hyperbolic tangent function whose first spatial derivative gives
the initial distribution of the dislocation density according to (9) representing a single
dislocation:

φ(x, t = 0) =
1

2

(
φ̄ tanh(a x) + φ̄

)
, (37)

where we choose φ̄ = 0.5, and a =
√
µ/4ε. By the definition of α, the initial Burgers

vector magnitude b0 may be approximated as b0 =
∫
L

∫
d
−φx(x, 0) e3 dydx ≈ −2φ̄b =

−b.

2. The dynamics (19) is evolved to get to a state that satisfies approximate equilibrium
conditions up to certain numerical tolerances. We conservatively specify a threshold
value of |φs|∞ < 5× 10−5, where |φs|∞ represents the l∞ norm of the discrete φ field,
i.e. |φs|∞ := max

1≤i≤N
|φis|, (N being the total number of finite difference nodes.). This

threshold is conservative because the profile-change of the dislocation field becomes
indiscernible to the eye long before |φs|∞ gets to this value.

We refer to these practically static states as dislocation pre-equilibria.

3. We use the NGL, NLS, NGB dislocation pre-equilibrium states as initial guesses to
solve the corresponding nonlinear equilibrium equations of (16). The numerical imple-
mentation is described in Section 5. Dimensionless tolerances required by the scheme
to determine whether an equilibrium state is achieved are chosen as follows:

|4u|∞ < 2× 10−4, |F |∞ < 5× 10−10. (38)

Recall that |F |∞ measures the residual of the φ equilibrium equation (and therefore our
tolerance requires equilibria to be at least 5 orders of magnitude slower than dislocation
pre-equilibria); |4u|∞ measures the residual of the displacement fields between two
consecutive approximations; |divT |∞ tests mechanical force balance, which is always
resolved on the scale of 10−15.
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We refer to the attained solutions as (unloaded) NGL/NLS/NGB dislocation equilibria.

Furthermore, in what follows, we need the following definitions:

• Equilibria of the NGB dynamics are sought, closest to an NGL dislocation pre-
equilibria in the sense of the latter serving as an initial guess for the procedure
outlined above (i.e. list item 3). We refer to such an equilibrium state as an
NGL-s-NGB dislocation equilibrium (the ‘s’ stands for ‘start’).

• NGB equilibrium states are sought, as defined above, but now under the action
of a nonzero applied traction on the body. We refer to such a state as a loaded
NGB dislocation equilibrium.

In this section, mesh B is primarily used except for the calculations reported in Fig. 6
and 7 (recall that we have two types of FE meshes: mesh A has uniformly refined elements
over the whole body; mesh B is refined only in and around the layer). All required simulation
details are grouped in Table 1.

simulation parameters values
domain (W ×H) (mesh A) 110b× 110b
domain (W ×H) (mesh B) 110b× 90b
layer element (h) (mesh A) 0.3b ∼ 2b
layer element (h) (mesh B) 0.1b
core-energy strength (ε) 1
Young’s modulus (E) 70GPa
shear modulus (µ) 26GPa
Burgers vector (b) 4.05× 10−10m
Layer thickness (d) 2b

Table 1: Simulation details.

Fig. 5 shows the dislocation profiles of NGL, NLS and NGB (unloaded) dislocation
equilibria starting from the initial condition (37).

40 20 0 20 40

 x(b)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 φ
x
(1
/b

)

 tanh

 NGL

 NLS

 NGB

zoom into bottom

Figure 5: The equilibrated dislocation profiles. The dotted lines denote the dislocation core.

21



The quantity τ is of primary interest in this section as it is analogous to σ12 of Eq.
(36) with x2 = 0. Figures 6, 7(a) and 7(b) together demonstrate that the numerical stress
field obtained from our model is quantitatively comparable to that from classical solutions.
In particular, Fig. 6 shows that the stress field does not strictly rely on a highly refined
mesh, i.e., a mesh as coarse as h = 2b can still provide a stress result consistent with the
classical solution outside the dislocation core. As shown in Fig. 6, the difference between the
equilibrated averaged layer stress τ (blue) and the analytical solution along x axis (cyan) is
indiscernible beyond the dislocation core (marked by the two dotted lines).
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Figure 6: Comparison of τ with the analytical solution at x = 0. The dotted lines denote the
dislocation core. τ∗ is a closed-form T12 on x1 axis from the classic method. h is the finite element
size in the layer, measured with Burgers vector.

Fig. 7(a) shows the contour of shear stress σ12 on the body. The difference between the
numerical and the closed-form classical solution is quantified by calculating an error measure
ER defined by

ERij(x, y) =

∣∣σ∗ij(x, y)− σij(x, y)
∣∣∣∣σ∗ij(x, y)

∣∣ , (39)

where σ∗ij and σij are the solutions from (36) and numerical computation, respectively. At the

lines x = 0 and x = ±y where the denominator
∣∣σ∗ij∣∣ vanishes, ER12 values are not plotted.

The maximum value of σ12 along these ‘blank’ regions given by our model is 5.7 × 10−5µ
which is achieved on the boundaries of the dislocation core. Some other data points along the
lines are: 4.6573×10−6µ at (30b, 30b) and 1.4360×10−5µ at (50b, 50b). To sum up, it can be
concluded that the error (ER12) is primarily restricted to the core area; the overall patterns
and values are in close agreement. ER12 reaches up to around 40% at the core boundaries due
to the (unphysical) singularity of the analytical solution. Similar comparisons are obtained
for other stress components for both the NLS and NGB cases. We think of such dislocated
states in an unloaded body as stressed metastable states.
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(a) Equilibrated FDM stress field σ12 of the edge
dislocation in an infinite media.

(b) ER12: a measure of difference between FDM
results and the analytical results outside the core.

Figure 7: Comparison of numerical stress with analytical solution.

Two important observations on unloaded dislocation equilibria are:

• The (unloaded) NGL dislocation equilibrium is found to be identical to the NGL-s-
NGB dislocation equilibrium. The former is also an equilibrium state for the NLS
dynamics. These are verifications for our numerical procedures as it is easy to see that
an equilibrium state for the NGL dynamics must be so for both the NLS and NGB
dynamics.

• We find that the shapes of the NGB dislocation equilibrium (obtained from the NGB
dislocation pre-equilibria) and the NGL-s-NGB dislocation equilibrium are different.
One needs to zoom into the bottom of Figure 5 to appreciate this difference, which is
shown in Fig. 8. Apparently, the NGB dislocation equilibrium leads to a profile with
curved steps on both sides of the core while the NGL-s-NGB dislocation equilibrium
has a smooth profile with no steps.

This difference of shape will be further discussed in the following Section as it produces
completely different solutions for loaded problems.
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Figure 8: Comparison of two equilibria from different initial guesses: NGB equilibrium takes NGB
pre-equilibrium as initial guess. NGL-s-NGB equilibrium takes NGL pre-equilibrium.

6.1.1 Dislocation equilibria under load

We apply a simple shear traction boundary condition, where the traction vector is defined
by,

t = τa(n2e1 ⊗ n1e2) (40)

n = n1e1 ⊗ n2e2 is the outer normal of the surfaces.
We first choose τa = 5×10−5µ and seek equilibrium solutions of (14). The initial guess for

our quasi-Newton iteration method is taken to be the unloaded NGB dislocation equilibrium.
The system achieves equilibrium, up to the numerical tolerance specified by (38). More
importantly, the equilibrated dislocation stays in the original position. This is shown in
Fig. 9. The equilibrated core profile under load is slightly different from the zero load
dislocation equilibrium, especially at the bottom. But the observation that the dislocation is
not displaced is sufficient to demonstrate that the system (22) allows a dislocation equilibrium
under a small but finite shear load.

We also make the following observations:

1. Up to τa = 6.5 × 10−5µ, the system can still get equilibrated. The dislocation profile
is close to that of τa = 5× 10−5µ, demonstrated in Fig. 10.

2. When τa > 6.5 × 10−5µ, our numerical scheme cannot converge below the specified
tolerance. Specifically, when τa > 10−4µ, the residuals |4u|∞ blow up quickly (the
residuals are defined in Eq. 35).

3. The attainment of loaded dislocation equilibria is sensitive to the initial guess. In
particular, we cannot obtain a dislocation equilibrium solution if the unloaded NGL-
s-NGB dislocation equilibrium of Fig. 8 is adopted as the initial guess.

4. The NGL and NLS systems cannot attain dislocation equilibria (using our computa-
tional strategy) starting from their no-load dislocation equilibria. We have tested this
hypothesis down to applied loads of 5×10−8µ. This also serves as a partial verification
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of our numerical procedures since it can be shown that a no-load single dislocation
equilibrium profile in an infinite body for the NLS dynamics has to move as a rigid
traveling wave with uniform speed under arbitrary, non-zero applied loads.
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Figure 9: Equilibrium for load 5×10−5µ, com-
pared to unloaded NGB dislocation equilibrium.
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Figure 10: Equilibria for loads 5× 10−5µ and
6.5× 10−5µ are on top of each other.

In order to better understand the difference between the NGB and NGL models with
respect to attainment of equilibrium under load, we analyze and plot the two constituent
parts of their residuals: the energetic driving force term (τ + εφxx − τ b) and the leading
transport term (φ2

x of NGB, 1 of NGL). The energetic driving force terms are shown in
Fig. 11(a) and 11(b). Specifically, the NGB case corresponds to a loaded equilibrium
state of τa = 5 × 10−5µ. Since the NGL dynamics cannot sustain a loaded equilibrium,
we consider one particular state during its quasi-static evolution according to (19) under
the same constant applied load. An immediate observation is as follows. Even though the
energetic driving force for the NGB model is much greater in magnitude outside the core than
its NGL counterpart, its ‘transport multiplier,’ φ2

x, essentially vanishes beyond [−3.5b, 3.5b];
within [−3.5b, 3.5b], the NGB energetic driving force happens to be extremely close to zero
(as shown in the inset of Fig. 11(b)). To the contrary, NGL has an all-positive energetic
driving force after load is applied, with especially large values in the core area, and NGL
does not have any leading transport term to counterbalance this effect and stop dislocation
motion.
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Figure 11: Comparison of equilibrium and motion of NGB and NGL single dislocations under
load 5× 10−5µ.

Thus, the attainment of NGB equilibria under load is not simply a matter of getting the
energetics of a model right but delicately dependent on the form of the dynamics, which in
this case follows from the conservation of Burgers vector on dislocation density evolution.
Said another way, equilibria in dynamic models need not necessarily be a consequence of
energetics alone.

6.2 The failure of Linear Elasticity in sustaining a compact core

Figures 12 shows the inadequacy of just the use of linear elasticity in producing an equilibrium
dislocation with a compact core (we use the word ‘compact’ here to simply mean ‘spatially
localized’). Dislocation (pre-) equilibria of (19) are sought under no applied load, now with
η ≡ 0 and ε = 0 in (12), so that the stored energy function simply contains the linear elastic
term. All three dynamics start from the same tanh function (37). Although mechanical
equilibrium (i.e. force balance) is satisfied at each time step of the dynamics (19), the
dislocation density field is unable to sustain a compact core and spreads out thinly over the
domain (the Burgers vector vector content has to be conserved with the Neumann boundary
conditions (on φx) in force).
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Figure 12: Initial and final state of dislocation profiles with linear elasticity. Neumann condition
φx = 0 is imposed on both ends of φ. All three dynamics cannot sustain compact dislocation cores.
NGL becomes flat. The dislocations of NLS and NGB keep flattening but with decreasing |φs|∞.
|φs|∞ < 10−5 for both NLS and NGB at s = 1935.

