
A Reference Model for Requirements and Speci�cationsCarl A. GunterUniversity of Pennsylvania Elsa L. GunterBell Labs Michael JacksonAT&T Laboratories Pamela Zave �AT&T LaboratoriesApril 16, 1998
AbstractWe de�ne a reference model for applying formal methodsto the development of user requirements and their reduc-tion to behavioral speci�cation of a system. The approachis characterized by its focus on the shared phenomena thatde�ne the interface between the system and the environmentin which it will operate and on how the parts of this inter-face are controlled. This paper extends our previous workon this model by representing it in higher-order logic anddetermining some of its key mathematical rami�cations. Inparticular, we introduce a new form of re�nement which ispivotal to de�ning the desired soundness and consistencyproperties precisely. We illustrate the consequences of theseadvances for two benchmark problems and for applicationsof the model in projects at AT&T and Lucent.1 IntroductionThere are a collection of artifacts that commonly arise inprogramming projects. Among these are the program it-self, of course, and also the document that describes therequirements of the software. This requirements documentmay have been written before the software was built, revisedas coding was underway, and revised again after the soft-ware was tested. Requirements often fall into two categories:those intended to be understood by people who commission,pay for, or use the software, and those intended to communi-cate to programmers what must be coded. These documentsare sometimes distinct, receiving distinguishing names like`customer speci�cation document' versus `feature speci�ca-tion document'. The distinction also appears in standards;for instance, the software standard of the European SpaceAgency [14] distinguishes between the `User RequirementsSpeci�cation' and the `Software Requirements Speci�cation',mandating complete documentation of each according tovarious rules. In other cases, by contrast, this distinctionis less emphasized. For instance [13], which discusses soft-ware engineering for some of the groups at Microsoft, arguesthat the di�culty of keeping a technical speci�cation con-sistent with the program is more trouble than the bene�tmerits. A wide range of views can be found in the literatureand the many organizations that write software.Is it possible to bring these various artifacts into greaterrelief and study their properties in a general way, given thewide variations in the use of terms and the many di�erentkinds of software being written? In this paper we attempt�Email: gunter@cis.upenn.edu, elsa@research.bell-labs.com,jacksonma@acm.org, pamela@research.att.com.

to describe what one might call a reference model for cer-tain key artifacts arising in software projects. The aim isto provide a framework for talking about these artifacts,their attributes and relationships at a general level, but pre-cisely enough that one can rigorously analyze substantiveproperties. Reference models have a time-honored status incomputer science. One very well-known example is the ISO7-Layer Reference Model, which divides network protocolsinto seven layers. The model is informal, and does not corre-spond perfectly to the protocol layers in widespread use, butone will still �nd it discussed in virtually every basic text-book on networks, and the model itself is very widely usedto describe network architectures. The ISO 7-layer modelwas successful because it drew on what was already under-stood about networks and was made general enough to bevery
exible. We hope the reference model we describe canprovide some of these kinds of bene�ts to software engineer-ing.Our model is based on �ve familiar artifacts classi�edbroadly into those that pertain mostly to the system ver-sus those that pertain mostly to the environment. Theseartifacts are:Domain Knowledge provides presumed facts about theenvironment,Requirements indicate what the customers need from thesystem, described in terms of its e�ect in the environ-ment,Speci�cations provide enough information for a program-mer to build a system to satisfy the requirements,Program implements the speci�cation on the program-ming platform,Programming Platform provides the basis for program-ming a system to satisfy the requirements and speci�-cations.1If these are denoted W, R, S, P, and M respectively, thentheir classi�cation is given by the Venn diagram in Figure 1.Most of this paper will discuss the special role of the spec-i�cation, S, which occupies the middle ground between thesystem and its environment. We hope to carry out a formalanalysis, describing the relations that S must satisfy and1Sometimes the system is construed to include such things as theprocedures employed by people who use the software. In this casethe people are also programmable and their program is this set ofprocedures. In this paper we will focus primarily on programmingcomputer platforms.

W R S P MEnvironment SystemFigure 1: Five Software Artifactsgrounding this analysis in a series of examples, and a com-parison of this work to similar attempts to formally analyzethis interface.The paper is divided into nine sections. After this intro-duction we describe the concepts of designation and control(Section 2) in preparation for laying out the key proof obli-gations of the model (Section 3). These obligations are keyto the meanings of the components and are just as importantand useful for informal applications of the reference model asthey are for formal ones. We then discuss the role of spec-i�cations as the bridge between environment and system,again giving the fundamental proof obligations (Section 4).Section 5 discusses related work, including a detailed com-parison of our model with the well-known Functional Doc-umentation model [17, 15] (sometimes called the `four vari-ables' model). The next two sections provide case studies,�rst based on benchmark illustrations (Section 6), and thenbased on signi�cant projects where we are using the refer-ence model (Section 7). After this there is some analysis(Section 8) and a brief set of conclusions (Section 9).2 DesignationsThe WRSPM (Figure 1) artifacts may be viewed primar-ily as descriptions written in various languages, each basedon its own vocabulary of primitive terms. Some of theseterms will be shared between one or more of the WRSPMdescriptions. To understand the relationships between theWRSPM descriptions, it is essential to understand how thedivision between environment and system is re
ected in theterms used in them. This will determine the key concept ofcontrol, which will form the basis of a theory of re�nementdescribed in a later section. This theory of re�nement is thebasic set of relations between the artifacts.The distinction between environment and system is aclassic engineering issue which is sometimes regarded as amatter of taste and convenience but has a profound e�ecton the analysis of a problem. The reference model demandsa clari�cation of the primitive terms that are used in theWRSPM artifacts. This clari�cation is so important that itshould be viewed as a sixth artifact in the reference model:the designated terminology provides names to describe theapplication domain (environment), the programming plat-form with its software (system) and the interface betweenthem.Designations identify classes of phenomena|typicallystates and events and individuals|in the system and the en-vironment, and assign formal terms (names) to them. Someof these phenomena are phenomena belonging to the envi-ronment and controlled by it: we will denote this set by e.Some are phenomena belonging to the system and controlledby it: we will denote this set by s.At the interface between the environment and the sys-tem, some of the e phenomena are visible to the system: wewill denote this subset of e by ev ; its complement in e arehidden from the system, and we will denote this set by eh.Similarly, at the interface between the environment and thesystem, some of the s phenomena are visible to the environ-

ment: we will denote this subset of s by sv ; its complementin s are hidden from the environment, and we will denotethis set by sh.Terms denoting phenomena in eh, ev and sv are said tobe visible to the environment ; they are used in W, R and S.Terms denoting phenomena in sh, sv and ev are said to bevisible to the system; they are used in S, P and M. Figure 2shows the relationships among the four sets of phenomena.
Visibility Control

