A Reference Model for Requirements and Specifications

Carl A. Gunter

University of Pennsylvania

FElsa L. Gunter
Bell Labs

*

Michael Jackson
AT&T Laboratories

Pamela Zave
AT&T Laboratories

April 16, 1998

Abstract

We define a reference model for applying formal methods
to the development of user requirements and their reduc-
tion to behavioral specification of a system. The approach
is characterized by its focus on the shared phenomena that
define the interface between the system and the environment
in which it will operate and on how the parts of this inter-
face are controlled. This paper extends our previous work
on this model by representing it in higher-order logic and
determining some of its key mathematical ramifications. In
particular, we introduce a new form of refinement which is
pivotal to defining the desired soundness and consistency
properties precisely. We illustrate the consequences of these
advances for two benchmark problems and for applications
of the model in projects at AT&T and Lucent.

1 Introduction

There are a collection of artifacts that commonly arise in
programming projects. Among these are the program it-
self, of course, and also the document that describes the
requirements of the software. This requirements document
may have been written before the software was built, revised
as coding was underway, and revised again after the soft-
ware was tested. Requirements often fall into two categories:
those intended to be understood by people who commission,
pay for, or use the software, and those intended to communi-
cate to programmers what must be coded. These documents
are sometimes distinct, receiving distinguishing names like
‘customer specification document’ versus ‘feature specifica-
tion document’. The distinction also appears in standards;
for instance, the software standard of the European Space
Agency [14] distinguishes between the ‘User Requirements
Specification’ and the ‘Software Requirements Specification’,
mandating complete documentation of each according to
various rules. In other cases, by contrast, this distinction
is less emphasized. For instance [13], which discusses soft-
ware engineering for some of the groups at Microsoft, argues
that the difficulty of keeping a technical specification con-
sistent with the program is more trouble than the benefit
merits. A wide range of views can be found in the literature
and the many organizations that write software.

Is it possible to bring these various artifacts into greater
relief and study their properties in a general way, given the
wide variations in the use of terms and the many different
kinds of software being written? In this paper we attempt

*Email: gunterQcis.upenn.edu, elsa@research.bell-labs.com,
jacksonma@acm.org, pamela@research.att.com.

to describe what one might call a reference model for cer-
tain key artifacts arising in software projects. The aim is
to provide a framework for talking about these artifacts,
their attributes and relationships at a general level, but pre-
cisely enough that one can rigorously analyze substantive
properties. Reference models have a time-honored status in
computer science. One very well-known example is the ISO
7-Layer Reference Model, which divides network protocols
into seven layers. The model is informal, and does not corre-
spond perfectly to the protocol layers in widespread use, but
one will still find it discussed in virtually every basic text-
book on networks, and the model itself is very widely used
to describe network architectures. The ISO 7-layer model
was successful because it drew on what was already under-
stood about networks and was made general enough to be
very flexible. We hope the reference model we describe can
provide some of these kinds of benefits to software engineer-
ing.

Our model is based on five familiar artifacts classified
broadly into those that pertain mostly to the system ver-
sus those that pertain mostly to the environment. These
artifacts are:

Domain Knowledge provides presumed facts about the
environment,

Requirements indicate what the customers need from the
system, described in terms of its effect in the environ-
ment,

Specifications provide enough information for a program-
mer to build a system to satisfy the requirements,

Program implements the specification on the program-
ming platform,

Programming Platform provides the basis for program-
ming a system to satisfy the requirements and specifi-
cations.’

If these are denoted W, R, S, P, and M respectively, then
their classification is given by the Venn diagram in Figure 1.
Most of this paper will discuss the special role of the spec-
ification, S, which occupies the middle ground between the
system and its environment. We hope to carry out a formal
analysis, describing the relations that S must satisfy and

'Sometimes the system is construed to include such things as the
procedures employed by people who use the software. In this case
the people are also programmable and their program is this set of
procedures. In this paper we will focus primarily on programming
computer platforms.

Environment @m System

Figure 1: Five Software Artifacts

grounding this analysis in a series of examples, and a com-
parison of this work to similar attempts to formally analyze
this interface.

The paper is divided into nine sections. After this intro-
duction we describe the concepts of designation and control
(Section 2) in preparation for laying out the key proof obli-
gations of the model (Section 3). These obligations are key
to the meanings of the components and are just as important
and useful for informal applications of the reference model as
they are for formal ones. We then discuss the role of spec-
ifications as the bridge between environment and system,
again giving the fundamental proof obligations (Section 4).
Section 5 discusses related work, including a detailed com-
parison of our model with the well-known Functional Doc-
umentation model [17, 15] (sometimes called the ‘four vari-
ables’ model). The next two sections provide case studies,
first based on benchmark illustrations (Section 6), and then
based on significant projects where we are using the refer-
ence model (Section 7). After this there is some analysis
(Section 8) and a brief set of conclusions (Section 9).

2 Designations

The WRSPM (Figure 1) artifacts may be viewed primar-
ily as descriptions written in various languages, each based
on its own vocabulary of primitive terms. Some of these
terms will be shared between one or more of the WRSPM
descriptions. To understand the relationships between the
WRSPM descriptions, it is essential to understand how the
division between environment and system is reflected in the
terms used in them. This will determine the key concept of
control, which will form the basis of a theory of refinement
described in a later section. This theory of refinement is the
basic set of relations between the artifacts.

The distinction between environment and system is a
classic engineering issue which is sometimes regarded as a
matter of taste and convenience but has a profound effect
on the analysis of a problem. The reference model demands
a clarification of the primitive terms that are used in the
WRSPM artifacts. This clarification is so important that it
should be viewed as a sixth artifact in the reference model:
the designated terminology provides names to describe the
application domain (environment), the programming plat-
form with its software (system) and the interface between
them.

Designations identify classes of phenomena typically
states and events and individuals—in the system and the en-
vironment, and assign formal terms (names) to them. Some
of these phenomena are phenomena belonging to the envi-
ronment and controlled by it: we will denote this set by e.
Some are phenomena belonging to the system and controlled
by it: we will denote this set by s.