The above example makes it clear why the existence of an equilibrium dislocation cannot
be a prediction of the classical linear elastic theory of dislocations and the Discrete Disloca-
tion methodology based on it3, when coupled to any notion of energy minimization, whether
global or local; there is no reason for an unloaded linear elastic body to sustain an energy
concentration in it, unless the fact is enforced by an extraneous hard constraint.

Nabarro in his book [Nab87] remarks that “The theory of continuously distributed dis-
locations in a medium obeying Hooke’s law and the theory of isolated dislocations having
Burgers vector of the order of the interatomic spacing in a crystal are not always equiva-
lent approaches to the same limit..” He further observes that “The attempt to build up a
dislocation theory while neglecting the non-Hookean forces which hold a single dislocation
together and prevents its thinly spreading over the glide plane is bound to encounter difficul-
ties similar to those of the ‘purely’ electromagnetic theory of the electron. In this theory it is
impossible to reconcile the electrostatic and electromagnetic estimates of the mass, because
no allowance has been made for the mass associated with the non-Coulombian forces which
bind together a cloud of charge, all of negative sign.”

While we agree with Nabarro’s assessment of the failure of the use of linear elasticity
theory alone to address the problem at hand, we feel, and show in this paper, that the
continuously distributed setting is ideally suited to account for relevant nonlinearities of
dislocation mechanics and is a fundamentally sound approach to the theory of isolated dislo-
cations with Burgers vector of the order of the interatomic spacing, including their dynamics,
where the classical theory of isolated singular dislocations is quite inadequate.

6.3 Equilibrium of dislocation Pile-ups

This section demonstrates the approach for solving dislocation pile-up problems within FDM.
Computationally, solving a problem involving an array of dislocations (including collections

3To be clear, it is of course not a goal of Discrete Dislocation methodology to answer questions related
to the existence of a dislocation in any sort of thermodynamic equilibrium.
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with positive and negative dislocations) is essentially the same as solving a single dislocation
problem, except for a change of the initial condition on the field φ.

A key classical problem of the theory of dislocations is the following. A set of dislocations
of identical sign lie on a slip plane. The set of dislocations pile up against obstacles, usually
grain boundaries, under applied shear stress. What is the equilibrated state of the disloca-
tions under the combination of their mutually repulsive interactions and the applied load?
A mathematical model for this problem was developed and solved by Eshelby, Frank and
Nabarro [EFN51] using classical dislocation theory. We refer to this model as the ‘classical
model,’ and summarize the essential elements of [EFN51] relevant for our purposes. The
classical model solves the following force equilibrium equations:

n∑
i=1,i 6=j

A

xj − xi
+ P (xj) = 0, j = 1, 2, ....n, (41)

where P (x) is the applied stress at the point x, and xj are the equilibrium positions of the
dislocations. A is a stress unit depending on the dislocation type. For an edge dislocation,
A = µb/2π(1 − v). A = 1 is chosen in the following derivation for convenience. Let xi be
the roots of the polynomial

f =
n∏
i=1

(x− xi) (42)

and it is then realized that the logarithmic derivative of f(x) is the stress of x due to all
dislocations, i.e.

f
′

f
=

n∑
i=1

1

x− xi
, (43)

where f ′ := df
dx

. The stress at x with the jth dislocation missing is

f
′

f
− 1

x− xj
. (44)

The value of this expression at x = xj is obtained by taking the limit

lim
x→xj

(x− xj)f
′
(x)− f(x)

(x− xj)f(x)
=

1

2

f
′′
(xj)

f ′(xj)
. (45)

Equation (41) can then be reformulated as

f(xj) = 0

1

2

f
′′
(xj)

f ′(xj)
+ P (xj) = 0

 j = 1, 2, ...n (46)

To solve (46), Eshelby, Frank, and Nabarro ingeniously consider the equation

f
′′
(x) + 2P (x)f

′
(x) + q(n, x)f(x) = 0, (47)
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noting that if q(n, x) can be chosen such that (47) has an nth degree polynomial solution f ∗

whose roots are real and distinct (with q non-singular at the roots), then f ∗ is a solution to
(46) with the roots of f ∗ being equilibrated dislocation positions along the 1-d slip-plane.

We study two pile-up problems within our ‘layer model’ that have been analytically solved
in [EFN51]. Namely, find the equilibrium positions of

1. a row of n dislocations under zero applied load, the outer two being locked;

2. the outer two dislocations in the row locked, with the array under an applied shear
load.

For the purpose of generating closed-form results, a strategy for dealing with locked dislo-
cations, effectively transforming them into applied loads, is described in [EFN51]. We solve
these problems using exactly the same approach as we solve for the equilibrium of a single
dislocation.

6.3.1 Pile-up without load

Consider five dislocations in a traction free body, i.e. n = 5 in Eq. (41). The two dislocations
at the ends of the array are pinned (by setting the velocity within the pinned dislocation
cores to be zero).

parameter name value
domain width (W ) 110b
domain height (H) 90b
No. of elements 16320
core-energy strength (ε) 0.25
Young’s modulus (E) 70Gpa
shear modulus (µ) 26Gpa
Burgers vector (b) 4.05× 10−10m

Table 2: simulation details for pile-up simulations

We solve this problem with the NLS (m = 1) model without loss of generality (the
same results are obtained with the NGL and NGB models). The initial condition for φ is a
superposition of spatially translated ‘piecewise tanh’ functions so that the dislocation spikes
occur at x = {−40,−10, 0, 10, 40}. The simulation details are grouped into Table 2. A
multiple well η function is essential for modelling a scenario with all dislocations of the same
sign.

Even without any load, the dislocated body cannot be in a metastable equilibrium for
an arbitrary initial configuration. This is due to the strong repulsive interactions between
the dislocations in the pile-up. The dislocations (only the middle three dislocations can
move freely) tend to re-distribute in the slip plane to achieve equilibrium. We plot the
final dislocation distribution and the stress field. Specifically, Fig. 13 shows the initial
and equilibrated configuration of the dislocations. The dotted lines indicate the positions
predicted by the classical method. We see that the second and fourth dislocations (from the
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left) move towards the boundary while the dislocation in the middle is motionless. Fig. 14
shows the corresponding equilibrated stress field.
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Figure 13: Pile-up motions. top: initial
condition; bottom: equilibrated states; result
from closed-form solution marked by black dot-
ted lines.

Figure 14: Unloaded T12 of equilibrated pile-
up.

6.3.2 Loaded pile-up

An equilibrium, piled-up array of dislocations under shear load is simulated. We consider
n = 5 in Eq. (41) with the outer two dislocations pinned, which is again modeled by
requiring the dislocation velocity to vanish within the corresponding dislocation cores. A
traction boundary condition defined by Eq. (40) is applied with τa = 0.05µ. The positions
of the dislocations in the array are arbitrarily initialized. Fig. 15 shows the initial and
equilibrated configurations. The applied load makes the dislocations pile up against the left
pinned dislocation. The equilibrium configuration displays a stress concentration against the
left boundary. Fig. 16 shows the equilibrated shear stress field.
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Figure 15: Pile-up under shear. top: initial
condition; bottom: equilibrated states.

Figure 16: T12 of equilibrated pile-ups under
shear load.

7 Dislocation motion in quasi-static deformations

In this section, we utilize our computational methodology to study the models described in
Sections (4.2) and (4.1). The context is phenomena related to dislocation motion when the
material deformation may be nominally assumed as quasi-static.

7.1 Peierls Stress in Continuum Mechanics?

Applying a shear stress to a body sets an otherwise equilibrated dislocation under no load
in motion. The relation between the magnitude of the applied stress and the dislocation
velocity, as predicted by our models, is studied in this section, with particular emphasis on
exploring the question of whether a Peierls stress can exist within our models of dislocation
dynamics. The Peierls stress is the applied stress required to move a dislocation, and the
question of its theoretical determination was first investigated by Peierls [Pei40] and improved
by Nabarro [Nab47]. The improved model has since been called the Peierls model or the
Peierls-Nabarro model4. Since then, this has been a vast area of study with increasingly
sophisticated models: at the continuum level with some notion of discreteness [LH59, Sch99,
MBW98, Pic02], atomistic level with interatomic potentials [BJC+01] and atomsitic level
with DFT input [LKBK00]. Such studies have focused on energetic aspects since the problem
intrinsically corresponds to very slow to vanishing rates of loading at macroscopic time scales.
To our knowledge, the current state of the art of Molecular Dynamics simulations is not
capable of effectively probing the possible slow time scale dynamics that may be in play in
this problem.

In the Peierls model, the existence of the Peierls stress arises from the change in total
energy induced by a change in position of a dislocation (one assumes bodies of large enough

4Peierls also formulated and answered the question of the equilibrium profile of a non-singular, continu-
ously distributed dislocation density field representative of a single isolated dislocation under no load in an
infinite body.
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extent). In this sense, the Peierls stress is expected to vanish in any continuum mechani-
cal model where the system energy is translationally-invariant, i.e., a dislocation is always
in ‘neutral equilibrium’ before the application of load, and will move under any (small)
perturbation.

However, the Peierls model does not include the possibility of a moving dislocation profile
changing its shape, as it treats a dislocation as a rigid object (mathematically, a traveling
wave) during motion. Clearly, if shape changes do occur on the application of load then,
even by simply the logic of the Peierls model, it seems natural that the system energy can
change even at the onset of motion and thus have an effect on the question of existence of a
Peierls stress in continuum models. This was our hypothesis, essentially based on energetic
arguments, in studying the question within our continuum model. However, as we report
in Fig. 11, the matter is not simply dependent on energetics but also critically on the form
of the evolution equation for φ that is a consequence of incorporating consideration of the
conservation of Burgers vector on evolution.

We emphasize that the purpose of our study is not to deny the classical explanation
of the Peierls stress arising from lattice discreteness; instead, it is to explore features of
a theoretical model of plausible material behavior in a systematic way and, in so doing,
hopefully uncovering possible complementary mechanisms for the physical phenomenon.

Two important physical observations are in order here:

• An order-of-magnitude to keep in mind in this Section is that the expected Peierls
stress in FCC single crystals (a reasonable class of materials for comparison of our
results) is ∼ 1MPa; translated in terms of the shear modulus, µ, of 26GPa adopted in
our work, this amounts to ∼ 4× 10−5µ.

• The Peierls stress question is unequivocally a question of evolution, albeit extremely
slow (which in a sense makes the problem rather difficult to address by procedures that
attempt to resolve atomic vibrations). Thus, strictly, simply demonstrating a loaded
and an unloaded single dislocation equilibria does not suffice, as it does not address the
question of whether the loaded equilibrium is dynamically accessible from the unloaded
equilibrium under the specified loading history. A quasi-static approximation may be
adopted, but the equilibrium trajectory then needs to be justified as being acceptable,
as discussed in Sec. 7.1.2.

The common simulation details used in this Section are listed in Table 3.

parameter name value
domain width (W ) 110b
domain height (H) 90b
No. of elements 16320
core-energy strength (ε) 0.25
Young’s modulus (E) 70GPa
shear modulus (µ) 26GPa
Burgers vector (b) 4.05× 10−10m

Table 3: Simulation details for Peierls stress problems.
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7.1.1 Discrete mesh as surrogate for lattice discreteness effects

An apparent Peierls stress effect may be demonstrated within our model by making the finite
element mesh a part of the physical model as a crude model of some effects of a discrete
lattice, and thus not asking questions of convergence with respect to mesh refinement. The
following example demonstrates the idea, using the NLS (m = 1) dynamics. The domain is
of size [110b×70b] uniformly meshed by 251×35 quadrilateral elements. The corresponding
1-d finite difference grid element size of φ is then 0.44b. In addition, the core-energy strength
ε is set to be 0.1.