SystemEnvironment

eh ev sv sh

Figure 2: Visibility and Control for the Designated TermsA small example will help with understanding some ofthe ideas in the reference model. We describe a simple ver-sion of the Patient Monitoring System in our terms. Therequirement R is a warning system to notify a nurse thatthe heart-beat of a patient has stopped. To do this, thereis a programming platform M with a sensor that is able todetect sound on the patient's chest and an actuator capableof sounding a buzzer. This can be programmed P to soundthe buzzer based on data received from its sensor. There isalso some knowledge of the world W which says that thereis always a nurse close enough to the nurse's station to heara buzzer sounded there, and that if the patient's heart hasstopped, then the sound on the patient's chest falls belowa threshold for a certain time. The designated terminologyfalls into four groups, referring to Figure 2.� System hidden (that is, hidden from the system) andenvironment controlled (eh): the nurse and the heart-beat of the patient.� System visible (that is, visible to the system) and en-vironment controlled (ev): sounds from the patient'schest.� Environment visible and system controlled (sv): thebuzzer at the nurse's station.� Environment hidden and system controlled (sh): in-ternal representation of data from the sensor.The speci�cation S, which is expressible in the language com-mon to the environment and system, says that if the soundfrom the sensor falls below the appropriate threshold, thenthe system should sound the buzzer.The treatment so far of the reference model does notmention any particular language in which the artifacts aredescribed. Generally they will be described by di�erent lan-guages. To characterize the relations precisely, however, itwill be convenient to use a single language in which otherscan be embedded. For this we choose a version of Church'sHigher Order Logic. There are a variety of reasons for thechoice, but the most important of these are the fact that itis an expressive language for which there is a great deal ofexperience with modeling computer systems and embeddinglanguages. There is also automated support in the form ofthe HOL interactive theorem-proving system [8, 7], whichwe have used extensively in our experiments. A �nal reason

is that we found the higher-order aspect of the logic conve-nient for scalability in our applications and helpful in writingdown the proof obligations of the reference model.Some notational background is essential for the rest ofthe paper. If ev = fx1; : : : ; xng, then a formula 8ev: �meansthe same as 8x1; : : : ; xn: � for some ordering of the variablesin ev. It is usually not necessary to distinguish between ehand ev directly in our formulas so we will use e = eh [ev.Similarly we take s = sh [sv. We assume that e and sare disjoint, an assumption we will analyze later. We useHOL notational conventions in the paper and hope they aresu�ciently obvious that no background is needed beyondwhat we give here together with some general knowledge oflogic. The `dot' notation requires some care: a dot followinga quanti�cation means that the scope of the quanti�cationgoes as far to the right as the parentheses allow. For instance(9x: A) B) ^ C is the same as (9x: (A) B)) ^ C.3 Relationship between Environment and SystemThe basic intuition behind our treatment is that the pro-gram and the world each have a capacity for carrying outevents, or perhaps remaining inert. The world W providesrestrictions on the actions that can be performed by the en-vironment. These can be understood as restrictions on e oron the relationship between e and sv. The requirements Rdescribe an additional set of restrictions saying which of allpossible actions are the ones that are desired. The programP, when evaluated on the programming platform M restrictsthe class of possible events.2 If this restriction is to a col-lection of events allowed by R, then the program is said toimplement the requirements. Said in logic, this means:8e s: W ^M ^ P) R (1)That is, all of the events performed by the environment (eh,ev) and all of events (sv, sh) performed by the system, takentogether, are events allowed by the requirements. We callthis property adequacy. Adequacy would be trivially sat-is�ed if the assumptions about the environment mean thatthere is no set of events that could satisfy its hypothesis.We therefore need some kind of non-triviality assumption.First of all, we would like the domain assumptions to be con-sistent. Consistency is asserted by existential quanti�cationover the free variables of the formula. The desired propertyis: 9e s: W (2)and we call this consistency (of domain knowledge). (Notethat this is the same as 9 eh ev sv: W since the variables shdo not appear in W.) Clearly we want consistency of W, P,M together, but there is something more that is needed, aproperty that says that any choice of values for the environ-ment variables is consistent withM^P if it is consistent withassumptions about the environment. The desired propertyis called relative consistency:8e: (9s: W)) (9s: W ^M ^ P) (3)Note that the witness to the existential in the conclusion canbe the same as the witness in the hypothesis.Relative consistency merits some appreciation since thereare a variety of ways to get the wrong property. It is a2Of course, programs and programming platforms are not usuallypresented as HOL formulas. Here one should think of P and M as theformulations of these artifacts in logic.