At the interface between the environment and the sys-
tem, some of the e phenomena are wvisible to the system: we
will denote this subset of e by ev; its complement in e are
hidden from the system, and we will denote this set by eh.
Similarly, at the interface between the environment and the
system, some of the s phenomena are visible to the environ-

ment: we will denote this subset of s by sv; its complement
in s are hidden from the environment, and we will denote
this set by sh.

Terms denoting phenomena in eh, ev and sv are said to
be wvisible to the environment; they are used in W, R and S.
Terms denoting phenomena in sh, sv and ev are said to be
visible to the system; they are used in S, P and M. Figure 2
shows the relationships among the four sets of phenomena.

Environment System

apap

D visbility < Control

Figure 2: Visibility and Control for the Designated Terms

A small example will help with understanding some of
the ideas in the reference model. We describe a simple ver-
sion of the Patient Monitoring System in our terms. The
requirement R is a warning system to notify a nurse that
the heart-beat of a patient has stopped. To do this, there
is a programming platform M with a sensor that is able to
detect sound on the patient’s chest and an actuator capable
of sounding a buzzer. This can be programmed P to sound
the buzzer based on data received from its sensor. There is
also some knowledge of the world W which says that there
is always a nurse close enough to the nurse’s station to hear
a buzzer sounded there, and that if the patient’s heart has
stopped, then the sound on the patient’s chest falls below
a threshold for a certain time. The designated terminology
falls into four groups, referring to Figure 2.

e System hidden (that is, hidden from the system) and
environment controlled (eh): the nurse and the heart-
beat of the patient.

e System visible (that is, visible to the system) and en-
vironment controlled (ev): sounds from the patient’s
chest.

e Environment visible and system controlled (sv): the
buzzer at the nurse’s station.

e Environment hidden and system controlled (sh): in-
ternal representation of data from the sensor.

The specification S, which is expressible in the language com-
mon to the environment and system, says that if the sound
from the sensor falls below the appropriate threshold, then
the system should sound the buzzer.

The treatment so far of the reference model does not
mention any particular language in which the artifacts are
described. Generally they will be described by different lan-
guages. To characterize the relations precisely, however, it
will be convenient to use a single language in which others
can be embedded. For this we choose a version of Church’s
Higher Order Logic. There are a variety of reasons for the
choice, but the most important of these are the fact that it
is an expressive language for which there is a great deal of
experience with modeling computer systems and embedding
languages. There is also automated support in the form of
the HOL interactive theorem-proving system [8, 7], which
we have used extensively in our experiments. A final reason

is that we found the higher-order aspect of the logic conve-
nient for scalability in our applications and helpful in writing
down the proof obligations of the reference model.

Some notational background is essential for the rest of
the paper. If ev = {x1,...,z,}, then a formula Vev. ¢ means
the same as Vz1,...,Zy,. ¢ for some ordering of the variables
in ev. It is usually not necessary to distinguish between eh
and ev directly in our formulas so we will use e = eh U ew.
Similarly we take s = sh U sv. We assume that e and s
are disjoint, an assumption we will analyze later. We use
HOL notational conventions in the paper and hope they are
sufficiently obvious that no background is needed beyond
what we give here together with some general knowledge of
logic. The ‘dot’ notation requires some care: a dot following
a quantification means that the scope of the quantification
goes as far to the right as the parentheses allow. For instance
(3z. A= B) A C is the same as (3z. (A= B)) AC.

3 Relationship between Environment and System

The basic intuition behind our treatment is that the pro-
gram and the world each have a capacity for carrying out
events, or perhaps remaining inert. The world W provides
restrictions on the actions that can be performed by the en-
vironment. These can be understood as restrictions on e or
on the relationship between e and sv. The requirements R
describe an additional set of restrictions saying which of all
possible actions are the ones that are desired. The program
P, when evaluated on the programming platform M restricts
the class of possible events.? If this restriction is to a col-
lection of events allowed by R, then the program is said to
implement the requirements. Said in logic, this means:

Ve s. WAMAP =R (1)

That is, all of the events performed by the environment (eh,
ev) and all of events (sv, sh) performed by the system, taken
together, are events allowed by the requirements. We call
this property adequacy. Adequacy would be trivially sat-
isfied if the assumptions about the environment mean that
there is no set of events that could satisfy its hypothesis.
We therefore need some kind of non-triviality assumption.
First of all, we would like the domain assumptions to be con-
sistent. Consistency is asserted by existential quantification
over the free variables of the formula. The desired property
is:

de s. W (2)

and we call this consistency (of domain knowledge). (Note
that this is the same as 3 eh ev sv. W since the variables sh
do not appear in W.) Clearly we want consistency of W, P,
M together, but there is something more that is needed, a
property that says that any choice of values for the environ-
ment variables is consistent with MAP if it is consistent with
assumptions about the environment. The desired property
is called relative consistency:

Ve. (3s. W) = (3s. WA M A P) (3)

Note that the witness to the existential in the conclusion can
be the same as the witness in the hypothesis.

Relative consistency merits some appreciation since there
are a variety of ways to get the wrong property. It is a

20f course, programs and programming platforms are not usually
presented as HOL formulas. Here one should think of P and M as the
formulations of these artifacts in logic.

significant contribution of [15], to which we will compare
our work later. Let M’ = M A P, and consider the property

Jes. WA M’ (too weak)

This says that there is some choice of the environment events
that makes the system consistent with the environment.
Clearly this is too weak, since the environment may not be
so obliging as to use only this consistent set of events. How-
ever, this formula clearly should hold, and it does indeed
follow immediately from consistency of the domain knowl-
edge (Formula 2) and relative consistency (Formula 3). The
following;:

Ve s. W= M’ (too strong)

is much too strong since it means that any choice of po-
tential system behavior (s) that W accepts must also be
accepted by the system to be built (M'). An apparently
modest weakening:

Ve Jsv. W = M’ (now too weak)

is too weak because, given an environment action, it allows
the system to do anything it chooses to if there is a cor-
responding value for the system actions that invalidate the
domain knowledge.