The other simulation details are kept the same as in Table. 3. The initial condition
on φ is an NLS dislocation pre-equilibria as defined in Section 6. The loading corresponds
to a traction staircase with respect to time, as shown in the bottom panel of Fig. 17. The
dislocation motion is monitored by plotting φx with time. The dislocation core is of finite
size but we define the location of the dislocation as the x-coordinate of the peak of the φx
profile at any instant of time. Since φ evolves in the form of a moving wave front, we can
measure the speed of the dislocation by defining an average velocity V̄ ,

V̄ =
X̄

T̄
, (48)

i.e., a prescribed distance X̄ that the dislocation travels divided by the required time T̄ . φs
is also of primary interest here as it indicates the evolution of the system on the slow time
scale s; as usual, we measure φs by its l∞ norm.

The result in Fig. 17 shows an apparent Peierls stress effect: when the applied load is
held at the magnitudes of 0.06µ and 0.11µ, the dislocation remains motionless. In particular,
|φs|∞ grows a little when the load is changed from 0 to 0.06µ and from 0.06µ to 0.11µ, but
then quickly drops to zero. The average dislocation speed remains zero. Once the load is
increased from 0.11µ to 0.16µ, the dislocation moves significantly with velocity 0.2Vs. Note
that |φs|∞ begins to oscillate around the value of 0.06 and does not drop to zero as earlier.
The result suggests that there exists an apparent Peierls stress in between the value of 0.11µ
and 0.16µ. A more precise value can be found by subdividing the load increments.
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Figure 17: Peierls stress effect of a coarse mesh. top: the average velocity of the dislocation.
middle: |φs|∞. bottom: history profile of applied shear stress.
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The value of the stress threshold is completely unrealistic (too high). Moreover, the
apparent Peierls stress effect is only valid for this particular discrete mesh, and decreases
in a more refined mesh. As a practical device, an optimal mesh size could be associated
with a target Peierls stress level in mind, in exploring problems where features of dislocation
mechanics apart from the determination of Peierls stress is the subject of study.

Of course, our overriding goal in this paper is to explore the behavior of solutions to
our pde model via numerical approximation. To this end, we strive to make statements
independent of the mesh as demonstrated in Section 7.3.

7.1.2 Peierls stress effects for small Bm: the case of crystal dislocations

As already shown in Sections 6.1 and 6.1.1, the NGB model allows not only an unloaded
dislocation equilibrium, but also a dislocation equilibrium with finite shear load up to 6.5×
10−5µ. More importantly, the equilibrated dislocation is not moved by the shear load, but
deformed from its unloaded dislocation equilibrium shape.

Those solutions are obtained by solving for equilibria of (16). In particular, for the loaded
dislocation equilibrium profile, we start with an initial guess corresponding to the NGB dis-
location equilibrium (under no load) and use the Quasi-Newton method to obtain the loaded
dislocation equilibrium solution, up to the tolerance specified in Eq. (38). Computationally,
this procedure can be interpreted as the appropriate discrete analog of finding solutions to
the quasi-static system (22), i.e. following a trajectory on the equilibrium set, parametrized
by the applied load. We note here that this general philosophy is also adopted in lattice
statics explorations of the Peierls stress. In computing these results, we use mesh B where
the layer elements are of size 0.1 b. Additionally, the results are verified by convergence tests
as discussed later in Sec. 7.3.

Thus, we conclude that our NGB dynamics displays a Peierls stress effect, subject to
checking that no untoward instability is observed on running the fast-scale dynamics (16)
out of the initial state corresponding to the unloaded equilibrium dislocation when subjected
to load.

We want to check whether a small but finite load like 5× 10−5µ displaces the dislocation
when inertia is involved. As dislocation motion is an inherently dissipative process, it is
important that the loading mode for Peierls stress-related questions be such that external
energy supply is available as the dislocation moves/evolves; applied, constant-in-time traction
loadings allow for this possibility and this is what we utilize in this Section.

Specifically, all simulations are performed in the following way. Initially, we obtain a
state (φ0,u0) that satisfies equilibrium conditions for (16). φ0 and u0 are then used as
initial conditions of φ and u for Eqs. (16). A constant traction boundary condition defined
by Eq. (40) with τa = 5× 10−5µ is applied. The dimensionless drag coefficient is chosen as
B̃m = 0.0297. The other simulation details are grouped in Table. 3.

Instead of measuring dislocation velocity, another way to look closely at the different
dynamic characteristics exhibited by the three m cases is to measure an ‘instantaneous
dislocation wave speed’ ṽ defined in the following; this is the nondimensional analog of v in
Sec. 4. This measure is useful especially when the applied load and the dislocation motions
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in x are small. For different m, ṽ(x, t) takes the following form,

ṽ(x, t) :=



− φx

B̃m

[
τ(x, t)− τ b(x, t) + εφxx(x, t)

]
, m = 0

− sgn(φx)

B̃m

[
τ(x, t)− τ b(x, t) + εφxx(x, t)

]
, m = 1

− 1

B̃m

1

φx

[
τ(x, t)− τ b(x, t) + εφxx(x, t)

]
where φx 6= 0, m = 2.

(49)

ṽav(t) is calculated by summing v over the dislocation core at the specified time and dividing
it by the core width. For our purposes here, the core width is chosen as 25 b which is
much wider than the core defined in Fig. 5. We adopt this measure since the difference in
dislocation profiles corresponding to the various m dynamics is primarily at the very bottom,
as already observed. We suspect that the ṽ(x) distribution at the bottom of the dislocation
profile plays an essential role in determining dislocation motion (especially near the stepped
‘core boundaries’ when such steps exist), and a width of 25 b allows us to capture those
features in sufficient detail in the cases being considered here.

The motivation for the definition of ṽ(x, t) is as follows: Suppose there exists a sufficiently
smooth function w that satisfies wt(x, t) = −wx(x, t)s(x, t). s(x, t) may depend on its
arguments through the values of the function w and its derivatives but since the latter
are known, it is appropriate to think of s as a function directly of (x, t). Then, using an
elementary argument of the method of characteristics, along a curve x̂(t) in (x, t) space
defined by dx̂

dt
= s(x̂, t) starting from a point x̂(t∗) = x0, the value of w is transported

unchanged, i.e. w(x̂(t), t) = w(x0, t
∗). Thus at any instant of time, the transport velocity

s(x, t) may be interpreted as the instantaneous, local wave velocity at (x, t); a positive sign
of s(x, t) implies transport in the +x direction and a negative value implies transport in the
−x direction. Admittedly, for m = 2 the definition of ṽ(x, t) in (49) is somewhat artificial,
but this is not central to the point we make subsequently.

We note that the fields φ and v in (10) satisfy the conditions outlined for w and s, most
likely including the smoothness assumption (for sufficiently large ε).

We set up a simulation with initial condition being the unloaded NGB dislocation equi-
librium of Fig. 5 with a constant-in-time applied load of 5 × 10−5µ. The dislocation stays
motionless. We plot φx(x) and ṽ(x) along the layer in Fig.18. The ṽ(x) profile obtained here
is definitely unfavorable to dislocation motion. The sign of ṽ(x) on each side of the centre of
the core indicates that the left side of the dislocation core tends to move to the right while
the right side to the left, and the core bottom tends to spread out. The simulation lasts for
0.4ns. This period is conservative since the NGL and NLS dynamics show motion within
the first 0.05ns under the same applied load. It is shown in Fig. 18(a) that the dislocation
stays motionless during this period. The ṽ(x) profiles of Fig. 18 persist through out the
simulation. Due to the small time-period of simulation in this dynamic test, we further
examine the loaded NGB equilibrium as initial condition for the fast system. The applied
load is still 5× 10−5µ. The fast system is evolved for 0.42ns and the dislocation under load
shows no motion.

So far, based on the premise that
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• if the quasi-static system displays a loaded dislocation equilibrium arrived at from an
unloaded dislocation equilibrium state and

• the dynamic equations also validate that the unloaded dislocation equilibrium does not
begin to move under the action of the load on the fast time-scale,

then the system displays a Peierls stress, we have arrived at the following conclusions.

1. The NGB dynamics displays a Peierls stress effect for at least one initial condition (the
unloaded NGB dislocation equilibrium). Interestingly, a curious ‘stochastic’ outcome
arises out of our deterministic theory: two unloaded dislocation equilibria of very
similar type at a gross level of reckoning (i.e. NLS and NGB dislocation equilibria)
respond differently to loading and therefore predictions of Peierls stress for the NGB
model may very well appear stochastic over repeated trials.

2. We have not been able to find a Peierls stress effect under load of the order of ∼
10−5µ for any of the NGL, NLS, and NGB dynamics starting from the unloaded NGL
dislocation equilibrium. We recall here that the results of Section 6.1 imply that the
NGL and NLS quasi-static evolutions do not admit a loaded dislocation equilibrium
(of the magnitude being discussed here) from their corresponding no-load dislocation
equilibrium profiles as initial conditions.
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Figure 18: φx and ṽ(x) of NGB dynamics. t = 0− stands for unloaded NGB equilibrium which
is used as initial condition. The instant of applying shear load 5 × 10−5µ is indicated by t = 0+.
The dislocation shows no motion but slight shape change at bottom. ṽ profile persists during the
simulation.

In the following, we explore the dynamic behaviours of the NGL, NLS, and NGB systems
under load τa = 5×10−5µ, from a common initial condition of an unloaded NGL dislocation
equilibrium shown in Fig. 5. The system runs on the fast time scale t̃ = b/Vst and the
simulation runs for around 1 nanosecond.
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It is observed that the NGB dislocation stays motionless during this period, while NGL
and NLS move immediately after the load is applied.

Fig. 19(a) shows the initial, intermediate and final profiles of φx of the evolving NGB
dynamics. ṽ(x) is shown in Fig. 19(b).
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Figure 19: Fast system under load 5× 10−5µ. Motionless dislocation (left) and field plot of ṽ(x)
(right), starting from the NGL dislocation equilibrium indicated by t = 0−. The instant of applying
shear load 5× 10−5µ is indicated by t = 0+.

Fig. 20 shows the comparison of ṽav(t) between m = 0 and m = 2. NGL has a signifi-
cantly larger wave speed than NGB, explaining why NGB does not move while NGL moves
immediately after loading.
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Figure 20: ṽav under load τa = 5× 10−5µ, starting from NGL dislocation equilibrium.

At each time step, the field shape of ṽ(x) also shows interesting differences between each
m case, as shown in Fig. 21 (ṽ(x) of NGB is shown in Fig. 19(b)). For NGL, the profile over
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only the dislocation core area is plotted). It is observed that ṽ at the dislocation boundaries
of m = 2 and m = 1 are significantly larger than that of m = 0. Within the core, the peak
of NGB is approximately 8 times less than the other two. This difference in ṽ(x) contributes
to the observed fact that NGB moves much slower than the NGL and NLS dislocations.
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Figure 21: Field plot of ṽ(x) of NGL and NLS under load 5×10−5µ, starting from NGL dislocation
equilibrium.

It is instructive to compare the ṽ profiles presented in Figures 18 and 21 for m = 0,
under the load of 5× 10−5µ. Even though the dislocation stays motionless in the latter case
for the small time in which the observation has been done, the non-negative shape of the
ṽ(x) curve coupled with the inability to find a loaded dislocation equilibrium in quasi-static
equilibrium forces the conclusion that this situation reflects very slow motion of the type we
discuss in Section 7.1.4.