signi�cant contribution of [15], to which we will compareour work later. Let M 0 = M ^ P, and consider the property9e s: W ^M 0 (too weak)This says that there is some choice of the environment eventsthat makes the system consistent with the environment.Clearly this is too weak, since the environment may not beso obliging as to use only this consistent set of events. How-ever, this formula clearly should hold, and it does indeedfollow immediately from consistency of the domain knowl-edge (Formula 2) and relative consistency (Formula 3). Thefollowing:8e s: W)M 0 (too strong)is much too strong since it means that any choice of po-tential system behavior (s) that W accepts must also beaccepted by the system to be built (M 0). An apparentlymodest weakening:8e 9sv: W)M 0 (now too weak)is too weak because, given an environment action, it allowsthe system to do anything it chooses to if there is a cor-responding value for the system actions that invalidate thedomain knowledge.4 Speci�cationsLet us suppose now that we wish to decompose the processof implementing a requirement into two parts. A �rst partin which requirements are developed, and a second part inwhich the programming is carried out. These tasks maybe done by two largely di�erent groups of people, the �rstbeing the users (vendees of the software for example) andthe second being the programmers (vendors of the softwareperhaps). It is often desirable to �lter out the knowledge ofW and R that truly concerns the people who will work ondeveloping P (for the programming platform M) and deliverthis as a speci�cation of the software to be built. A kindof transitive property is relied upon to ensure the desiredconclusion: if S properly takes W into account in sayingwhat is needed to obtain R, and P is an implementation ofS for M, then P implements R as desired. There are severalreasons for wanting such a factorization. A common one isthe need to divide responsibilities in a contract between theneeds of the user and supplier: they build their deal aroundS, which serves as their basis of communication. But howcan we represent this precisely? Is it alright just to say thatS and W imply R, while M and P imply S? This is closeand provides a good intuition, but the situation is not thatsimple. Consistency and control must be properly accountedfor.4.1 Proof ObligationsBefore we begin to describe proof obligations, we make onestipulation: the speci�cation S must lie in the common vo-cabulary of the environment and system. That is, the freevariables of S must be among those in ev and sv, and there-fore cannot include any of those in eh or sh. Since the spec-i�cation is to stand proxy for the program with respect tothe requirements, it clearly should satisfy the basic proper-ties that the program did. That is, there should be adequacywith respect to S:8e s: W ^ S) R (4)

and there should be relative consistency for S:8e: (9s: W)) (9s: W ^ S) (5)It should be noted that the relative consistency of R withrespect to W follows from (4) and (5):8e: (9s: W)) (9s: W ^ R) (6)The aim now would be to create a `developer-side' setof criteria which, when taken together with `user-side' cri-teria like Formulas 1 and 3, would imply the desired rela-tionship between the requirements and the implementation.It is tempting to derive these conditions by attempting ananalogy using Formulas 1 and 3 as a template but shiftingone's perspective to view M as analogous to domain knowl-edge, S as analogous to requirements, and P as analogous tothe speci�cation. The scope of this paper does not permita detailed treatment of this approach, but su�ce it to saythat the result is both too strong and too weak. It is toostrong because it would demand that the program needs tosatisfy various properties even for cases the environmentalassumptions view as impossible. It is too weak because itdoes not ensure the consistency of W and M. A new condi-tion is needed; one that implies Formulas 1 and 3, but makesreasonable assumptions about what must be true of S.Our investigations have led us to a key set of proof obli-gations that works well with the case studies we have car-ried out and also provides a clean logical treatment. Thisset of conditions is derived from a key relation which weintroduce below for those who are interested in the logicalessence of the contribution. Our conditions are essentiallya strengthening of relative consistency to insist that theyinclude enough information about the domain knowledge toenable a developer to write an acceptable program. At �rstblush, one could simply ask that all of W be included in S.Indeed this would work, and the desired transitivity wouldfollow, provided the designations used in W are all visible tothe system. In essence, the speci�cation S must �nd a wayto use system-visible designations to provide the developerwith all of the information that is needed about the assump-tions in W. If this cannot be done, it probably means thatthe programming platform lacks the kinds of inputs (sensors)and outputs (actuators) needed to satisfy the requirements.Our condition replaces relative consistency (Formula 3) withtwo conditions. The �rst of these is environment-side re�ne-ment:8e: (9s: W)) (9s: S) ^ (8s: S) W) (7)which is the proof obligation of those who reduce the re-quirements and domain knowledge to a speci�cation. Thesecond is system-side re�nement:8e: (9s: S)) (9s: M ^ P) ^ (8s: (M ^ P)) S) (8)which is the proof obligation of those who implement thespeci�cation.Formulas 7 and 8 are almost the same as relative con-sistency except for the added constraints that S) W andP) S. These extra obligations are not just a technicalconvenience; they are essential for the practical applicationof the reference model. To see why they are necessary ina concrete way, consider the case where we have a `good'speci�cation S1 that is relatively consistent with respect tothe domain knowledge W, and is adequate to guarantee therequirements R. Now also consider a `bad' speci�cation S2that is everywhere inconsistent with the domain knowledge

(we will provide an example of this kind in Section 5). Ifwe let S = S1 _ S2, then S is also relatively consistent (For-mula 5) and adequate (Formula 4). However, if we turnedit over to a programmer who built a system satisfying S2,the system would also satisfy S, but it would break as soonas it was deployed in the intended environment. The ex-tra strength of Formulas 7 and 8 prevent this problem fromarising.4.2 A Logical AccountSome basic properties of the proof obligations are essential.We give a brief account, but the reference model can beused both informally and formally without knowing thesetechnical details.A classic theorem of mathematical logic is the Craig In-terpolation Theorem (see Theorem 2.2.20 of [6]). It says thatif � and are closed �rst order formulas such that implies�, then there is a closed �rst order formula �, in the com-mon language of �; such that implies � and � implies .The formula � is called a Craig Interpolant for � and . Inour context, the speci�cation can be viewed as a common-language interpolant between the environment and systembut based on a di�erent concept of interpolation. To de�nethe relation we do use, partition the variables into two dis-joint sets e and s. We induce a relation � on formulas �; whose free variables lie among e [s as follows:� � i� 8e: (9s: �)) (9s:) ^ (8s:) �): (9)In this case we say that is a predicated consistent re�ne-ment of �. It is obvious that this relation is stronger thanrelative consistency. It is somewhat less obvious that it de-�nes a poset ordering on logical equivalence classes of for-mulas. First of all, it is clear that � � �. Moreover, if � � and � �, then ` � , . But, in particular, the relationis transitive: if � � � � then � � �. This is the key factneeded to carry out a sequence of re�nements without theneed for `global' knowledge of the components. To see this,note that Formula 7 says S is a predicated consistent re�ne-ment of W, so Formula 5 follows from this. Formula 8 saysthat the implementation M ^ P is a predicated consistentre�nement of S. By transitivity we therefore learn that theimplementation is a predicated consistent re�nement of thedomain assumptions so we obtain relative consistency of theprogram with respect to domain knowledge (Formula 3).4.3 SummaryFormulas 1, 2, and 3 are our principle proof obligations.They can be proved by de�ning a speci�cation S and showing2, 4, 7 (on the environment side), and 8 (on the system side).5 Related WorkThe reference model is a more formal and more completeversion of some of our earlier work [9, 10, 19]. Before look-ing at applications using the approach described here, wepause to look in some detail at some of the most well-knownformulations of something like the WRSPM artifacts andtheir relationships.There are many similarities between our reference modeland the Functional Documentation model of Madey, Parnas,and van Schouwen [17, 15]. Finding a precise comparison be-tween the two is a little tricky because our reference model,for clarity and broadest applicability, demands that there