4 Specifications

Let us suppose now that we wish to decompose the process
of implementing a requirement into two parts. A first part
in which requirements are developed, and a second part in
which the programming is carried out. These tasks may
be done by two largely different groups of people, the first
being the users (vendees of the software for example) and
the second being the programmers (vendors of the software
perhaps). It is often desirable to filter out the knowledge of
W and R that truly concerns the people who will work on
developing P (for the programming platform M) and deliver
this as a specification of the software to be built. A kind
of tramsitive property is relied upon to ensure the desired
conclusion: if S properly takes W into account in saying
what is needed to obtain R, and P is an implementation of
S for M, then P implements R as desired. There are several
reasons for wanting such a factorization. A common one is
the need to divide responsibilities in a contract between the
needs of the user and supplier: they build their deal around
S, which serves as their basis of communication. But how
can we represent this precisely? Is it alright just to say that
S and W imply R, while M and P imply S? This is close
and provides a good intuition, but the situation is not that
simple. Consistency and control must be properly accounted
for.

4.1 Proof Obligations

Before we begin to describe proof obligations, we make one
stipulation: the specification S must lie in the common vo-
cabulary of the environment and system. That is, the free
variables of S must be among those in ev and sv, and there-
fore cannot include any of those in eh or sh. Since the spec-
ification is to stand proxy for the program with respect to
the requirements, it clearly should satisfy the basic proper-
ties that the program did. That is, there should be adequacy
with respect to S:

Ves. WAS =R (4)

and there should be relative consistency for S:
Ve. (3s. W) = (3s. WAS) (5)

It should be noted that the relative consistency of R with
respect to W follows from (4) and (5):

Ve. (3s. W) = (3s. WAR) (6)

The aim now would be to create a ‘developer-side’ set
of criteria which, when taken together with ‘user-side’ cri-
teria like Formulas 1 and 3, would imply the desired rela-
tionship between the requirements and the implementation.
It is tempting to derive these conditions by attempting an
analogy using Formulas 1 and 3 as a template but shifting
one’s perspective to view M as analogous to domain knowl-
edge, S as analogous to requirements; and P as analogous to
the specification. The scope of this paper does not permit
a detailed treatment of this approach, but suffice it to say
that the result is both too strong and too weak. It is too
strong because it would demand that the program needs to
satisfy various properties even for cases the environmental
assumptions view as impossible. It is too weak because it
does not ensure the consistency of W and M. A new condi-
tion is needed; one that implies Formulas 1 and 3, but makes
reasonable assumptions about what must be true of S.

Our investigations have led us to a key set of proof obli-
gations that works well with the case studies we have car-
ried out and also provides a clean logical treatment. This
set of conditions is derived from a key relation which we
introduce below for those who are interested in the logical
essence of the contribution. Our conditions are essentially
a strengthening of relative consistency to insist that they
include enough information about the domain knowledge to
enable a developer to write an acceptable program. At first
blush, one could simply ask that all of W be included in S.
Indeed this would work, and the desired transitivity would
follow, provided the designations used in W are all visible to
the system. In essence, the specification S must find a way
to use system-visible designations to provide the developer
with all of the information that is needed about the assump-
tions in W. If this cannot be done, it probably means that
the programming platform lacks the kinds of inputs (sensors)
and outputs (actuators) needed to satisfy the requirements.
Our condition replaces relative consistency (Formula 3) with
two conditions. The first of these is environment-side refine-
ment:

Ve. (3s. W) = (3s. S) A (Vs. S = W) (7)

which is the proof obligation of those who reduce the re-
quirements and domain knowledge to a specification. The
second is system-side refinement:

Ve. (3s.S) = (3s. MAP) A (Vs. (MAP)=S) (8)

which is the proof obligation of those who implement the
specification.

Formulas 7 and 8 are almost the same as relative con-
sistency except for the added constraints that S = W and
P = S. These extra obligations are not just a technical
convenience; they are essential for the practical application
of the reference model. To see why they are necessary in
a concrete way, consider the case where we have a ‘good’
specification S; that is relatively consistent with respect to
the domain knowledge W, and is adequate to guarantee the
requirements R. Now also consider a ‘bad’ specification S
that is everywhere inconsistent with the domain knowledge

(we will provide an example of this kind in Section 5). If
we let S =51 V .Sy, then S is also relatively consistent (For-
mula 5) and adequate (Formula 4). However, if we turned
it over to a programmer who built a system satisfying S»,
the system would also satisfy S, but it would break as soon
as it was deployed in the intended environment. The ex-
tra strength of Formulas 7 and 8 prevent this problem from
arising.

4.2 A Logical Account

Some basic properties of the proof obligations are essential.
We give a brief account, but the reference model can be
used both informally and formally without knowing these
technical details.

A classic theorem of mathematical logic is the Craig In-
terpolation Theorem (see Theorem 2.2.20 of [6]). It says that
if ¢ and ¥ are closed first order formulas such that ¢ implies
¢, then there is a closed first order formula 6, in the com-
mon language of ¢, such that ¢) implies 6 and € implies .
The formula 6 is called a Craig Interpolant for ¢ and . In
our context, the specification can be viewed as a common-
language interpolant between the environment and system
but based on a different concept of interpolation. To define
the relation we do use, partition the variables into two dis-
joint sets e and s. We induce a relation > on formulas ¢, ¢
whose free variables lie among e U s as follows:

¢ >piff Ve. 3s. ¢) = (3s. Y) A (Vs. v = @). (9)

In this case we say that v is a predicated consistent refine-
ment of ¢. It is obvious that this relation is stronger than
relative consistency. It is somewhat less obvious that it de-
fines a poset ordering on logical equivalence classes of for-
mulas. First of all; it is clear that ¢ > ¢. Moreover, if ¢ > ¢
and ¢y > ¢, then | ¢ < 1. But, in particular, the relation
is transitive: if ¢ > v > 6 then ¢ > 6. This is the key fact
needed to carry out a sequence of refinements without the
need for ‘global’ knowledge of the components. To see this,
note that Formula 7 says S is a predicated consistent refine-
ment of W, so Formula 5 follows from this. Formula 8 says
that the implementation M A P is a predicated consistent
refinement of S. By transitivity we therefore learn that the
implementation is a predicated consistent refinement of the
domain assumptions so we obtain relative consistency of the
program with respect to domain knowledge (Formula 3).