Fig. 22 provides a gross sense of the dislocation velocity versus applied load curves for
this regime of small loads. The results are gross because the exact governing equations in
this case should be (16); we use those equations, but with the assumption that for the small
magnitude of loads and vanishing loading rates involved, material inertia is unimportant.
From this real time dynamics with B̃m = 1, the NGB dislocation does not show motion
for τa < 6.5 × 10−5µ. (Recall that a loaded dislocation equilibrium was also shown to
exist for the quasi-static system (22)). The average velocity for the load of 2.5 × 10−4µ is
5.99 × 10−5Vs. For these results, the time scale and the velocity are physically meaningful.
The other simulation details are kept the same as in Table 3.
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Figure 22: Dislocation velocity with respect to applied load at the threshold regime.

7.1.3 Preliminary parametric study of factors affecting the Peierls stress

• Effect of barrier height: We solve system (22) (with impulsively applied load), but
now with some lower barrier heights. That is, the function η in (13) is multiplied by a
factor f ∈ (0, 1), and we consider the specific values{

2

3
,
1

2
,
1

4

}
. (50)

The simulation details are kept the same as in Sec. 6. The tolerances specified by Eq.
(38) remain in place. We find that f = 2

3
is able to sustain both unloaded and loaded

equilibria. The Peierls stress is found to be around ∼ 5×10−5. (recall that f = 1 gives
a Peierls stress 6.5 × 10−5µ; this load magnitude leads to non-convergence of |4u|∞
for f = 2

3
).

For f = 1
2

and f = 1
4
, neither loaded nor unloaded equilibria can be attained.

• Effect of shape of η profile: With reference to Fig. 23, a function of the type form B
(cf. [RBS92, Vit68, PDT10]), different from that specified in (13) represented as form
A, is utilized. A Peierls stress of 7.5× 10−5µ is obtained for this case.

These results suggest, as expected, that the function η plays an essential role in the
prediction of the Peierls stress in models like ours. Interestingly, we find that for each of
these variations, dislocation pre-equilibria for the NGB dynamics can always be attained.
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Figure 23: Comparison of two types of η functions and their derivatives.

Finally, although our formulation is based on a small deformation theory, the resultant
plastic strain can be substantial due to the value of φ̄ = 0.5 corresponding to a well of the
function η. In the following, we check whether an even larger plastic strain level, still specified
by φ̄, can affect the Peierls stress results. We choose the value of φ̄ = 1, corresponding to a
lattice invariant shear in a square lattice. The layer thickness is reduced to 1 b to maintain
the initial Burgers vector to be 1 b. The Peierls stress of this case is found to be ∼ 1×10−5µ.
We again run a fast system (as described around Fig. 19) starting from unloaded NGB
equilibrium for t ≈ 0.4ns under the same applied shear load 1 × 10−5µ. The dislocation
stays motionless during the simulation.

7.1.4 Quasi-equilibrium aspects

In Section 6.1, we have hinted that the quasi-static dynamics of our equations (19) can show
sluggish behavior practically indiscernible from equilibria, when judged solely on the merit
of the rate of evolution of some obtained states that we have termed pre-equilibria.

In this section, we discuss some features of such (unloaded) dislocation pre-equilibrium
states and compare them with the states we have defined as unloaded dislocation equilibria
(definitions in Section 6.1).

First, consider the dislocation pre-equilibria obtained from the common initial condition
(37) (and utilized for the result in Figure 5). Specifically, we make the following observations:

1. Initially, the three quasi-static systems (19) (corresponding to m = 0, 1, 2) evolve from
the initial condition (37) with significant shape changes of φx and rates of change |φs|∞.
The profiles of φx then settle on the dislocation pre-equilibria configurations with the
corresponding |φs|∞ decreasing to 5× 10−5.

2. The displacement fields u corresponding to these dislocation pre-equilibria appear to
have no discernible differences from their corresponding dislocation equilibrium dis-
placement profiles. However, the difference in stress fields are on the scale of 10−4µ.
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For demonstration, we show some comparisons of dislocation equilibria and pre-equilibria.
Fig. 24 and 25 compare the dislocation pre-equilibrium profiles for NGL and NLS with

their dislocation equilibria. A first observation is that the NGL dislocation pre-equilibrium
has almost the same shape as the NGL dislocation equilibrium. However, the difference for
the NLS case can be observed at the bottom of Figure 25.

The profiles of the NGB dislocation at the iterations when |F |∞ = 4.5×10−5 and |F |∞ =
10−12 are both shown in Fig. 26. The comparison shows that the equilibrium dislocation
shape is markedly different from the NGB dislocation pre-equilibrium with |F |∞ = 5×10−5,
but the shape change is trivial from |F |∞ = 4.5 × 10−5 to |F |∞ = 10−12. Specifically,
the NGB dislocation pre-equilibrium has significantly rounded steps on both sides, while
for the unloaded NGB dislocation equilibrium, one needs to zoom in to the bottom to see
them (as shown in Fig. 8). Our results seem to suggest that it is possible that the NGB
dislocation equilibrium may not be dynamically accessible from the NGB pre-equilibrium on
any physically realistic time scale.

Based on the observations above, we define the NGB and NLS dislocation pre-equilibria
as quasi-equilibrium states characterized by the fact that rates of evolution are extremely
slow out of them and, in all likelihood, attainment of equilibrium from them, ceteris paribus,
may not be possible on any physically attainable time-span. We emphasize that while we
have discussed both quasi-equilibria and equilibrium states (under no load), it is not our
intention to suggest that the demonstrated equilibria are the intended targets of attainment
under evolution as t → ∞ from their corresponding pre/quasi-equilibria. On the other
hand, we have demonstrated that our dynamics (under no load), especially NGB, contain
trajectories that have a rapid evolution regime, a sluggish regime indistinguishable from
equilibria in a practical sense, and true equilibria.

As an example which involves more than one dislocation, we solve the pile-up problem
of Fig. 14. A slight shift from the pre-equilibrium to the final solution is observed as shown
in Fig. 27. The final equilibria seem to be closer to the exact solution. However, the shift is
of magnitude no greater than 0.2 b.
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Figure 24: NGL equilibrium compared to
NGL pre-equilibrium, zoom into the bottom.
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librium of unloaded pile-ups. The black dotted
lines indicate the analytical solutions.

7.1.5 Peierls stress effects for B̃m � 1

We now consider dislocation motion in the presence of large drag. The question is whether
one can still observe the Peierls stress effect on a slow time scale characterized by the large
drag, under a slow loading rate.

The governing equations for B̃m � 1 are (19). The system runs on the slow time scale
determined by the non-dimensional drag number B̃m. Here, the time scale and velocities are
all physically meaningful. We implement a series of simulations with applied stress starting
from τa = 5× 10−5. The increments of applied load are kept very small especially when the
loads are within 5× 10−3µ.

The simulation set-up is kept the same as in Section 7.1.2, with parameters listed in
Table 1. We consider all three NGB (m = 0), NLS (m = 1) and NGL (m = 2) cases, with
particular interest in the NGB (m = 0) case, since it is derived from the simplest kinetic
assumption, and also because we have shown the Peierls stress effect for this dynamics in
section 7.1.2 where B̃m is small.

The unloaded, dislocation pre-equilibrium profiles of Fig. 24, 25 and 26 are used as
initial conditions for each m dynamics. Uniform-in-time shear traction boundary conditions,
as described in Eq. (40) are imposed. The average velocity V̄ is measured by (48); X̄ is
conservatively chosen as 0.1 b. The dislocation motion is thus quantified by measuring V̄
and |φs|∞. In addition, we define a ‘slowness,’ S := V̄ −1, to help visualize the Peierls stress
effect.

The results are shown in Fig. 28(a) where V̄ is plotted for applied loads smaller than
0.001µ. The corresponding slowness data S is shown in Fig. 28(b). A direct observation is
that the dislocation has much slower motion with increasing m. The slowing down caused
by m is clearly demonstrated by fitting S to a power law. We have fit S vs. applied stress
for the whole range of stresses below 5× 10−3µ based on the data of τa > 5× 10−5, since the
dislocation for NGB under load 5× 10−5 does not show any motions during the simulation.
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The plots of Fig. 28(a) and Fig. 28(b) display only the parts of that curve at the lower
end of the spectrum - the fit is uniformly good in the entire range of stresses. The NGB
(m = 0) dynamics has an exponent of 1.24, much larger than that for NLS (m = 1) and NGL
(m = 2). Since we are not able to perform infinitely-long time simulations, the conclusion is
that the NGB dynamics starting from different NGL and NGB equilibrated profiles all show
no or extremely slow motions.
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Figure 28: Velocity and slowness recorded from simulations.

The existence of a Peierls stress in this B̃m � 1 regime would be justified if S → ∞
for a non-zero value of applied stress. We are unable to access smaller loads than shown
because of the prohibitive time taken by these very long-time simulations. However, based
on the power law fits of the available data, it can be quantitatively concluded that for the
NGB dynamics both V̄ (0) = 0 and dV̄

dτa
(0) = 0. For the NLS (m = 1) dynamics, the

derivative may be considered a constant (making allowances for fitting), whereas for the
NGL (m = 2) dynamics, dV̄

dτa
(0)→∞. In addition, we show the plots of ṽ(x) and ṽav(t) for

the NGB simulation of this section under load 5×10−5µ. We conclude that in all probability
there exists a Peierls stress effect in the NGB dynamics for B̃m � 1 based on the following
observations:

1. Fig. 29(a) shows that the NGB dynamics has a ṽ profile not favourable to dislocation
motions, for the same reason as discussed around Fig. 18.

2. There is an obvious decreasing trend in ṽav (Fig. 29(b)). The value of ṽav at s = 3000
is around 1/20 of that at s = 0. This suggests that the evolution of φ (specifically in
x direction) is slowing down.

3. Recall that we chose 0.1 b for X̄ in determining the average velocity (48) - this is in
part dictated by the extended times for which these simulations have to be run. This
is a conservative choice and it is reasonable to expect the possibility of S → ∞ for
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larger X̄ ≤ b, especially because B̃m � 1 corresponds to larger drag and hence smaller
velocities.
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Figure 29: NGB dynamics of τa = 5× 10−5µ, ṽ field profile and ṽav with respect to time.

7.1.6 The Nabarro dipole

As an instructive demonstration of the Peierls stress effect in the NGB (m = 0) dynamics,
we model a configuration of two identical single dislocations with opposite signs (a dislo-
cation dipole). We use the dynamics (19). According to Nabarro [Nab47], there exists a
critical separation for a dipole to be in a stable equilibrium in a lattice, i.e., dipoles of closer
separations annihilate by attractive forces, leaving the body dislocation-free. The essential
mechanism of this phenomenon is the Peierls stress opposing the annihilating motion of the
dipole. The simulation details are described in Table. 1, except that here we choose the
diffusion strength ε = 0.25. The initial condition for φ is assumed to be

φ(x, 0) =
φ̄

2
(tanh(x+ r/2) + tanh(r/2− x)) , (51)

r being the dipole separation. Fig. 30 and Fig. 31 represent the equilibration with r = 50 b
and r = 20 b. Here we should mention the method we use to obtain the initial dipole of
separation 20b: We solve two single dislocation traction free problems, one with a positive
dislocation at x = 10 and the other negative at x = −10. The two dislocations equilibrate
separately. The superposition of the two equilibrium φ are then used as input to the r = 20 b
simulation. It is observed that the dipole separated by 20 b cannot stay in equilibrium, with
the dislocations of opposite sign attracting and annihilating each other. The dipole separated
by 50 b gets equilibrated, i.e., although the dislocations are still subject to attractive forces
from each other, the force is not large enough to draw the dipole closer, beating the instrinsic
sluggishness of the NGB dislocations. Fig. 32 shows how |φs|∞ varies with respect to time
for the equilibrated dipole. It is clear that the system evolves from the initial condition into
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an equilibrium state, for all practical purposes at least. The equilibrated dipole results in a
static stress field as shown in Fig. 33.
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Figure 30: Equilibrated separated dipole.
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Figure 31: Annihlated dislocation dipole.
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Figure 32: |φs|∞ of equilibriated dipole. Figure 33: σ12 of equilibrated dipole.