be a sharp dividing line between what exists and what isto be built (from the perspective of the particular projectat hand). In the Functional Documentation model, on theother hand, there is a third category representing an inter-mediate phase of engineering. This third category is occu-pied by the predicate IN(m; i), describing the behavior ofinput or sensor devices in translating monitored quantitiesm to input values i, and by the predicate OUT(o; c), describ-ing the behavior of output or actuator devices in translatingoutput values o to controlled quantities c.Thus we shall have to make two comparisons, one inwhich the devices are regarded as part of the system in ourreference model, and one in which they are regarded as partof the environment. In both comparisons the FunctionalDocumentation model is more or less a special case of thereference model.In the Functional Documentation model, there are fourdistinct collections of variables: m for monitored values, c forsystem controlled values, i for values input to the program'sregisters, and o for values written to the program's outputregisters. If the I/O devices are regarded as part of thesystem, then both the phenomena i and the phenomena obelong to our category sh. The monitored phenomenam arethe same as our ev phenomena, the controlled phenomenac are the same as our sv phenomena, and there are no ehphenomena in the Functional Documentation model.Also in the Functional Documentation model, there are�ve predicates formally representing the necessary docu-mentation: NAT(m; c) describing nature without any as-sumptions about the system, REQ(m; c) describing the de-sired behavior of the system (including sensors and dis-plays), IN(m; i) relating the real-world values monitored totheir corresponding internal representation, OUT(o; c) relat-ing the internal values to be output to the actual valuesdisplayed, and SOF(i; o) representing the program comput-ing outputs from inputs. Still viewing the I/O devices aspart of the system, the predicate NAT(m; c) corresponds toour domain knowledge W, and the predicate REQ(m; c) cor-responds to our requirements R. NAT and REQ are morerestricted than W and R, however, because they can onlymake assertions about those phenomena of the environmentthat are shared with the system. In fact, REQ corresponds tothe speci�cation, S, as well as to R. The predicate SOF(i; o)corresponds to the program P. IN(m; i) and OUT(o; c) to-gether correspond to the programming platform M, exceptonce again they are more restricted, for they are only allowedto indicate the relationship between sensors and internal reg-isters of the program.Now we consider the proof obligations of the FunctionalDocumentation model. One group says that REQ and INmust cover all situations that are physically possible:8m: (9c: NAT(m; c))) (9c: REQ(m; c))8m: (9c: NAT(m; c))) (9i: IN(m; i)):These are consequences of relative consistency for S (For-mula 5) and relative consistency for M ^ P (Formula 3).There are additional proof obligations of showing that SOFand OUT must cover all possible situations:8i: (9m: IN(m; i))) (9o: SOF(i; o))8o:(9i: SOF(i; o))) (9c:OUT(o; c)):These proof obligations are not a part of our reference model,but they are approximated by our proof obligation that thecombination of the program and the programming platformbe relatively consistent with the domain knowledge (Formula

3). The Functional Documentation model does not actuallyrequire this relative consistency. We shall say some more onthis later.There are two more proof obligations of the FunctionalDocumentation model: their acceptability obligation8m i o c:NAT(m; c) ^ IN(m; i) ^ SOF(i; o) ^OUT(o; c)) REQ(m; c)is exactly the adequacy of M ^ P (Formula 1), and theirfeasibility obligation8m: (9c: NAT(m; c))) (9c: NAT(m; c) ^ REQ(m; c))is both the relative consistency of S and R (Formulas 5 and6), since REQ is both R and S. The consistency of W orNAT (Formula 2) is not mentioned in the Functional Doc-umentation model, presumably because NAT is expected tobe expressed in a form that makes its consistency obvious.Our proof obligation of adequacy of S (Formula 4) is vacuousbecause S is the same as R.Shifting to the second comparison, in which the devicesare regarded as part of the environment, i is exactly thesame as our phenomena ev and o is exactly the same as ourphenomena sv. Our phenomena eh corresponds to the unionof their phenomenam and c, butm and c are more restrictedbecause they must be distinct and also `close' to the systemin the sense of having a direct relationship through IN andOUT with the shared phenomena i and o.With this correspondence between the two models, theirdomain knowledge W must be decomposed into three partsNAT(m; c), IN(m; i), and OUT(o; c). REQ corresponds to Rbut is more restricted because it can constrain m and c only.SOF(i; o) corresponds exactly to S.Concerning the proof obligations of the reference model,even assuming that each part of the Functional Documen-tation model is consistent by construction, and that all theproof obligations of the Functional Documentation modelare satis�ed, that is still not enough to guarantee our rela-tive consistency property. In this context the relative con-sistency of S with respect to W takes the form8 m i c:(9 o: NAT(m; c) ^ IN(m; i) ^ OUT(o; c)))(9 o: NAT(m; c) ^ IN(m; i) ^ OUT(o; c) ^ SOF(i; o))To see why it is not guaranteed, let all the variables bereal-valued functions of time, and let the various predicatesbe de�ned as:NAT : (8 t: c(t) > 0) ^ (8 t: m(t) < 0)REQ : 8 t: c(t+ 3) = �m(t)IN : 8 t: m(t) > i(t+ 1)SOF : 8 t: i(t) > o(t+ 1)OUT : 8 t: o(t) > c(t+ 1)Each predicate is consistent, and those that need to be im-plemented are readily implementable, since they establishrelationships between their inputs at one time and their out-puts at a later time. They satisfy all the proof obligationsof the Functional Documentation model, yet they are notrealizable because:(9m i o c: NAT(m; c) ^IN(m; i) ^ OUT(o; c) ^ SOF(i; o))Note that the acceptability obligation is satis�able only be-cause the antecedent of its implication is always false.