4.3 Summary

Formulas 1, 2, and 3 are our principle proof obligations.
They can be proved by defining a specification S and showing
2,4, 7 (on the environment side), and 8 (on the system side).

5 Related Work

The reference model is a more formal and more complete
version of some of our earlier work [9, 10, 19]. Before look-
ing at applications using the approach described here, we
pause to look in some detail at some of the most well-known
formulations of something like the WRSPM artifacts and
their relationships.

There are many similarities between our reference model
and the Functional Documentation model of Madey, Parnas,
and van Schouwen [17, 15]. Finding a precise comparison be-
tween the two is a little tricky because our reference model,
for clarity and broadest applicability, demands that there

be a sharp dividing line between what exists and what is
to be built (from the perspective of the particular project
at hand). In the Functional Documentation model, on the
other hand, there is a third category representing an inter-
mediate phase of engineering. This third category is occu-
pied by the predicate IN(m, i), describing the behavior of
input or sensor devices in translating monitored quantities
m to input values i, and by the predicate OUT (o, ¢), describ-
ing the behavior of output or actuator devices in translating
output values o to controlled quantities c.

Thus we shall have to make two comparisons, one in
which the devices are regarded as part of the system in our
reference model, and one in which they are regarded as part
of the environment. In both comparisons the Functional
Documentation model is more or less a special case of the
reference model.

In the Functional Documentation model, there are four
distinct collections of variables: m for monitored values, ¢ for
system controlled values, ¢ for values input to the program’s
registers, and o for values written to the program’s output
registers. If the I/O devices are regarded as part of the
system, then both the phenomena ¢ and the phenomena o
belong to our category sh. The monitored phenomena m are
the same as our ev phenomena, the controlled phenomena
¢ are the same as our sv phenomena, and there are no eh
phenomena in the Functional Documentation model.

Also in the Functional Documentation model, there are
five predicates formally representing the necessary docu-
mentation: NAT(m,c) describing nature without any as-
sumptions about the system, REQ(m,c) describing the de-
sired behavior of the system (including sensors and dis-
plays), IN(m, ¢) relating the real-world values monitored to
their corresponding internal representation, OUT (o, ¢) relat-
ing the internal values to be output to the actual values
displayed, and SOF(i, 0) representing the program comput-
ing outputs from inputs. Still viewing the I/O devices as
part of the system, the predicate NAT (m,c) corresponds to
our domain knowledge W, and the predicate REQ(m, ¢) cor-
responds to our requirements R. NAT and REQ are more
restricted than W and R, however, because they can only
make assertions about those phenomena of the environment
that are shared with the system. In fact, REQ corresponds to
the specification, S, as well as to R. The predicate SOF(i, 0)
corresponds to the program P. IN(m,i) and OUT(o,c¢) to-
gether correspond to the programming platform M, except
once again they are more restricted, for they are only allowed
to indicate the relationship between sensors and internal reg-
isters of the program.

Now we consider the proof obligations of the Functional
Documentation model. One group says that REQ and IN
must cover all situations that are physically possible:

Vm. (3e. NAT(m,c)) = (Je. REQ(m, ¢))
Vm. (3c. NAT(m,¢)) = (Fi. IN(m, 7)).

These are consequences of relative consistency for S (For-
mula 5) and relative consistency for M A P (Formula 3).
There are additional proof obligations of showing that SOF
and OUT must cover all possible situations:

Vi. (3m. IN(m,i)) = (Jo. SOF(i,0))
Vo.(Fi. SOF(i,0)) = (3c.0OUT (o, ¢)).

These proof obligations are not a part of our reference model,
but they are approximated by our proof obligation that the
combination of the program and the programming platform
be relatively consistent with the domain knowledge (Formula

3). The Functional Documentation model does not actually
require this relative consistency. We shall say some more on
this later.

There are two more proof obligations of the Functional
Documentation model: their acceptability obligation

VYm i o c.
NAT (m,c) A IN(m,3) A SOF(i,0) A OUT (o, c)
= REQ(m, ¢)

is exactly the adequacy of M A P (Formula 1), and their
feasibility obligation

Vm. (3¢. NAT(m,c)) = (3e. NAT (m, ¢) A REQ(m, ¢))

is both the relative consistency of S and R (Formulas 5 and
6), since REQ is both R and S. The consistency of W or
NAT (Formula 2) is not mentioned in the Functional Doc-
umentation model, presumably because NAT is expected to
be expressed in a form that makes its consistency obvious.
Our proof obligation of adequacy of S (Formula 4) is vacuous
because S is the same as R.

Shifting to the second comparison, in which the devices
are regarded as part of the environment, i is exactly the
same as our phenomena ev and o is exactly the same as our
phenomena sv. Our phenomena eh corresponds to the union
of their phenomena m and ¢, but m and ¢ are more restricted
because they must be distinct and also ‘close’ to the system
in the sense of having a direct relationship through IN and
OUT with the shared phenomena i and o.

With this correspondence between the two models, their
domain knowledge W must be decomposed into three parts
NAT (mn, ¢), IN(m, i), and OUT(o,c). REQ corresponds to R
but is more restricted because it can constrain m and c only.
SOF (%, 0) corresponds exactly to S.

Concerning the proof obligations of the reference model,
even assuming that each part of the Functional Documen-
tation model is consistent by construction, and that all the
proof obligations of the Functional Documentation model
are satisfied, that is still not enough to guarantee our rela-
tive consistency property. In this context the relative con-
sistency of S with respect to W takes the form

Y miec.
(3 0. NAT(m,c) A IN(m,i) A OUT(o,c)) =
(3 0. NAT(m,c) A IN(m,i) A OUT(o,¢) A SOF(i,0))

To see why it is not guaranteed, let all the variables be
real-valued functions of time, and let the various predicates
be defined as:

NAT: (Y t. c(t) > 0) A (Yt m(t) < 0)
REQ: V t. ¢(t+3) = —mf(t)

IN: V& m(t) > i(t+1)

SOF: V t. i(t) > o(t+1)

OUT: VYt o(t) > c(t+1)

Each predicate is consistent, and those that need to be im-
plemented are readily implementable, since they establish
relationships between their inputs at one time and their out-
puts at a later time. They satisfy all the proof obligations
of the Functional Documentation model, yet they are not
realizable because

=(3mioc. NAT(m,c) A
IN(m,i) A OUT(o,¢) A SOF(i,0))

Note that the acceptability obligation is satisfiable only be-
cause the antecedent of its implication is always false.