Applying a large enough shear load counterbalances the attractive Peach-Koehler forces
and expands the dipole. Fig. 34 shows a series of snapshots of that scenario.
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(a) (b) (c)

Figure 34: Dipole expands under shear stress.

7.1.7 Idealized dislocation dissociation5

Energy considerations dictate that it is possible for a dislocation to dissociate (split) into a
pair, with the Burgers vectors of the dislocations in the pair adding up to that of the original
dislocation. The argument from the classical theory essentially amounts to the following:
Consider a large enough body containing, in the first instance, a single straight dislocation
of Burgers vector magnitude b and in the second instance two dislocations of the same sign
as in the first case separated by a distance R, but each of Burgers vector magnitude 1

2
b. We

now wish to compare the total energies of the two configurations; in the linear theory this is
a question of comparing infinite magnitudes (even for finite bodies). Nevertheless, with the
usual hand-waving of the linear theory related to accounting for the core energy, if in the first

case the energy is written as ab2 then in the second case the energy is 2a
(

1
2
b
)2

+ c b
2

R
, where

a, c are positive constants. For R sufficiently large, the energy of the second configuration
is smaller than the first; therefore, dissociation is favored. Such a phenomenon is actually
observed in closed-packed crystals with low stacking fault energy. We show in this section
that, without any additional constitutive rules, our model is able to simulate an idealized
dislocation dissociation process.

We use the NGB dynamics and keep the simulation details as for calculations reported
in Fig. 5 with the following modifications:

φ(x, t = 0) = φ̄ tanh(ax)

ε = 0.025, a =
√
µ/4ε,

(52)

which represents an initial dislocation with a Burgers vector magnitude of 2b. Fig. 35 shows
the process of it splitting into two separated dislocations, each of Burgers vector magnitude
b. The corresponding re-distribution of plastic strain caused by the dislocation dissociation is
also shown. In this way, it locally minimizes the total system energy. The initial dislocation
profile spans three successive wells of η (to achieve its Burgers vector magnitude), and we
observe from the simulation that each dislocation in the dissociated pair spans two wells of
η as they move apart. The separated single dislocations have repulsive forces in between,
and push each other away after dissociation.

5We thank Mr. Chiqun Zhang for his help with the simulations in this Section.
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Figure 35: An example of modeling dislocation dissociation.

7.2 Loading and unloading of a single dislocation

Here we show the response of the model to a loading-unloading cycle. We continue to use
the slow dynamics (19). We apply a simple shear traction boundary condition (40) to move
the dislocation from its equilibrated position. The load is then instantaneously removed.
The NGB dynamics shows interesting/peculiar behavior as presented in Fig. 36(a) at three
critical moments during the simulation: the top, where s = 0, the dislocation is equilibrated.
The middle panel shows the dislocation driven to its furthest location, and at that moment
the load suddenly drops to zero. Without any exterior stress, the dislocation spike creeps
backwards with diminishing speed to finally equilibrate at the position shown in the bottom
panel. The equilibrium shape is similar to the shape at the start with some differences;
we have not let the equilibration process run long enough to conclude whether the height
of the peak returns to the original value or not. As can be seen, the equilibrium shape of
the dislocation is significantly different from that during motion. The history of |φs|∞ on
the right also reflects this process: the sudden increase of |φs|∞ is caused by the sudden
load drop. After unloading, |φs|∞ decreases sharply, which suggests the re-(pre)equilibration
process of the load-free dislocation. In contrast, the unloading behaviour of the NLS (m = 1)
and the NGL (m = 2) dislocations are different. There, the dislocations continue to move
towards the left boundary after the load is taken away, presumably due to the attraction
of the free boundary. While the recoil of the NGB dislocation gives us some pause in the
context of expected behaviour based on classical ideas, its equilibration is another example
of the Peierls stress effect in the NGB case. We have checked that if an NGB dislocation
under no load is placed closer to the boundary, it does move towards the boundary. We have
also checked that for all three NGL, NLS, and NGB dislocations, the core-averaged layer
stresses are positive, indicating an attraction towards the left boundary.
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(a) Motion of a dislocation under loading-unloading.
top: free traction equilibrium ready to move. middle:
dislocation moves to the left most when load is dropped
to zero. bottom: dislocation moves back and re-gains
its new equilibrium state.
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Figure 36: Loading then unloading (m = 0).
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(a) loading then unloading of m = 1.
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Figure 37: Loading then unloading (m = 1, 2). The dislocations moves to the left under simple
shear traction same as m = 0. However, as the load is removed, m = 1 and m = 2 both keep moving
to the left boundary. Specifically, NGL moves faster than NLS as shown in the bottom snapshot at
the same nondimensional time s = 5500.

7.3 Convergence Test

The Peierls stress results are verified by convergence tests. First, we take an NLS (m = 1)
system with applied load τa = 0.005µ from Section 7.1.5 and show convergence with respect
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to the mesh of |φs|∞, the dislocation displacement, and the average speed V̄ . These three
measurements together quantify the motion of a dislocation. All the simulation details can
be found in Table. 1. The use of transition elements around the layer keeps the overall
computation time from growing significantly as the layer gets refined. Let h denote the
width of layer elements and we create meshes with h = 0.2, 0.1, 0.05, 0.025(b). We should
also point out that the finite difference grid is refined accordingly in the meantime and the
time steps are automatically refined according to Eq. (27). Although convergence of |φs|∞
is a more stringent test than the other two, even in Fig. 38(a), one can observe the trend
of convergence of |φs|∞ with decreasing h. Fig. 38(b) shows the position of the dislocation
peak X̄ vs. s. Processing Fig. 38(b) by dividing X̄ with time gives the averaged speed V̄ .
As shown in 38(c), V̄ converges with h, but with a notable disturbance when X̄ < 0.5b for
all h.
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Figure 38: Convergence test.

For the equilibrium results obtained with the Quasi-Newton scheme, we run the same
problem described around Fig. 9 on a well-refined mesh: h = 0.025b. We test applied load
from τa = 5 × 10−5µ to τa = 10−4µ. The results are the same as obtained from h = 0.1 b.
The equilibrated φx with τa = 6.5× 10−5µ for both h = 0.1 b and h = 0.025 b are plotted in
Fig. 39. The two profiles are on top of each other.
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Figure 39: Dislocation profile resulted from well-refined mesh compared to h = 0.1 b.
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The following tests show the convergence of the Peierls stress results at lower applied
load region. We have tested three NGB (m = 0) cases from section 7.1.5 where τa takes
the values 5 × 10−5µ, 2.5 × 10−5µ and 5 × 10−4µ. The simulation lasts for s = 3000. The
dislocation does not show motion until s = 3000 for all h cases when τa ≤ 2.5 × 10−4µ.
With τa = 5 × 10−4, the velocities for all h cases are close but vary with a difference up to
1.0× 10−5µ/B (between h = 0.2 b and h = 0.033 b).

To complete our convergence analysis for Peierls stress results, we have also verified that
the velocity is not affected by the domain size (W and H). This is done by running the
system (19) with applied load of 5×10−4µ on a domain twice as large (and we keep h = 0.1 b
on this larger domain) and comparing results with that from the smaller domain; the results
remain unchanged. Finally, we argue that the symmetric attraction forces from the left and
right boundaries counterbalance each other at the center of the domain, and therefore the
stress threshold (the onset of motion) is not affected by the vertical free boundaries.

7.4 Annihilation of a double pile-up

We solve a pile-up having opposite signs on each half of a slip plane, namely a double pile-
up. The following simulation is a demonstration of the evolution of a double pile-up of
dislocations in a traction free body, using the NLS (m = 1) slow dynamics associated with
(19). The simulation parameters of this section are grouped in Table. 4.

parameter name value
domain width (W ) 220b
domain height (H) 180b
No. of elements 33960
No. of nodes 34038
core-energy strength (ε) 0.25
Young’s modulus (E) 70GPa
shear modulus (µ) 26GPa
Burgers vector (b) 4.05× 10−10m
Shear wave speed (Vs) Vs = 3.13 km/s

Table 4: Simulation details for double annihilation pile-up.

n = 14 dislocation spikes are initialized at s = 0, spaced by 5b, i.e., the ith dislocation has a
peak at {xi = (−35 + 5i)b}, 0 ≤ i ≤ n.

As the system evolves, the inner dislocations are drawn closer immediately and annihilate
under the combined effects of attractive forces (of dislocations of opposite signs) and repulsive
force (of dislocations of the same sign). The motions of others are driven by a complex time-
dependent stress field. Fig. 40 shows the trajectories of each dislocation in this process. Note
that the outside two trajectories spread outwards initially before bending and becoming
parallel in the end due to the annihilation of all the other dislocations. The two outer
dislocations are separated by 132b at the moment that all other dislocations annihilate as
shown in the scenario of Fig. 31. Their evolution towards each other becomes extremely slow
due to the small magnitude of the attraction force between them due to the large distance of
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separation. Also, the boundary attractions are extremely small based on the analysis around
Fig. 37(a).
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Figure 40: Double pile-up in traction free
body.
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Figure 41: Almost completely continuous dou-
ble pile-up with ends fixed (top). The middle
dislocations annihilate (bottom).

By inserting more dislocations into the previous array, one could simulate almost contin-
uously distributed pile-ups. The outer two dislocations on both sides are pinned. We use a
[110b× 90b] domain for this case. The initial distribution of dislocations is shown in the top
panel of Fig. 41. All the other simulation details are kept the same as in Table. 4. Fig. 41
bottom shows the final state of the double pile-ups. It shows that all dislocations annihilate
except the pinned ones on the outside. This example also demonstrates that although α
is a conserved variable, the norm of α is not. There exist several continuum dislocation
plasticity models (motivated from discrete dislocation methodology) that insist on conser-
vation of both α and norm of α, e.g. [SHZG11, YGVdG04], while this is a straightforward
counterexample.

8 Dislocation motion in dynamic deformations

In this section we examine the capability of our theory of modeling dislocation-related phe-
nomena in the presence of material inertia. In all instances, the system (16) constitutes the
governing equations. The theory has modeling relevance for phenomena at the atomic as
well as geologic length scales. With computational capabilities of the type demonstrated
in this paper, our theory appears to be a relatively straightforward and robust tool to
probe such questions in fair generality that otherwise require delicate analytical skills (cf.
[Wil65, Mur63, AR02, Fre98, Mar11, Pel10, Pel11]).