This example is equally problematic if we view the I/Odevices as part of the system, instead of as part of the en-vironment. In that case we do have the relative consistencyof the speci�cation. What is violated is the relative consis-tency of the program and programming platform with thedomain knowledge:8m: (9c: NAT(m; c)))(9i o c: NAT(m; c) ^ IN(m; i) ^ SOF(i; o)OUT(o; c))Once again the example fails to satisfy this.Like our reference model, the Functional Documentationmodel insists on a rigid division between system and envi-ronment control of designated terminology. Some other sys-tems, like Unity [5] and TLA [12, 1], leave to the user suchmatters as distinguishing environment from system and do-main knowledge from requirements, but support shared con-trol of a designated term by system and environment. Forexample, in the Unity formalism it is possible to express thatboth E and M control a Boolean variable b, but E can onlyset it to true while M can only set it to false:� b is stable in E� :b is stable in MOur restricted notion of control, in which each phenomenonmust be strictly environment-controlled or strictly system-controlled, is easier to document and think about thanshared control. This advantage is perhaps unimportant forsmall projects, but it becomes very important in large ones.Also, the restricted notion of control seems su�cient for re-quirements and speci�cations. Shared control is most usefulfor coordinating the actions of closely coupled componentsin a concurrent algorithm. When necessary, shared controlcan be modeled by using two variables|one controlled bythe system, the other by the environment|together with anassertion in W that they must be equal.The composition and decomposition theorems of TLA [1]are particularly valuable when parts of the formal documen-tation are not complete and unconditional (as they are re-quired to be in the Functional Documentation model). Forexample, the TLA composition theorem can be used to proveadequacy of a speci�cation even when all of the domainknowledge, requirements, and speci�cation components arewritten in an assumption/guarantee style.As part of a benchmark problem for studying the refer-ence model, we used the model checker Mocha [2, 3] to provethe desired properties of the relationship between speci�ca-tion and program (that is, Formula 7). The Mocha con-cept of a reactive model is extremely similar to our referencemodel; reactive models provide for `interface' variables con-trolled by the environment or system, and system-controlledvariables that are hidden from the environment. Formula 7was partially inspired by its appropriateness to the reactivemodule assumptions.6 Illustrations of the ModelThis section provides two `benchmark' applications intendedto be fairly simple but illustrate the concepts underlyingthe reference model. The �rst of them is a data processingproblem and the second is a reactive system.6.1 The wrap programUsers of a Unix-like operating system, in which a �le is asequence of characters, often print �les received as email. If

such a �le contains long lines, the printing utility will `print'them o� the rightmost edge of the paper, where they arelost to the reader. To prevent this annoyance, the userswant a utility program wrap. The primary requirement onwrap is that, if a �le is piped through it before printing,no print line resulting from the �le will be longer than 80characters. Otherwise wrap should change its operand aslittle as possible. This is the user requirement R.In this example the system (P ^M) is the program wrapand its environment is the operating system, particularlythe �le format and print utility. More speci�cally, P mightbe a script, M the semantics of the language in which itwas written, and W the assumptions we need to make aboutprinters. To specify wrap successfully we need the followingknowledge about this printing environment:� In addition to printing characters, �les can contain thenon-printing characters newline and tab.� The print utility recognizes newline characters as com-mands to start a new print line.� The print utility replaces the tab character by 8 spacecharacters in the print line.Armed with this knowledge, we can specify wrap as a �letransducer S that counts the number of characters in eachsubsequence delimited by newlines. In this special count, atab counts as 8 characters, while all other characters countas 1. Wherever this count exceeds 80, wrap inserts a newlinecharacter.The primary point of this example is the di�erence be-tween the requirement and speci�cation for wrap. The re-quirement expresses a constraint on the e�ect of using wrapand print together in a certain way, which is what the usercares about. Consequently, the speci�cation of wrap|whichdoes not mention print|must take into account some knowl-edge of what print does.A secondary point of this example is that the referencemodel makes perfect sense even when the `environment' and`system' with respect to a particular software-developmentproblem are both embedded in a larger computer system.6.2 VTS: The Village Telephone SystemThe Village Telephone System (VTS) is a non-trivial bench-mark system that we created for the purpose of experiment-ing with a fairly complete use of the reference model andour methodology for representing it in HOL. We summarizeit here for illustration and refer the reader to [4] for details.VTS is a service akin to a chat line or an anycast networkservice. The villagers request a communication system thatwill allow them to �nd conversation partners. Rather thanPlain Old Telephone Service (POTS), in which one dials aspeci�c number, they would like the system to attempt to�nd them an arbitrary conversation partner. The villagersdo not care who the partner is so long as an attempt is madeto �nd someone. The requirements insist on this `best e�ort'of the system, but there can be no guarantee that anyonewill answer since all other telephones may be engaged or noone may be home. VTS has a variety of requirements andassumptions about people, sounds, telephones, and commu-nication. These are classi�ed into two modalities: indicativeand optative. Indicative assertions are assumptions aboutthe environment independent of the programming of thetelephone switching system; these are grouped into W andinclude assumptions which will be viewed as axioms relative

to the proof obligations of the reference model. Optativeassertions are the wish list of the villagers concerning theirvillage after the introduction of its communication system.These wishes presumably include objectives that must besatis�ed by the selection of a suitable programming platformM and program P. This wish list is the set of requirementsR; it is presumably consistent with the indicative assump-tions in W. The division between R and W is crucial to ourtreatment of VTS.VTS is modeled as a sequence of rounds in which an envi-ronmental event occurs and the system responds instantly,possibly by changing its state. Villagers may take phoneso�-hook or put them on-hook at any time, modulo the as-sumption (in W) that phones are a toggle. Thus the eventsof going on or o� hook are controlled by the environment.By contrast, the telephone switching system is able to causephones to enter or end an alerting state (that is, start or stop`ringing') and create or terminate connections between pairsof telephones. Figure 3 illustrates some of the possibilities.
Connected

Drooping

?