This example is equally problematic if we view the I/O
devices as part of the system, instead of as part of the en-
vironment. In that case we do have the relative consistency
of the specification. What is violated is the relative consis-
tency of the program and programming platform with the
domain knowledge:

Vm. (Je. NAT(m,c)) =
(Fi o c¢. NAT(m,c) A IN(m,i) A SOF(i,0)0UT (o, c))

Once again the example fails to satisfy this.

Like our reference model, the Functional Documentation
model insists on a rigid division between system and envi-
ronment control of designated terminology. Some other sys-
tems, like Unity [5] and TLA [12, 1], leave to the user such
matters as distinguishing environment from system and do-
main knowledge from requirements, but support shared con-
trol of a designated term by system and environment. For
example, in the Unity formalism it is possible to express that
both E and M control a Boolean variable b, but E can only
set it to true while M can only set it to false:

e b is stable in E
e —b is stable in M

Our restricted notion of control, in which each phenomenon
must be strictly environment-controlled or strictly system-
controlled, is easier to document and think about than
shared control. This advantage is perhaps unimportant for
small projects, but it becomes very important in large ones.
Also, the restricted notion of control seems sufficient for re-
quirements and specifications. Shared control is most useful
for coordinating the actions of closely coupled components
in a concurrent algorithm. When necessary, shared control
can be modeled by using two variables one controlled by
the system, the other by the environment—together with an
assertion in W that they must be equal.

The composition and decomposition theorems of TLA [1]
are particularly valuable when parts of the formal documen-
tation are not complete and unconditional (as they are re-
quired to be in the Functional Documentation model). For
example, the TLA composition theorem can be used to prove
adequacy of a specification even when all of the domain
knowledge, requirements, and specification components are
written in an assumption/guarantee style.

As part of a benchmark problem for studying the refer-
ence model, we used the model checker Mocha [2, 3] to prove
the desired properties of the relationship between specifica-
tion and program (that is, Formula 7). The Mocha con-
cept of a reactive model is extremely similar to our reference
model; reactive models provide for ‘interface’ variables con-
trolled by the environment or system, and system-controlled
variables that are hidden from the environment. Formula 7
was partially inspired by its appropriateness to the reactive
module assumptions.

6 lllustrations of the Model

This section provides two ‘benchmark’ applications intended
to be fairly simple but illustrate the concepts underlying
the reference model. The first of them is a data processing
problem and the second is a reactive system.

6.1 The wrap program

Users of a Unix-like operating system, in which a file is a
sequence of characters, often print files received as email. If

such a file contains long lines, the printing utility will ‘print’
them off the rightmost edge of the paper, where they are
lost to the reader. To prevent this annoyance, the users
want a utility program wrap. The primary requirement on
wrap is that, if a file is piped through it before printing,
no print line resulting from the file will be longer than 80
characters. Otherwise wrap should change its operand as
little as possible. This is the user requirement R.

In this example the system (P A M) is the program wrap
and its environment is the operating system, particularly
the file format and print utility. More specifically, P might
be a script, M the semantics of the language in which it
was written, and W the assumptions we need to make about
printers. To specify wrap successfully we need the following
knowledge about this printing environment:

e In addition to printing characters, files can contain the
non-printing characters newline and tab.

e The print utility recognizes newline characters as com-
mands to start a new print line.

e The print utility replaces the tab character by 8 space
characters in the print line.

Armed with this knowledge, we can specify wrap as a file
transducer S that counts the number of characters in each
subsequence delimited by newlines. In this special count, a
tab counts as 8 characters, while all other characters count
as 1. Wherever this count exceeds 80, wrap inserts a newline
character.

The primary point of this example is the difference be-
tween the requirement and specification for wrap. The re-
quirement expresses a constraint on the effect of using wrap
and print together in a certain way, which is what the user
cares about. Consequently, the specification of wrap which
does not mention print—must take into account some knowl-
edge of what print does.

A secondary point of this example is that the reference
model makes perfect sense even when the ‘environment’ and
‘system’ with respect to a particular software-development
problem are both embedded in a larger computer system.

6.2 VTS: The Village Telephone System

The Village Telephone System (VTS) is a non-trivial bench-
mark system that we created for the purpose of experiment-
ing with a fairly complete use of the reference model and
our methodology for representing it in HOL. We summarize
it here for illustration and refer the reader to [4] for details.

VTS is a service akin to a chat line or an anycast network
service. The villagers request a communication system that
will allow them to find conversation partners. Rather than
Plain Old Telephone Service (POTS), in which one dials a
specific number, they would like the system to attempt to
find them an arbitrary conversation partner. The villagers
do not care who the partner is so long as an attempt is made
to find someone. The requirements insist on this ‘best effort’
of the system, but there can be no guarantee that anyone
will answer since all other telephones may be engaged or no
one may be home. VTS has a variety of requirements and
assumptions about people, sounds, telephones, and commu-
nication. These are classified into two modalities: indicative
and optative. Indicative assertions are assumptions about
the environment independent of the programming of the
telephone switching system; these are grouped into W and
include assumptions which will be viewed as axioms relative

to the proof obligations of the reference model. Optative
assertions are the wish list of the villagers concerning their
village after the introduction of its communication system.
These wishes presumably include objectives that must be
satisfied by the selection of a suitable programming platform
M and program P. This wish list is the set of requirements
R; it is presumably consistent with the indicative assump-
tions in W. The division between R and W is crucial to our
treatment of VTS.

VTS is modeled as a sequence of rounds in which an envi-
ronmental event occurs and the system responds instantly,
possibly by changing its state. Villagers may take phones
off-hook or put them on-hook at any time, modulo the as-
sumption (in W) that phones are a toggle. Thus the events
of going on or off hook are controlled by the environment.
By contrast, the telephone switching system is able to cause
phones to enter or end an alerting state (that is, start or stop
‘ringing’) and create or terminate connections between pairs
of telephones. Figure 3 illustrates some of the possibilities.