8.1 Subsonic, intersonic, and supersonic dislocation motion

We investigate dislocation velocity versus applied load phenomena in a specific setting, with
special interest in probing the sub-inter-supersonic regime of dislocation motion within our
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controlling parameter value
domain width (W ) 110b
domain height (H) 90b
mesh refinement 351× 91
core-energy strength (ε) 1
Young’s modulus (E) 70GPa
shear modulus (µ) 26GPa
Burgers vector (b) 4.05× 10−10m
shear velocity (Vs) 3.13 km/s
pressure velocity (Vp) 6.32 km/s

Table 5: Simulation details.

model. Because of the peculiar singularities at the speed of sound that occur in the relatively
few complete solutions available in the linear elastic theory of dislocations, e.g. [AR02], ques-
tions of supersonic dislocation motion have generally been outside the realm of exploration
for the classical theory of dislocations. Of course, if it is assumed that a stress wave in a
purely linear elastic medium is the only carrier of signals that fail the material to form a
dislocation core, then it is indeed physically unreasonable to expect the core to be able to
travel faster than the linear elastic wave speeds of the material.

However, a system of numerical experiments performed by Gumbsch and Gao [GG99],
motivated by transonic shear cracks observed in high-speed impacts [RSC99], reported the
possibility of a transonic dislocation speeding up into the supersonic regime in a highly pre-
stressed body. The MD experiment studied the motion of dislocations nucleated within a
thin strip subjected to simple shear pre-strain. The dislocation velocity varies from subsonic
to supersonic magnitudes according to the level of enforced strains.

A sketch of the MD velocity vs. applied shear strain obtained in Gumbsch and Gao’s
MD experiments is shown in Fig. 42. In the sketch, only the black dots are of concern since
our problem is slightly different from theirs; e.g. the MD experiment involves the process of
dislocation nucleation from a notch tip. The velocity data has two sudden transitions close
to the shear wave and pressure wave velocity Vs and Vp. The very nonlinear velocity vs.
applied strain relationship is also noteworthy. The objective of this section is to qualitatively
compare the results from our model with these MD results. To this end, we set up the initial-
boundary value problem in a manner similar in principle to the MD simulations in [GG99].
The model has a domain of size 110b×80b, discretized uniformly. The simulation parameters
are grouped into Table. 5.

The simulations are performed by the following steps:

1. First, we solve for the displacement field, us, of a static dislocation-free body subjected
to Dirichlet boundary conditions defined by (53):

ū = Γ (x2 +H)e1, on ∂Ω. (53)

This would result in a homogeneous simple shear strain of 0.5Γ (e1 ⊗ e2 + e2 ⊗ e1) in
a linear elastic body. We define ε12 = 0.5Γ and use it to denote different simple shear
loading cases of time-independent Dirichlet boundary conditions in this Section.
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2. Second, we solve for an equilibrated φe and displacement field ue of a quasi-static,
traction-free problem with a single dislocation at the point (40b, 0).

3. Dynamic simulations are performed according to (16) with initial conditions u(x, 0) =
us(x) + ue(x) and φ(x, 0) = φe(x). The initial condition provides a pre-ε12-stressed
body with an equilibrated dislocation ready to move. The Dirichlet boundary condition
on the displacement fields in 1) above is maintained during the dynamic run - in the
terminology of plasticity theory, we simulate a ‘relaxation test’ in the presence of
significant inertia. The average dislocation velocity is recorded for each case of ε12 (the
average dislocation velocity is defined as in Eq. (48)). Since the load is applied through
a Dirichlet boundary condition, no external power is supplied to the dislocation for it
to maintain a constant velocity, i.e., the dislocation speed has to drop as it moves due
to dissipation. However, in our numerical experiments, the decrease in speed turns out
to be very slow. Specifically, we choose different X̄s in Eq. (48) and the variation in
the resulting average dislocation velocity is found to be negligible.

Our hypothesis for the subsequent numerical experiments is the following: we work with
a non-singular, dissipative model that, by design, satisfies the second law of thermodynamics
(globally). Here, dislocation motion is the only dissipative mechanism. Thus, the larger the
reservoir of elastic energy available from the pre-straining, the greater may be the propensity
of the dislocation to move faster to dissipate the energy. This seems to suggest that significant
velocities can be attained based on the level of pre-straining.

Additionally, the following analysis6 shows the possibility of supersonic stress waves in

an initially stressed body in the context of linearized elasticity. Let P , τ and
◦
τ be the first

Piola-Kirchhoff stress, the Kirchhoff stress and the contravariant convected rate of Kirchhoff
stress, defined with respect to an initially stressed configuration (treated as the current
configuration). Then, Ṗ evaluated at the current configuration is given by

Ṗ = τ̇F−T − τLTF−T

= τ̇ − τLT

=
◦
τ +Lτ + τLT − τLT

=
◦
τ +Lτ .

Balance of linear momentum on the current configuration can be written as

div
[
◦
τ +Lτ

]
= ρv̈,

and we assume the elastic constitutive relationship

◦
τ = C : D,

where C is the 4th order linear elasticity tensor and D = 1
2

(
L+LT

)
. Let Mijkl = Cijkl +

τljδik. Assuming plane-wave solutions of the form vi = pie
I(nrxr−ct), where p is the velocity

6We acknowledge discussions with Profs. C. S. Man and R. W. Ogden on the possibility of elastic waves
in linearized elasticity supersonic with respect to linear elasticity.
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mode of the plane wave (polarization), n the direction of propagation of the velocity wave,
and I =

√
−1, one has the characteristic equation[

Mijklnlnj − ρc2δik
]
pk = 0

for the speed(s) c and polarization p. Choosing now a homogeneous state of initial stress
given by τ = τa⊗b with a and b as arbitrary unit vectors, one finds that longitudinal waves
(p = n) propagate with speed

cL =

√
λ+ 2µ+ τ(a · n)(b · n)

ρ

and transverse waves (p in plane normal to n) propagate with speed

cT =

√
µ+ τ(a · n)(b · n)

ρ
.

Note that the linear elasticity analogs of cL and cT are Vp =
√

λ+2µ
ρ

and Vs =
√

µ
ρ
. Thus

cL > Vp > Vs as well as cT > Vp > Vs are definite possibilities for suitable states of initial
stress, even without resorting to full-blown nonlinear theory.
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Figure 42: Sketch of the MD results from Gumbsch and Gao [GG99], reprinted with permission
from AAAS. Dashed lines indicate relevant acoustic wave speeds.

8.1.1 Linear Elasticity

The dynamic simulations discussed above are performed with the equations (16), utilizing
the constitutive equation (12), which implies a linear elastic relationship between the stress
and the elastic strain. Fig. 43 shows the relationship between the applied strain and the
average dislocation velocity. Numerical experiments are done on a body of size [110b× 90b]
which is uniformly meshed and refined so that stress waves propagating through the entire
body can be accurately captured. The simulation details are grouped in Table 5.
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m = 0, m = 1, and m = 2 cases are considered. Unlike the quasi-static simulations,
here we need a physical value for the dimensionless drag coefficient. For m = 1 and 2, we
adopt the value B̃m = 0.0297 (see the discussion surrounding (20)). For m = 0, we choose
B̃m = 0.0037, based on fitting to eliminate a disparity in magnitude of results in Fig. 45, to
be discussed subsequently (note that it is reasonable to expect B̃m to depend on m).

Figure 43 shows that while defeating the linear elastic wave speeds is possible for the
dislocation velocity in our model based on the level of pre-strain, the overall velocity-stress
relationship is not qualitatively close to the MD results of [GG99]. In particular, the plateaus
around Vs and Vp have not been captured. The shear stress wave profile propagating through
the body in the case of ε12 = 0.125 is shown in Fig. 44. A Mach cone is observed behind
the moving dislocation (from right to left) with an angle of approximately 38.7◦.
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Figure 43: Dislocation velocity with homogeneous shear strain ε12 applied to geometry linear body.
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Figure 44: From right to left, shear stress wave around a moving dislocation under applied shear
strain ε12 = 0.125. The arrows denote the positions of the dislocation core.

8.1.2 Nonlinear Elasticity and Finite Deformation

In order to understand at least some effects of using nonlinear elasticity and finite deforma-
tion vis-a-vis the ‘prediction’ of the [GG99] MD results on high-speed dislocation motion, we
adopt a grossly simplified version of the full finite deformation theory of Field Dislocation
Mechanics [Ach04, Ach07, Ach11]. Roughly speaking, we allow for geometric nonlinearities

55



in the total deformation and elastic constitutive equation, but ignore the kinematic nonlin-
earities in the evolution of the dislocation density; while this suffices for our purpose here,
such nonlinearities are important, e.g. in the prediction of dislocation nucleation [GAM15].

We adopt the simplest St. Venant Kirchhoff model of nonlinear elasticity. Let T be
Cauchy stress. The 1st Piola-Kirchhoff stress is defined through the elastic distortion F e

and the deformation gradient F as

P = JTF−T = JF e(C : Ee)F eTF−T (54)

where Ee = 0.5(F eTF e − I). We solve for balance of linear momentum in the reference
configuration (this allows us to use the computational set-up for solving for the displacement
fields in the small deformation setting without significant change). Motivated by single slip
kinematics of crystal plasticity theory, we assume the plastic distortion to take the form

F p = I +U p (55)

where I is the second order identity tensor and U p is defined by (8). Also, we write F =
I +Gradu, with all spatial derivative operators with respect to the reference configuration.
Next, we assume the multiplicative decomposition of F :

F = F eF p (56)

where F e is the elastic distortion.
We choose the stored energy density function ψ (per unit mass) to be

ψ =
1

ρ0

(
ψ̂(F e,α) + η(F p)

)
=

1

ρ0

(
λ

2
tr(Ee)2 + µtr(Ee2) +

1

2
εα : α+ η(F p)

)
, (57)

where ρ0 is density of the reference configuration. We have

L = Le +Lp

Le = Ḟ eF e−1, Lp = F eḞ pF p−1F e−1,
(58)

and L is the velocity gradient. Then the dissipation in this finite deformation case takes the
form (cf Eq. (8)).

D =

∫
B

T : L− ρ

ρ0

(
˙̂
ψ + η̇

)
dv

=

∫
B0

JT :
(
Le + F eḞ pF p−1F e−1

)
dv0 −

∫
B0

(
∂ψ

∂F e
: Ḟ e +

∂η

∂F p
: Ḟ p +

∂ψ

∂α
: α̇

)
dv0

=

∫
B0

(
JT − ∂ψ

∂F e
F eT

)
: Le dv0 +

∫
B0

JT :
(
F eḞ pF p−1F e−1

)
dv0 −

∫
B0

∂η

∂F p
: Ḟ p +

∂ψ

∂α
: α̇ dv0

=

∫
L0

{(
JF eTTF e−T ) : Ḟ pF p−1 − ∂η

∂F p
: Ḟ p

}
dv0 +

∫
L0

∂ψ

∂α
: curl (α× V ) dv0

=

∫
L0

(
JF eTTF−T − ∂η

∂F p

)
: Ḟ p dv0 +

∫
L0

∂ψ

∂α
: curl (α× V ) dv0,

(59)
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where the stress function T defined over the whole body is chosen as

T =
1

J

∂ψ

∂F e
F eT . (60)

Linear momentum balance, expressed in the reference configuration, gives

DivP = Div

(
∂ψ

∂F e
F eTF−T

)
= ρ0ü. (61)

Defining T f = F eTTF−T (the superscript f stands for finite deformation), the rest of the
derivation for the φ-evolution equation stays the same as in the small deformation context.
However, a new form of the layer stress, τ f , is required (cf Eq. (11)):

τ f =
1

2b

∫ b

−b
JT f12(x, y, t) dy. (62)

For convenience, we collect the governing equations for the finite deformation system in one
place:

DivP = ρ0ü

φt =
|φx|m

B̃

(
τ + εφxx − τ b

)
U p = φ e1 ⊗ e2,

(63)

along with the constitutive and kinematic specifications (54 - 56).
The same simulation set-up as the small deformation case in Section 8.1.1 is used. J is

found to be close to 1 (maximum value over domain is 1.032) and we make the approximation
of J = 1 in our calculations. The body is supplied with a Dirichlet boundary condition that
prescribes a simple shear strain of ε12 (defined by Eq. (53)). The applied shear strain ε12

ranges from 0.005 to 0.15, with increments of 0.005. The average dislocation velocity vs.
applied strain is plotted, as shown in Fig. 45. All three models (m = 0, 1, 2) give qualitatively
similar profiles as the MD experiment [GG99] (Fig. 42). The curves display plateaus close
to the linear elastic shear/pressure wave speeds, suggesting a definite resistance to breaking
these ‘sound’ barriers. Increasing loads beyond these barriers causes sharp transitions in the
curve. We point out that the choice of a smaller Bm for m = 0 is required to cluster the
curves at approximately the same magnitude levels.
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Figure 45: Dislocation velocity vs. applied strain, with inertia. Horizontal dashed lines indicate
relevant acoustic wave speeds.