On Hook

AlertingRequesting

Figure 3: Telephone Events and StateExamples of properties required by the villagers (R) in-clude: o�-hook telephone are never alerting, if a villager an-swers an alerting phone, he will get a connection, villagerscan communicate over connected o�-hook telephones, con-nections will only be broken by one of the parties going onhook, and on-hook telephones do not transmit sounds. Ex-amples of properties that are assumed (W) of the telephonesystem include: connections are in pairs (there are no con-ference bridges), o�-hook connected telephones are capableof transmitting sound, and discconnected telephone are notcapable o� transmitting sound. Some of the requirementsin R follow immediately from assumptions about the do-main, which essentially include assumptions about how theprogramming platform will behave as observed by the en-vironment. Other properties must be satis�ed by the pro-gramming.Although it is possible to omit a speci�cation of theVTS and proceed directly to a program that implementsthe requirements, there is a signi�cant gap between the re-quirements and the programming platform. For instance theswitching system has no direct way of dealing with people orsounds: these are connected to the system through sharedphenomena such as on and o�-hook events, and the domainknowledge. Moreover, a number of di�erent implementa-tions are possible based on di�erent views of how hard thesystem should look for another partner. For instance, eachtelephone could be implemented as a hotline to another tele-phone, always alerting its partner when taken o�-hook ina non-alerting state. At an opposite extreme, an o�-hookevent for a non-alerting phone could be implemented as abroadcast which causes all on-hook telephones in the vil-

lage to alert. An intermediate approach is to alert a singleon-hook telephone, chosen at random. A variation on thistheme is to rotate this choice when no answer is obtained.Another question is the treatment of telephones that areo�-hook but holding one end of a broken connection (suchtelephones are said to be `drooping', see Figure 3): are suchphones now candidates for connection? All of these vari-ations represent possible speci�cations S, which can thenbe re�ned into a speci�c programming approach, generallyladen with more details (for instance, how the selection androtation is carried out based on primitives of M that are notvisible to the environment). Most of these alternatives areconsistent with the villagers' requirements, but care mustbe taken (for instance hotlines is problematic if there are anodd number of telephones), so the speci�cation can serve therole of relieving the writer of P from a need to know aboutW and R, while not over-binding the form of P.The speci�cation can also assist the programmer in thedetection of dead code and other simpli�cations and e�cien-cies. In the VTS example, the most straightforward way towrite the speci�cation is to provide an exhaustive case anal-ysis. However, various system invariants mean that manyof these cases can never arise. For instance, in one of ourspeci�cations there is no more than one alterting telephoneat any time, so the case of multiple alerting telephones neverarises. Code attempting to treat this case can be viewed as`dead' since it will never be entered. It is possible to write alogically equivalent speci�cation that does not break out thecases that are impossible, but treats them uniformally withother similar cases that cannot occur. This second speci�-cation is best shown to satisify the requirements by provingit is equivalent to the more exhaustive version. The obviousimplementations suggested by each of the two speci�cationsare rather di�erent: the most straightforward implementa-tion of the second speci�cation would be more compact be-cause it eliminates some tests and dead code.7 Applications of the ModelThis section described a pair of large scale projects in whichwe are using the reference model. In both cases we havebeen able to make e�ective use of formal support tools forformal descriptions and correctness proofs.7.1 DSP: Translating DSP InstructionsWhen the manufacturer of a line of processors makes achange in its instruction set that causes code written forits old chips not to run on its new chip, then a major prob-lem of legacy code arises. If the legacy code was written in ahigh-level language, then a compiler for the new chip can bewritten and then the legacy code can be recompiled. Oftenthere are hitches in this approach, but they can usually bepatched with less e�ort than it would take to rewrite thelegacy programs for the new chip. This strategy depends onthe availability of high-level languages and adequate compil-ers for the chips in question. Unfortunately there are impor-tant classes of processors for which compiler technology isinadequate; in particular, Digital Signal Processors (DSP's)are such an example. DSP's are processors whose instructionsets are highly tuned to signal processing, and are used indevices like mobile telephones. Such applications often havetiming constraints that are too strict to make it feasible touse compiled code; the programmer must hand-code manyparts of the code, carefully counting the time each instruc-

tion will take. This makes DSP code particularly di�cult towrite, and simultaneously makes it all the more di�cult andmore important not to lose legacy code because of a shift toa new architecture.One approach to maintaining legacy code for a class ofDSPs is to provide a translator from assembly language pro-grams for the old processor to assembly language programsfor the new one. A minimal requirement for such a trans-lator is that the translation of a `well-constructed' programhas the same observable behavior on memory when run onthe new chip as the original program has when run on theold chip provided they are run in comparable well-formedinitial states. Then, as a separate step, one can use varioustechniques to determine whether the translation satis�es thenecessary timing constraints. (This might be obtained `forfree' if the new processor is faster than the old one and thetranslation is reasonable.)This problem can be formulated in accordance with thereference model for a suitable choice of environment andsystem. Here the system can be chosen somewhat narrowlyto include only the translation itself. The concepts of awell-constructed program and its observable behavior are notavailable to the translation program. They are environment-controlled and hidden from the translation system. What isvisible to the translation program is the syntax for assem-bly language programs for each of the processors involved.The only value controlled by the system that is visible tothe world is the translation itself. System controlled, envi-ronment hidden concepts would include programming con-structs for the programming language in which the transla-tion program is written. Over each assembly language, wecan de�ne an evaluation relation describing how the execu-tion of a program transforms the state of the processor onwhich it is run. We can also de�ne what it is for a programto be typable, what it is for an initial state to be well-formed,and what the visible components of a state of a processorare. Domain knowledge then tells us that all reasonably well-constructed programs are typable, and links the observablebehavior of a program to the visible components of the resultof its evaluation in a well-formed initial state.The speci�cation of this system (the translation pro-gram) may be given at a variety of levels. A high-level spec-i�cation may simply indicate that if we evaluate a programin a well-formed initial state for the old chip, the visiblecomponents of the �nal state are the same as if we evaluatethe translation of the program in a comparable well-formedinitial state on the new chip. A lower-level speci�cationcould provide a translation of instructions on the old pro-cessor into those on the new processor. The high-level spec-i�cation is valuable because it leaves maximum
exibilityfor the programmer to write the translation program, forexample allowing him to optimize the output code to takebest advantage of the new architecture. It has the disadvan-tage, however, of not giving much information about how towrite an implementation. On the other hand, the lower-levelspeci�cation tells the programmer precisely what program towrite, providing very little freedom. Such a low-level speci-�cation will disallow future versions that take advantage ofimproved optimization techniques. To get the best of bothworlds, it is possible to give speci�cations of both kinds andthen prove that the low level speci�cation is a re�nement(in the sense of 9) of the high level speci�cation. Sincethis notion of re�nement is transitive, if we further re�nethe low-level speci�cation to an implementation, then theimplementation will also be a re�nement of the high levelspeci�cation.