Connected

Drooping

Figure 3: Telephone Events and State

Examples of properties required by the villagers (R) in-
clude: off-hook telephone are never alerting, if a villager an-
swers an alerting phone, he will get a connection, villagers
can communicate over connected off-hook telephones, con-
nections will only be broken by one of the parties going on
hook, and on-hook telephones do not transmit sounds. Ex-
amples of properties that are assumed (W) of the telephone
system include: connections are in pairs (there are no con-
ference bridges), off-hook connected telephones are capable
of transmitting sound, and discconnected telephone are not
capable off transmitting sound. Some of the requirements
in R follow immediately from assumptions about the do-
main, which essentially include assumptions about how the
programming platform will behave as observed by the en-
vironment. Other properties must be satisfied by the pro-
gramming.

Although it is possible to omit a specification of the
VTS and proceed directly to a program that implements
the requirements, there is a significant gap between the re-
quirements and the programming platform. For instance the
switching system has no direct way of dealing with people or
sounds: these are connected to the system through shared
phenomena such as on and off-hook events, and the domain
knowledge. Moreover, a number of different implementa-
tions are possible based on different views of how hard the
system should look for another partner. For instance, each
telephone could be implemented as a hotline to another tele-
phone, always alerting its partner when taken off-hook in
a non-alerting state. At an opposite extreme, an off-hook
event for a non-alerting phone could be implemented as a
broadcast which causes all on-hook telephones in the vil-

lage to alert. An intermediate approach is to alert a single
on-hook telephone, chosen at random. A variation on this
theme is to rotate this choice when no answer is obtained.
Another question is the treatment of telephones that are
off-hook but holding one end of a broken connection (such
telephones are said to be ‘drooping’, see Figure 3): are such
phones now candidates for connection? All of these vari-
ations represent possible specifications S, which can then
be refined into a specific programming approach, generally
laden with more details (for instance, how the selection and
rotation is carried out based on primitives of M that are not
visible to the environment). Most of these alternatives are
consistent with the villagers’ requirements, but care must
be taken (for instance hotlines is problematic if there are an
odd number of telephones), so the specification can serve the
role of relieving the writer of P from a need to know about
W and R, while not over-binding the form of P.

The specification can also assist the programmer in the
detection of dead code and other simplifications and efficien-
cies. In the VTS example, the most straightforward way to
write the specification is to provide an exhaustive case anal-
ysis. However, various system invariants mean that many
of these cases can never arise. For instance, in one of our
specifications there is no more than one alterting telephone
at any time, so the case of multiple alerting telephones never
arises. Code attempting to treat this case can be viewed as
‘dead’ since it will never be entered. It is possible to write a
logically equivalent specification that does not break out the
cases that are impossible, but treats them uniformally with
other similar cases that cannot occur. This second specifi-
cation is best shown to satisify the requirements by proving
it is equivalent to the more exhaustive version. The obvious
implementations suggested by each of the two specifications
are rather different: the most straightforward implementa-
tion of the second specification would be more compact be-
cause it eliminates some tests and dead code.

7 Applications of the Model

This section described a pair of large scale projects in which
we are using the reference model. In both cases we have
been able to make effective use of formal support tools for
formal descriptions and correctness proofs.

7.1 DSP: Translating DSP Instructions

When the manufacturer of a line of processors makes a
change in its instruction set that causes code written for
its old chips not to run on its new chip, then a major prob-
lem of legacy code arises. If the legacy code was written in a
high-level language, then a compiler for the new chip can be
written and then the legacy code can be recompiled. Often
there are hitches in this approach, but they can usually be
patched with less effort than it would take to rewrite the
legacy programs for the new chip. This strategy depends on
the availability of high-level languages and adequate compil-
ers for the chips in question. Unfortunately there are impor-
tant classes of processors for which compiler technology is
inadequate; in particular, Digital Signal Processors (DSP’s)
are such an example. DSP’s are processors whose instruction
sets are highly tuned to signal processing, and are used in
devices like mobile telephones. Such applications often have
timing constraints that are too strict to make it feasible to
use compiled code; the programmer must hand-code many
parts of the code, carefully counting the time each instruc-

tion will take. This makes DSP code particularly difficult to
write, and simultaneously makes it all the more difficult and
more important not to lose legacy code because of a shift to
a new architecture.

One approach to maintaining legacy code for a class of
DSPs is to provide a translator from assembly language pro-
grams for the old processor to assembly language programs
for the new one. A minimal requirement for such a trans-
lator is that the translation of a ‘well-constructed’ program
has the same observable behavior on memory when run on
the new chip as the original program has when run on the
old chip provided they are run in comparable well-formed
initial states. Then, as a separate step, one can use various
techniques to determine whether the translation satisfies the
necessary timing constraints. (This might be obtained ‘for
free’ if the new processor is faster than the old one and the
translation is reasonable.)

This problem can be formulated in accordance with the
reference model for a suitable choice of environment and
system. Here the system can be chosen somewhat narrowly
to include only the translation itself. The concepts of a
well-constructed program and its observable behavior are not
available to the translation program. They are environment-
controlled and hidden from the translation system. What is
visible to the translation program is the syntax for assem-
bly language programs for each of the processors involved.
The only value controlled by the system that is visible to
the world is the translation itself. System controlled, envi-
ronment hidden concepts would include programming con-
structs for the programming language in which the transla-
tion program is written. Over each assembly language, we
can define an evaluation relation describing how the execu-
tion of a program transforms the state of the processor on
which it is run. We can also define what it is for a program
to be typable, what it is for an initial state to be well-formed,
and what the wisible components of a state of a processor
are. Domain knowledge then tells us that all reasonably well-
constructed programs are typable, and links the observable
behavior of a program to the visible components of the result
of its evaluation in a well-formed initial state.