Figure 46 shows the magnitude of material velocity field for ε12 = 0.125, bearing a qual-
itative similarity in the asymmetry of the pattern with the MD simulations of Gumbsch
and Gao. Fig. 47 shows the shear component of Cauchy stress (post-processed from the
Piola-Kirchoff stress and the deformation gradient). The dislocation accelerates from rest to
supersonic speeds. The contour shows a Mach cone formed behind the dislocation tip. This
suggests that the dislocation not only beats the linear elastic shear wave speed but also the
wave speed of the ambient nonlinear elastic medium. But an even more interesting observa-
tion is the one demonstrated by Fig. 48 where the top panels are dislocation positions and
the bottom row is the corresponding layer stress τ f defined by Eq. (62): the stress-related
part of the driving force for dislocation motion indeed keeps up with the supersonic disloca-
tion indicating that stress wave speeds in the core region involving elastic-plastic behavior
can be vastly different from the speeds of the ambient elastic medium. This emphasizes the
fact that material response in the core matters even for larger scale observations and ac-
counting only for elastic configurational forces while treating a defect core as a structureless
singularity may not be adequate for many purposes, even in a partial differential equation-
based theory like ours. Fig. 49 shows a plot of the hydrostatic part of the Cauchy stress (on
the reference configuration). A pressure wave Mach cone forms behind the dislocation, with
a Mach cone angle of about 43◦.
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Figure 46: Material velocity field around a supersonic dislocation of speed 2.8Vs. The maximum
value of material velocity is around 0.1Vs.

The dislocation velocity plotted in Fig. 45 is to be interpreted as the velocity of the image
of the core under the inverse total deformation, i.e. the dislocation velocity in the reference
configuration. Let us denote it as vR. Since the dislocation corresponds to a negative one
(i.e. the ‘extra half-plane of atoms’ belongs to the bottom block), applied shearing in the
positive x-direction results in dislocation motion from right to left. The dislocation velocity
relative to a fixed frame, vd, satisfies

vd = FvR + vm,

where vm is the material velocity. As an estimate, we interrogate the material velocity
component vm1 in the case of ε12 = 0.125 and find that it is relatively small compared to vR1 ;
the maximum is approximately 0.1Vs (as shown in Fig .46). F11 and F21 near the dislocation
tip are approximately 1.01 and 0.01 on average. Thus, while the true dislocation velocity is
expected to be lowered in magnitude somewhat from the vR value, the dislocation may still
be deemed as supersonic.

(a) (b) (c) (d)

Figure 47: From right to left, Cauchy stress wave (shear component) of a dislocation moving
supersonically under applied shear strain ε12 = 0.125. The arrows denote the positions of the
dislocation core. From (d) to (c), as the dislocation is gaining speed to supersonic the region to the
left of the core is also accelerating, which generates disturbance around that area. The dislocation
moving with supersonic speed ((b) and (a)) forms behind the core a shear stress mach cones.
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Figure 48: From right to left, the layer stress τ (bottom) moves with the dislocation(top). Waves
excited by dislocation motion ripples backwards only (to the right).

(a) (b) (c) (d)

Figure 49: From right to left, hydrostatic part of Cauchy stress wave around the supersonic
dislocation under applied shear strain ε12 = 0.125. The stable supersonic motion of the dislocation
results in a pressure wave mach cone forming behind the dislocation core.((b) and (a)).

It can be seen in the results of Fig. 47 and Fig. 49 that the Mach cone angles are obviously
different between the top and the bottom blocks. In Fig. 47(b) as an example, the comparison
is approximately 32.9◦ (top) vs. 58.6◦ (bottom). Such asymmetry is not observed in the
small deformation context (Fig. 44). We want to ascribe this asymmetry to the hypothesis
that the actual nonlinear wave speeds and propagation in the top and bottom blocks are
significantly different due to the differences in the elastic strain fields there. Compared to
small deformation theory where the wave speeds are simply material properties, we argue
that in the calculations of Fig. 47, the stiffness largely depends on deformation states, which
affects the wave speeds. The significant asymmetry between the top and bottom half body
is well established, i.e., a negative edge dislocation results in a tensile stress in the horizontal
direction in the vicinity of the layer in the top block and a compressive stress field in the
bottom block. In Table 6 we record Ee of two points vertically close to the dislocation
(but outside the layer) for three arbitrary time steps during the supersonic motion of the
dislocation. One can see that Ee

11 not only has opposite signs between the top and bottom
but also different absolute values; other components do not show such large asymmetry.

The separated nature of the Mach cone wings in all cases is also worthy of note; to what
extent material heterogeneity (in the vertical direction) plays a role in this phenomenon
remains to be explored.
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Time instant (b/Vs) T1 = 12.3 T2 = 8.19 T3 = 6.66

strain state (top)

(
0.130 0.060
0.060 0.014

) (
0.032 0.121
0.121 0.030

) (
0.030 0.119
0.119 0.030

)
strain state (bottom)

(
−0.092 0.063
0.063 0.023

) (
−0.041 0.101
0.101 0.023

) (
−0.051 0.092
0.092 0.018

)
Table 6: Strain states sampled at the top and bottom of a supersonic dislocation at three time
instants.

8.2 Longitudinal Shear band propagation modeled as dislocation
motion

Much like a crack-tip, a shear band is found to elongate through the motion of its tip
[MD88, KW88, ZC03, GRR01]. Modeling this longitudinal extension of the band is a dif-
ficult matter since classical plasticity theory does not provide a mechanism to achieve such
a dynamic extension mode, and delicate constitutive modifications have been resorted to
[MLL07, ZRR96]. Here, we demonstrate this mode of shear band propagation as a direct
consequence of dislocation motion, with the shear band tip interpreted as a dislocation line
with a nonsingular core. In Fig. 50 we plot the current configuration of the problem pre-
sented previously in Fig. 47. The current coordinate of each node is simply a summation
of the displacement and the reference coordinate. The motion of the dislocation leads to
the formation of a shear band between the point (10b, 0) and (50b, 0). We use a black arrow
to indicate the position of the dislocation. The corresponding (total) deformation gradient
component F12 during the extension of the shear band is plotted in Fig. 51. The highly
sheared region behind the dislocation is notable.

Interestingly, for shear bands formed in this way due to the motion of a localized curl
of plastic deformation (the core), the shear band width is controlled by the geometry of the
core (here, its vertical extent) dragging the shear band behind it.
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Figure 50: Shear band deformation formed behind the dislocation moving from (50b, 0) to (10b, 0).
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(a) (b) (c) (d)

Figure 51: Deformation gradient F12 around shear band.

8.3 Effect of finite-speed-of-propagation of elastic waves

The time-dependent nature of the elastic fields of dislocations cannot be ignored especially
when modelling high strain rate processes. For situations involving ‘shock’ loadings and
strain rates higher than 106s−1, utilizing quasi-static dislocation stress fields is not appro-
priate, even with an added mass correction to the equation of dislocation motion [HZL98].
As a consequence, a new discrete dislocation approach was developed in [GLBD+13] to deal
with very high strain-rate deformations. In FDM, inertia is encoded in the system naturally
through the balance law for linear momentum. The following example, directly adapted
from [GLBD+13], demonstrates the effect of finite-speed-of-propagation of elastic waves in
dislocation mechanics. The system is still governed by Eqs. (16) with m = 1 without any
further considerations of geometric or elastic nonlinearity.

A horizontal shock loading is applied on the left boundary by specifying the displacement
at x = −55b as

ū1(t̃) =

 cos
( π
H
y
)
, t̃ < 10

0, t̃ >= 10.
(64)

We insert a dislocation dipole in the center on the arrival of the shear stress front due to the
rapid boundary loading: a crude approximation to nucleating a dislocation. Fig. 52 shows
the series of shear stress contours during this process. Apart from the waves generated by
the shock loading, one can clearly see that it requires a finite time for stress waves due to
the dislocation dipole to propagate through the body. On the other hand, in a quasi-static
setting, the elastic stress fields of the dipole would be transmitted all over the sample at the
instant the dipole is nucleated even with the added mass correction (since the issue is not
related to the speed of the dislocation itself, but to the propagation of elastic fields).
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(a) t = 50 b
Vs

(b) t = 275 b
Vs

(c) t = 350 b
Vs

(d) t = 450 b
Vs

Figure 52: Shear stress wave resulted by an artificially nucleated dislocation dipole.

To clearly demonstrate the finite-speed-of-propagation effect, we solve a quasi-static
dipole problem as in Section 7.1.6 for the displacement field us, and then superpose on
us the dynamic displacement fields ud taken from Fig. 52(b) and evaluate the correspond-
ing stress field (with φ also taken from Fig. 52(b)). Compared to the ‘quiet’ stress field in
front of the loading pulse of Fig. 52(b), an instantaneous stress field of the nucleated dipole
is distributed immediately everywhere on the domain as nucleation occurs, shown in Fig.
53. The magnitude of stress at the point (40b, 0) can reach up to 0.003µ while the value is
2.8× 10−6µ at the same point in Fig. 52(b).

Figure 53: Quasi-static shear stress at the instant of the nucleated dislocation dipole.

8.4 Rupture Dynamics

In this section we explore the possibility of utilizing FDM in modeling aspects of dynamic
rupture. As early as 1970, Brune [Bru70] suggested that an earthquake might be analogous
to the problem of dislocation propagation in a slip plane. Nabarro [Nab87] mentions this as
well. At a very simplified level, rupture may be considered as the study of two very large
blocks of material slipping with respect to each other over a thin region (relative to the size of
the blocks). Based on this picture, rupture dynamics has been primarily studied as a problem
of friction between two bodies. A crack is assumed to exist behind the rupture front; the
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crack faces are not traction free but transmit shear and normal stresses, the former limited
by a friction law. Very important for this conceptual picture is the fact that the relative
displacement (slip) of the crack faces is not constitutively restricted, whereas the friction
law typically limits the maximum attainable shear stress that can be transmitted across the
rupture layer. For a general crack, any traction profile may be imposed on the crack surfaces
as Neumann boundary conditions for the equations of elasticity, this being interpreted as
two conditions, one for each crack face. The friction law replaces these two conditions by
demanding traction continuity and constitutively relating the magnitude of the traction to
the displacement discontinuity across the layer.