7.2 DFC: Distributed Feature CompositionIt has proven extremely di�cult to �nd satisfactory speci�-cation techniques for telecommunications systems [18]. Thebehavior of such a system is de�ned by an ever-expandingset of features, and these features interact extensively. Noone has been able to specify feature sets in a way that is suf-�ciently modular, complete, consistent, and comprehensiblefor use on a practical scale.As an alternative to attacking a seemingly unsolvableproblem, it may be more productive to try a di�erent prob-lem. The DFC architecture [11] attempts to provide a way todescribe feature sets that is modular, complete, comprehen-sible, and can be checked for consistency and other desirableproperties. Its disadvantage from a formal perspective isthat these descriptions are not pure speci�cations|they arearchitectural descriptions including many phenomena andbehaviors that are internal to the telecommunications sys-tem.The primary characteristic of the DFC architecture isthat each feature is implemented by one or two componenttypes, and each external call is processed by a dynamicallyassembled con�guration of components and featureless, two-port internal calls. The resulting con�guration is analogousto an assembly of pipes and �lters, and has the typical ad-vantages of the pipe-and-�lter architectural style: featurecomponents are independent, they do not share state, theydo not know or depend on which other feature componentsare at the other ends of their calls (pipes), they behave com-positionally, and the set of them is easily enhanced [16].In a complete formal treatment of the DFC architec-ture, theory M describes the DFC virtual machine, whichcan support any feature set. It has the capabilities to runfeature-component programs, make featureless internal calls,perform the special DFC routing algorithm (which deter-mines how components are assembled), and provide stor-age/retrieval functions for restricted global data. When aDFC feature set is implemented as a telecommunicationssystem, this virtual machine is mapped onto a physicaltelecommunications network; fortunately the virtual ma-chine is well-adapted to doing this e�ciently.In a complete formal treatment of the DFC architecture,theory P describes the feature set and customers, and actsas a program for a DFC virtual machine. P includes feature-component programs and the data used by the routing al-gorithm. Some of the routing data is customer data; it isconstrained by the feature set, but it actually comes from aprocess called `provisioning' through which customer data isentered into a telecommunications system.Theory W must describe the protocols used on the linesand trunks through which the telecommunications system isconnected to its environment. It may also include informa-tion of a wider scope, such as properties of other telecom-munications systems with which this one interoperates.The requirements R for a telecommunications systemshould concern the behavior that customers can observethrough telephones and other communications devices.There are two practical reasons why R cannot be complete.First, consider telephones that are connected directly to thesystem through dedicated local lines. Since these telephonesare very close to the boundary of the system, any com-plete description of their behavior would be very similar toa complete speci�cation, which we do not have. Second,consider telephones that are connected to this system onlythrough another telecommunications system, as residentialtelephones are typically connected to a long-distance net-

work through a local network. Since these telephones arevery far from the boundary of our system, our system hasvery incomplete and indirect control over how they behave.Thus R is not a complete set of requirements, but rathera set of generally desirable properties that act as partial re-quirements and a `sanity check' on everything else. One ofthe most useful kinds of requirement is a `non-interference'property derived from a description of an important feature.It states that a particularly crucial property of this featureis unconditionally true for the system as a whole, and isnever interfered with by less important features. For exam-ple, a customer who calls a `free' number should never incurcharges of any kind when doing so.Normally, to prove such a property from R, we wouldinvoke the theories W and S. In this case there is no S, so itsplace must be taken by the conjunction of P and M. whichnormally imply S rather than substituting for it.8 AnalysisRelative consistency (Formula 5) is a non-trivial proof obli-gation and is known to have some drawbacks in modeling.The property is sometimes called the `input enabled' as-sumption because it asserts that any collection of environ-ment actions permitted by the domain assumptions mustbe dealt with by the system. What happens if the systemis able to perform an action that prevents an environmentevent from happening, and this capability falls within thescope of the speci�cation (and programming) rather thanthe domain knowledge? In this case Formula 5 may be toostrong. To see this concretely, let us consider the zoo ex-ample studied in [10]. We set up the example, describe theproblem, and then consider possible approaches to its solu-tion.The aim is to write a program for controlling the turn-stile of a zoo to satisfy the requirement that the number ofpeople who enter does not exceed the number of paymentsreceived. The designated terminology shared between theenvironment and system consists of �ve terms. Three ofthese are controlled by the environment:� push(e): at event e, a visitor pushes the turnstilethrough a rotation,� coin(e): at event e, a coin is received, and� enter(e): at event e, a visitor moves past the turnstileto enjoy the zoo.The �rst and second of these are visible to the system, whilethe third is not. There are two designated terms controlledby the system:� lock(e): at event e, the system locks the turnstile, and� unlock(e): at event e, the system unlocks the turnstile.Thus eh is enter and ev is push, pay and sv is lock, un-lock. The system is modeled by an ordering of these kinds ofevents. The domain knowledge W says that it is impossibleto push if the turnstile is locked. Various di�erent speci�-cations are able to meet the requirement. The obvious oneis to alternate payments with pushes, but it is also possibleto allow a sequence of payments followed by a sequence ofpushes. Some approaches, like allowing a push followed bya payment, would allow the environment to perform eventsthat would violate the requirements (eg. there is no domainassumption about the honesty of the visitors).