The specification of this system (the translation pro-
gram) may be given at a variety of levels. A high-level spec-
ification may simply indicate that if we evaluate a program
in a well-formed initial state for the old chip, the visible
components of the final state are the same as if we evaluate
the translation of the program in a comparable well-formed
initial state on the new chip. A lower-level specification
could provide a translation of instructions on the old pro-
cessor into those on the new processor. The high-level spec-
ification is valuable because it leaves maximum flexibility
for the programmer to write the translation program, for
example allowing him to optimize the output code to take
best advantage of the new architecture. It has the disadvan-
tage, however, of not giving much information about how to
write an implementation. On the other hand, the lower-level
specification tells the programmer precisely what program to
write, providing very little freedom. Such a low-level speci-
fication will disallow future versions that take advantage of
improved optimization techniques. To get the best of both
worlds, it is possible to give specifications of both kinds and
then prove that the low level specification is a refinement
(in the sense of 9) of the high level specification. Since
this notion of refinement is transitive, if we further refine
the low-level specification to an implementation, then the
implementation will also be a refinement of the high level
specification.

7.2 DFC: Distributed Feature Composition

It has proven extremely difficult to find satisfactory specifi-
cation techniques for telecommunications systems [18]. The
behavior of such a system is defined by an ever-expanding
set of features, and these features interact extensively. No
one has been able to specify feature sets in a way that is suf-
ficiently modular, complete, consistent, and comprehensible
for use on a practical scale.

As an alternative to attacking a seemingly unsolvable
problem, it may be more productive to try a different prob-
lem. The DFC architecture [11] attempts to provide a way to
describe feature sets that is modular, complete, comprehen-
sible, and can be checked for consistency and other desirable
properties. Its disadvantage from a formal perspective is
that these descriptions are not pure specifications they are
architectural descriptions including many phenomena and
behaviors that are internal to the telecommunications sys-
tem.

The primary characteristic of the DFC architecture is
that each feature is implemented by one or two component
types, and each external call is processed by a dynamically
assembled configuration of components and featureless, two-
port internal calls. The resulting configuration is analogous
to an assembly of pipes and filters, and has the typical ad-
vantages of the pipe-and-filter architectural style: feature
components are independent, they do not share state, they
do not know or depend on which other feature components
are at the other ends of their calls (pipes), they behave com-
positionally, and the set of them is easily enhanced [16].

In a complete formal treatment of the DFC architec-
ture, theory M describes the DFC virtual machine, which
can support any feature set. It has the capabilities to run
feature-component programs, make featureless internal calls,
perform the special DFC routing algorithm (which deter-
mines how components are assembled), and provide stor-
age/retrieval functions for restricted global data. When a
DFC feature set is implemented as a telecommunications
system, this virtual machine is mapped onto a physical
telecommunications network; fortunately the virtual ma-
chine is well-adapted to doing this efficiently.

In a complete formal treatment of the DFC architecture,
theory P describes the feature set and customers, and acts
as a program for a DFC virtual machine. P includes feature-
component programs and the data used by the routing al-
gorithm. Some of the routing data is customer data; it is
constrained by the feature set, but it actually comes from a
process called ‘provisioning’ through which customer data is
entered into a telecommunications system.

Theory W must describe the protocols used on the lines
and trunks through which the telecommunications system is
connected to its environment. It may also include informa-
tion of a wider scope, such as properties of other telecom-
munications systems with which this one interoperates.

The requirements R for a telecommunications system
should concern the behavior that customers can observe
through telephones and other communications devices.
There are two practical reasons why R cannot be complete.
First, consider telephones that are connected directly to the
system through dedicated local lines. Since these telephones
are very close to the boundary of the system, any com-
plete description of their behavior would be very similar to
a complete specification, which we do not have. Second,
consider telephones that are connected to this system only
through another telecommunications system, as residential
telephones are typically connected to a long-distance net-

work through a local network. Since these telephones are
very far from the boundary of our system, our system has
very incomplete and indirect control over how they behave.

Thus R is not a complete set of requirements, but rather
a set of generally desirable properties that act as partial re-
quirements and a ‘sanity check’ on everything else. One of
the most useful kinds of requirement is a ‘non-interference’
property derived from a description of an important feature.
It states that a particularly crucial property of this feature
is unconditionally true for the system as a whole, and is
never interfered with by less important features. For exam-
ple, a customer who calls a ‘free’ number should never incur
charges of any kind when doing so.

Normally, to prove such a property from R, we would
invoke the theories W and S. In this case there is no S, so its
place must be taken by the conjunction of P and M. which
normally imply S rather than substituting for it.

8 Analysis

Relative consistency (Formula 5) is a non-trivial proof obli-
gation and is known to have some drawbacks in modeling.
The property is sometimes called the ‘input enabled’ as-
sumption because it asserts that any collection of environ-
ment actions permitted by the domain assumptions must
be dealt with by the system. What happens if the system
is able to perform an action that prevents an environment
event from happening, and this capability falls within the
scope of the specification (and programming) rather than
the domain knowledge? In this case Formula 5 may be too
strong. To see this concretely, let us consider the zoo ex-
ample studied in [10]. We set up the example, describe the
problem, and then consider possible approaches to its solu-
tion.

The aim is to write a program for controlling the turn-
stile of a zoo to satisfy the requirement that the number of
people who enter does not exceed the number of payments
received. The designated terminology shared between the
environment and system comnsists of five terms. Three of
these are controlled by the environment:

e push(e): at event e, a visitor pushes the turnstile
through a rotation,

e coin(e): at event e, a coin is received, and

e enter(e): at event e, a visitor moves past the turnstile
to enjoy the zoo.

The first and second of these are visible to the system, while
the third is not. There are two designated terms controlled
by the system:

e lock(e): at event e, the system locks the turnstile, and
e unlock(e): at event e, the system unlocks the turnstile.

Thus eh is enter and ev is push, pay and sv is lock, un-
lock. The system is modeled by an ordering of these kinds of
events. The domain knowledge W says that it is impossible
to push if the turnstile is locked. Various different specifi-
cations are able to meet the requirement. The obvious one
is to alternate payments with pushes, but it is also possible
to allow a sequence of payments followed by a sequence of
pushes. Some approaches, like allowing a push followed by
a payment, would allow the environment to perform events
that would violate the requirements (eg. there is no domain
assumption about the honesty of the visitors).