On the other hand, for a classical dislocation in an elastic medium, there is again a
displacement discontinuity behind the dislocation line but of fixed magnitude, and the stresses
transmitted across the dislocated part of the slip plane are not limited in principle, but have
to be continuous (except at the core singularity). A crack could in principle be loaded
by Dirichlet boundary conditions, one for each face. The classical dislocation replaces this
specified displacement boundary condition with a requirement of traction continuity and
a specification of a displacement jump of fixed magnitude. An important fact about the
classical dislocation picture is that the material in the wake of the moving dislocation line is
indistinguishable from the intact elastic material ahead of the dislocation, thus conferring an
aspect of reversibility related to material response upon dislocation motion7. Moreover, the
classical notion of a dislocation and the substantial theory surrounding it related to solving
for its fields allow no other possibility for material response behind the dislocation line. It
is physically clear, however, that this picture cannot then be applicable to the modeling
of geophysical rupture as the phenomenon definitely requires some degradation in stress
response behind the rupture front.

Against this backdrop, a primary aspect of rupture dynamics is the phenomenon of
self-healing. Self-healing is a conclusion deduced from observations of many earthquake
records by Heaton [Hea90] which show that slip duration at any given point through which
a rupture front has propagated is relatively short compared to the duration of the whole
earthquake. Heaton also observed that it is a generic feature of crack models whose friction
laws are of slip weakening type that short slip duration cannot be predicted. He further
suggested [Hea90] slip velocity-weakening friction laws as a constitutive device that allows the
accommodation of the prediction of short-slip duration. This idea has since been developed
in great quantitative detail, as explained in [Ric02]. On the other hand, were a rupture
front to be modeled as a dislocation line, it is a topological fact of the displacement fields
of an isolated dislocation (i.e. a fixed Burgers vector) that only short slip duration can be a
consequence behind the rupture front.

It seems to us that the dislocation picture and the crack picture are two extremes for
the modeling of rupture. The assumption that there is no elastic stiffness of material be-
hind a rupture front, even though a fault zone is of non-negligible thickness and contains,
presumably, pulverized material at great depths (and therefore compressive stress), seems
unrealistic to us. The shortcoming of the classical dislocation picture in dealing with the
damage behind the rupture front has already been mentioned. Thus, it seems that what may
be rather well-suited for the description of rupture is fundamentally a dislocation model that

7We thank Prof. J. R. Rice for emphasizing this fact.
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however allows for damage in elastic stiffness behind the rupture front. Field Dislocation
Mechanics affords exactly this possibility and, as we show, interpolates between the crack
and dislocation models depending on the extent of elastic damage allowed behind the rupture
front.

We modify the model described in Sec. 4 leading to the system (16) as follows. We model
a fault zone as a layer with a modulus CL that is weaker than the outer region. We define
the damaged elasticity tensor in the layer as,

CL = (λ− φ

φ̄
κ)C, where 0 < κ < λ < 1. (65)

C is the undamaged elasticity tensor of the domain excluding the fault layer. When φ = 0,
the non-ruptured layer has modulus λC, while ruptured portions of the fault have an even
weaker modulus (λ − κ)C. We keep all other features of the model as before. An implicit
physical assumption here is that in the absence of constraints due to compatibility of total
deformations, the total strains exhibited by the material in the fault zone has preferred
strained states that can coexist. This is necessary. As shown before in Sec. 6.1, this is
essential for a stress inducing feature as a rupture front to exist in equilibrium (as presumably
it does before its motion that triggers earthquakes). For the nonconvex function η (13), the
exercise related to rupture modeling does not require a periodic potential and a triple well
potential with wells at ±φ, 0 suffices.

For the purpose of illustration, we choose λ = 0.7 in this section, and κ is assumed to
take the three values of 0.2, 0.6, 0.695. Therefore the elastic modulus of the undamaged fault
(where φ = 0) is 0.7 of the outer blocks. The fault is assumed to be completely damaged
where φ = φ̄ and the damaged modulus is (0.7 − κ)C, i.e., a bigger κ represents greater
damage. Within the core region the level of damage attains intermediate values as a function
of φ.

We start by studying the layer stress τ and slip δ (6) at a fixed observation point P in
the path of a moving dislocation/rupture front. Specifically, the dislocation is initialized at
x = 0 and driven left by applying Dirichlet boundary condition, which prescribes a constant
simple shear deformation (defined by Eq. (53)). We utilize the NLS (m = 1) dynamics,
for no particular reason. Fig. 54(a) shows τ and δ vs. time records at P : (−25b, 0) under
an applied shear strain ε12 = 0.03 and κ = 0.2. Starting from an NLS dislocation pre-
equilibrium, the dislocation is driven to the left by the applied strain and passes P at the
time t = 490 b/Vs. It is interesting to see that both quantities jump when the dislocation
passes through the observation point P . We note that the slip stabilizes at a point once the
dislocation passes through. This slip field is simply the sum of the (layer-integrated) elastic
and plastic distortions at each point in the layer. The kinematics of dislocation motion
encoded in FDM ensures that there is no evolution of plastic distortion at a point once the
entire core has traversed through it, due to the absence of plastic distortion gradients behind
the dislocation core.
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Figure 54: Left: layer stress and slip calculated at a fixed point (x = −25b) in the passage of a
rupture front. Right: transverse displacement at a fixed point in the rupture passage calculated by
FDM model compared with sketch of the observed data recorded in the Parkfield earthquake. Sketch
adapted from [AR02] (Copyright University Science Books, used with permission).
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Figure 55: Layer stress(left) and slip(right) plotted at a fixed point on rupture front passage with
varying elasticity damage. κ = 0.695 is fit by a square root function.

Fig. 54(b) shows the transverse displacement fields recorded at the same point in the
case of κ = 0.2. The profile qualitatively agrees with the observed form from the Parkfield
earthquake sketched on the top [AR02].

Fig. 55(a) demonstrates how κ affects the layer stress behind the rupture front. The
conclusion is that the greater the ‘elastic damage’ behind the rupture front, the less is the
propensity of the stress to recover after the passage of the rupture front. Fig. 55(b) shows
the corresponding slip records. Note that the most damaged case (κ = 0.695) leads to a
model behavior similar to a crack model, i.e., the slip at any point in the ruptured zone keeps
increasing behind the rupture front as a square root function of time (unless rupture front
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propagation is forcibly stopped) - this is generically characteristic of all crack-like models
of rupture dynamics employing slip-weakening friction laws [Hea90, DDLL05]. At the very
least, then, FDM-based modeling of rupture dynamics appears to recover the response to
two vastly different frictional constitutive assumptions via a simple assumption of damage
of elastic modulus.

The following observations related to our preliminary foray into the modeling of rupture
are in order:

• FDM naturally allows for the addition of a model of plastic deformation in the wake
of the dislocation reflecting plastic straining in the absence of its spatial variation, as
in classical plasticity theory. In fact, such a mode of plastic deformation is regularly
used in applications of FDM at larger length scales [RA06, PDA11, FAB11]. In cir-
cumstances when the elastic modulus is substantially degraded behind the dislocation
front, such an augmentation can accommodate the great variety of frictional consti-
tutive assumptions (i.e. slip weakening, velocity weakening, rate-and-state friction)
utilized in the current modeling of rupture dynamics. In ongoing work in simplified
models, such a combination has been observed to give rise to stick-slip behavior.

• Due to the dependence of the elastic modulus on the plastic strain, the driving force for
the dislocation (rupture front) velocity should contain a term arising from ∂φC that
we have ignored for simplicity. This term is expected to affect the observed velocity of
the rupture front and not the conclusions related to the existence of short slip duration
or the lack of it.

• Modeling thick faults with substantial field variations through the thickness is appar-
ently an important issue in realistic modeling of rupture [RC07]. We note that FDM is
a full 3-dimensional theory and can be invoked within the fault layer with no conceptual
difficulty.

• Slow rupture fronts [RCF04, CAS99] are observed. As mentioned earlier, there is
a parameter regime (i.e. large drag) for our theory where such phenomena can be
modeled.

• For the sake of simplicity, we have not introduced a normal-stress dependence in rup-
ture propagation. We note that even the simplified model of FDM utilized in this
paper allows naturally for the emergence of a normal-stress dependence in the rupture
velocity, as shown in the development of Section 4.

9 Concluding Remarks

It is perhaps fair to say that at the current time the classical theory of dislocations [HL82]
and the theory of elastoplasticity [Lub01] appear to be disparate subjects. We hope to have
demonstrated in this paper that FDM, which is nothing but a theory of elastoplasticity with
a fancy, but physically rigorous, evolution equation for the plastic distortion, encompasses
a large class of key features of classical dislocation theory in both its extensively developed
static and its barely developed time-dependent aspects. This observation is particularly
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important in situations involving dynamics with inertia where the classical theory has severe
conceptual limitations.

The computational methods of approximation that we use to study FDM are versatile
and capable of natural extension to 3 space dimensions, representation of multiple slip, finite
deformations (in full generality), elastic anisotropy, arbitrary loadings, and complex domains.
This is desirable, both from the scientific and engineering points of view. In a sense, the
theory and methods we propose for the study of dislocation mechanics have the potential of
bringing the same type of efficiency and generality to the study of the physical subject as
the finite element method did to the study of elasticity theory. Indeed, a reading of papers
like that of Eshelby, Frank, and Nabarro [EFN51] leaves one marveling at the creativity of
the authors; however, the techniques utilized are very special. Our approximation methods
are accessible to anyone with training in the standard repertoire of computational mechanics
with a desire to learn about dislocation mechanics, and this is as much a result of the
theoretical framework that is employed.

Starting from the pioneering work of Aifantis [Aif84] there has been a great emphasis in
the solid mechanics community in developing models of strain gradient plasticity in the last
30 years or so, often to make connection with dislocation mechanics. It is again perhaps fair
to say that while many models have emerged, none can lay claim to being a theory for the
mechanics of dislocations in any distinguished limit, whether for individual or collective be-
havior. In contrast, we have shown that the equations of FDM, which may also be considered
as a gradient-plasticity model in the form (5), but of very different structure compared to
bona-fide standard strain gradient plasticity theories, can make the claim at the level of rep-
resenting a great variety of individual dislocation behavior. There are important questions
of time-dependent homogenization related to the modeling of mesoscopic and macroscopic
plasticity that remain to be addressed, but we take satisfaction in the fact that a correct
pde-based microscopic standpoint has been established. Moreover, work based on heuris-
tic models of collective behavior developed on FDM as the underlying microscopic theory
has shown promise [AR06, RA06, PDA11, ABM08, FAB11, CCP+13], including the demon-
stration of how standard elastoplasticity theory can be incorporated within the theoretical
structure if so desired.

The most important future work related to FDM that remains for us to execute is a
robust computational implementation of the 3-d theory without restriction to special ‘slip
layers,’ with slip-system like behavior being an outcome. This will require careful design of
the energetics related to slip (i.e. the η function) and, very importantly, an accurate and
stable numerical scheme for the U p evolution equation which will need to be capable of rep-
resenting dynamic, string-like, nonsingular, stress-inducing localizations in the field. Despite
appearances arising from the simplified ansatz we have utilized in this paper, the funda-
mental 3-d equations of FDM are not a variation on reaction diffusion systems or scalar,
hyperbolic, conservation laws; see [AT11] for illustration of this issue. These are interesting,
but tractable, challenges. The question related to energetics also has an important philo-
sophical angle in that it should be defined purely in terms of quantities identifiable from the
current state without reference to any reference configuration in the past, and the plastic
distortion does not readily lend itself to such definition. It is very likely that resolution will
lie in a careful adaptation of ideas from [RBS92, Vit68, SW03, Zim04, Par10, NP14].
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