Let us assume that S is the alternating admission spec-i�cation: a push is allowed only if preceded by a payment.Although this seems like a perfectly reasonable solution, it isnot hard to see that it is not relatively consistent in the senseof Formula 5! To see why, suppose that e is the sequenceof events in which visitors push without paying. There is achoice of s that is consistent with this: it unlocks the turn-stile and never locks it again. Thus we satisfy the hypothesis9s: W . However, the conclusion 9s: W ^ S is not satis�edfor this choice of e: it is not considered an acceptable se-quence of events according to the requirements R. Nothingabout Formula 5 takes into account the possibility that theremay be sequences of environment-controlled events that areconsistent with some system behavior, but not with the be-havior that has been speci�ed.The problem here can be viewed in two ways: the refer-ence model property of relative consistency is too strong, orwe have not modeled this particular problem properly. Torepair the example is possible: control needs to be changedso that the system controls pushing. Indeed, this prob-lem can always be addressed by dividing shared phenom-ena so that the environment performs a `request' event andthe system responds with a `permit' event. Here the pushdesignation shifts from environment-controlled to system-controlled.This strategy seems unnatural to us; it complicates theapplications in order to simplify the description of the ref-erence model obligations. In the zoo example the resultis quite displeasing: the locking and unlocking of the gateseem to become irrelevant since the system apparently hasdirect control of whether an entry occurs. The thing overwhich the system really does have control|the ability tolock and unlock|has been suppressed to a lower level infavor of a request/permit abstraction. We are investigat-ing approaches to weakening relative consistency to allowthe possibility that environment events are predicated onproperties of prior environment and system events. This ap-proach is only necessary for reactive systems, since there isno problem with data processing applications such as wrapand DSP. Moreover, there are clearly reactive systems likeVTS and the numerous signi�cant systems modeled usingthe Functional Documentation model [17, 15] that can usethe stronger criterion. Details of our progress on an alter-native are beyond the scope of this paper.9 ConclusionsThe reference model described here is meaningful whetheror not one is using a formalization like HOL or a modelchecker. The proof obligations are just as sensible fornatural-language documentation as they are for formal spec-i�cations. Moreover, there is no absolute requirement thatthe proof obligations be met in the sense of automated the-orem proving. On the contrary, the applications we studiedhave bene�ted signi�cantly just from the clarity of know-ing what the objective of a component of the model shouldbe, even without formalization, let alone machine-assistedproof. However, our description is precise enough to sup-port quite formal analyses such as the one we carried outfor VTS. On the whole we think it makes a useful contribu-tion to understanding software artifacts and methodologiesat a quite general level without surrendering mathematicalprecision.

AcknowledgementsWe would like to express thanks to Rajeev Alur, KarthikBhargavan, Trevor Jim, and Insup Lee, Davor Obradovicfor their input to this work.References[1] Martin Abadi and Leslie Lamport. Conjoining speci�ca-tions. ACM Transactions on Programming Languagesand Systems, 17(3):507{534, May 1995.[2] R. Alur and T.A. Henzinger. Reactive modules. InProceedings of the 11th IEEE Symposium on Logic inComputer Science, pages 207{218, 1996.[3] R. Alur, T.A. Henzinger, F. Mang, S. Qadeer, S. Ra-jamani, and S. Tasiran. Mocha: Modularity in ModelChecking. To appear in the Conference on ComputerAided Veri�cation, 1998.[4] Karthikeyan Bhargavan, Carl A. Gunter, Elsa L.Gunter, Michael Jackson, Davor Obradovic, andPamela Zave. The village telephone system:A case study in formal software engineering.www.cis.upenn.edu/ ~hol/ vts.ps, March 1998.[5] K. Mani Chandy and Jayadev Misra. Parallel programdesign: A foundation. Addison-Wesley, 1988.[6] C. C. Chang and H. J. Keisler. Model Theory, volume 73of Studies in Logica and the Foundations of Mathemat-ics. North-Holland, 1973.[7] Michael J.C. Gordon and Tom F. Melham. Introductionto HOL: A theorem proving environment for higher or-der logic. Cambridge University Press, 1993.[8] M.J.C. Gordon. HOL { A Proof Generating Systemfor Higher-Order Logic. In Proc. Hardware Veri�cationWorkshop, Calgary, Canada, 1987.[9] Michael Jackson and Pamela Zave. Domain descrip-tions. In Proceedings of the IEEE International Sympo-sium on Requirements Engineering, pages 56{64. IEEEComputer Society Press, 1992.[10] Michael Jackson and Pamela Zave. Deriving speci�ca-tions from requirements: An example. In Proceedingsof the Seventeenth International Conference on Soft-ware Engineering, pages 15{24. IEEE Computer Soci-ety Press, 1995.[11] Michael Jackson and Pamela Zave. Distributed featurecomposition: A virtual architecture for telecommuni-cations services. Submitted for publication, September1997.[12] Leslie Lamport. The temporal logic of actions. ACMTransactions on Programming Languages and Systems,16(3):872{923, May 1994.[13] Stephen A. Maguire. Debugging the Development Pro-cess: Practical Strategies for Staying Focused, HittingShip Dates, and Building Solid Teams. Microsoft Press,1994.[14] C. Mazza, J. Fairclough, B. Melton, D. de Pablo,A. Sche�er, and R. Stevens. Software Engineering Stan-dards. Prentice Hall, 1994.

[15] David Lorge Parnas and Jan Madey. Functional docu-mentation for computer systems. Science of ComputerProgramming, 25:41{61, October 1995.[16] Mary Shaw and David Garlan. Software architecture:Perspectives on an emerging discipline. Prentice-Hall,1996.[17] A. John van Schouwen, David Lorge Parnas, and JanMadey. Documentation of requirements for computersystems. In Proceedings of the IEEE International Sym-posium on Requirements Engineering, pages 198{207.IEEE Computer Society Press, 1992.[18] Hugo Velthuijsen. Issues of non-monotonicity infeature-interaction detection. In K. E. Cheng andT. Ohta, editors, Feature Interactions in Telecommu-nications III, pages 31{42. IOS Press, 1995.[19] Pamela Zave and Michael Jackson. Four dark corners ofrequirements engineering. ACM Transactions on Soft-ware Engineering and Methodology, 6(1):1{30, January1997.