Let us assume that S is the alternating admission spec-
ification: a push is allowed only if preceded by a payment.
Although this seems like a perfectly reasonable solution, it is
not hard to see that it is not relatively consistent in the sense
of Formula 5! To see why, suppose that e is the sequence
of events in which visitors push without paying. There is a
choice of s that is consistent with this: it unlocks the turn-
stile and never locks it again. Thus we satisfy the hypothesis
Js. W. However, the conclusion 3s. W A S is not satisfied
for this choice of e: it is not considered an acceptable se-
quence of events according to the requirements R. Nothing
about Formula 5 takes into account the possibility that there
may be sequences of environment-controlled events that are
consistent with some system behavior, but not with the be-
havior that has been specified.

The problem here can be viewed in two ways: the refer-
ence model property of relative consistency is too strong, or
we have not modeled this particular problem properly. To
repair the example is possible: control needs to be changed
so that the system controls pushing. Indeed, this prob-
lem can always be addressed by dividing shared phenom-
ena so that the environment performs a ‘request’ event and
the system responds with a ‘permit’ event. Here the push
designation shifts from environment-controlled to system-
controlled.

This strategy seems unnatural to us; it complicates the
applications in order to simplify the description of the ref-
erence model obligations. In the zoo example the result
is quite displeasing: the locking and unlocking of the gate
seem to become irrelevant since the system apparently has
direct control of whether an entry occurs. The thing over
which the system really does have control—the ability to
lock and unlock has been suppressed to a lower level in
favor of a request/permit abstraction. We are investigat-
ing approaches to weakening relative consistency to allow
the possibility that environment events are predicated on
properties of prior environment and system events. This ap-
proach is only necessary for reactive systems, since there is
no problem with data processing applications such as wrap
and DSP. Moreover, there are clearly reactive systems like
VTS and the numerous significant systems modeled using
the Functional Documentation model [17, 15] that can use
the stronger criterion. Details of our progress on an alter-
native are beyond the scope of this paper.

9 Conclusions

The reference model described here is meaningful whether
or not one is using a formalization like HOL or a model
checker. The proof obligations are just as sensible for
natural-language documentation as they are for formal spec-
ifications. Moreover, there is no absolute requirement that
the proof obligations be met in the sense of automated the-
orem proving. On the contrary, the applications we studied
have benefited significantly just from the clarity of know-
ing what the objective of a component of the model should
be, even without formalization, let alone machine-assisted
proof. However, our description is precise enough to sup-
port quite formal analyses such as the one we carried out
for VTS. On the whole we think it makes a useful contribu-
tion to understanding software artifacts and methodologies
at a quite general level without surrendering mathematical
precision.

Acknowledgements

We would like to express thanks to Rajeev Alur, Karthik
Bhargavan, Trevor Jim, and Insup Lee, Davor Obradovic
for their input to this work.

References

1]

2

3

[4

[5

[9

[10]

[11

oy
Do

[13]

[14]

Martin Abadi and Leslie Lamport. Conjoining specifica-
tions. ACM Transactions on Programming Languages
and Systems, 17(3):507 534, May 1995.

R. Alur and T.A. Henzinger. Reactive modules. In
Proceedings of the 11th IEEE Symposium on Logic in
Computer Science, pages 207 218, 1996.

R. Alur, T.A. Henzinger, F. Mang, S. Qadeer, S. Ra-
jamani, and S. Tasiran. Mocha: Modularity in Model
Checking. To appear in the Conference on Computer
Aided Verification, 1998.

Karthikeyan Bhargavan, Carl A. Guuter, Elsa L.

Gunter, Michael Jackson, Davor Obradovic, and
Pamela Zave. The village telephone system:
A case study in formal software engineering.

www.cis.upenn.edu/ “hol/ vts.ps, March 1998.

K. Mani Chandy and Jayadev Misra. Parallel program
design: A foundation. Addison-Wesley, 1988.

C. C. Chang and H. J. Keisler. Model Theory, volume 73
of Studies in Logica and the Foundations of Mathemat-
ics. North-Holland, 1973.

Michael J.C. Gordon and Tom F. Melham. Introduction
to HOL: A theorem proving environment for higher or-
der logic. Cambridge University Press, 1993.

M.J.C. Gordon. HOL A Proof Generating System
for Higher-Order Logic. In Proc. Hardware Verification
Workshop, Calgary, Canada, 1987.

Michael Jackson and Pamela Zave. Domain descrip-
tions. In Proceedings of the IEEE International Sympo-
sium on Requirements Engineering, pages 56 64. IEEE
Computer Society Press, 1992.

Michael Jackson and Pamela Zave. Deriving specifica-
tions from requirements: An example. In Proceedings
of the Seventeenth International Conference on Soft-
ware Engineering, pages 15—24. IEEE Computer Soci-
ety Press, 1995.

Michael Jackson and Pamela Zave. Distributed feature
composition: A virtual architecture for telecommuni-
cations services. Submitted for publication, September
1997.

Leslie Lamport. The temporal logic of actions. ACM
Transactions on Programming Languages and Systems,
16(3):872 923, May 1994.

Stephen A. Maguire. Debugging the Development Pro-
cess: Practical Strategies for Staying Focused, Hitting
Ship Dates, and Building Solid Teams. Microsoft Press,
1994.

C. Mazza, J. Fairclough, B. Melton, D. de Pablo,
A. Scheffer, and R. Stevens. Software Engineering Stan-
dards. Prentice Hall, 1994.

[15]

[16]

[17]

18]

David Lorge Parnas and Jan Madey. Functional docu-
mentation for computer systems. Science of Computer
Programming, 25:41-61, October 1995.

Mary Shaw and David Garlan. Software architecture:
Perspectives on an emerging discipline. Prentice-Hall,
1996.

A. John van Schouwen, David Lorge Parnas, and Jan
Madey. Documentation of requirements for computer
systems. In Proceedings of the IEEE International Sym-
posium. on Requirements Engineering, pages 198 207.
IEEE Computer Society Press, 1992.

Hugo Velthuijsen. Issues of non-monotonicity in
feature-interaction detection. In K. E. Cheng and
T. Ohta, editors, Feature Interactions in Telecommu-
nications III, pages 31-42. I0S Press, 1995.

Pamela Zave and Michael Jackson. Four dark corners of
requirements engineering. ACM Transactions on Soft-
ware Engineering and Methodology, 6(1):1 30, January
1997.

