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Insabato A, Pannunzi M, Rolls ET, Deco G. Confidence-related
decision making. J Neurophysiol 104: 539-547, 2010. First published
April 14, 2010; doi:10.1152/jn.01068.2009. Neurons have been re-
corded that reflect in their firing rates the confidence in a decision.
Here we show how this could arise as an emergent property in an
integrate-and-fire attractor network model of decision making. The
attractor network has populations of neurons that respond to each of
the possible choices, each biased by the evidence for that choice, and
there is competition between the attractor states until one population
wins the competition and finishes with high firing that represents the
decision. Noise resulting from the random spiking times of individual
neurons makes the decision making probabilistic. We also show that
a second attractor network can make decisions based on the confi-
dence in the first decision. This system is supported by and accounts
for neuronal responses recorded during decision making and makes
predictions about the neuronal activity that will be found when a
decision is made about whether to stay with a first decision or to abort
the trial and start again. The research shows how monitoring can be
performed in the brain and this has many implications for understand-
ing cognitive functioning.

INTRODUCTION

Decision confidence—the feeling of having done something
correctly or incorrectly—is an important aspect of subjective
experience during decision making, which increases for correct
decisions and decreases for error decisions as the task become
easier (Jonsson et al. 2005; Vickers 1979; Vickers and Packer
1982). Neurons in the macaque parietal cortex involved in
perceptual decision making about motion stimuli have firing
rates that are higher for decisions in which there is confidence
(Kiani and Shadlen 2009). Kepecs and colleagues (2008)
described neurons in the rat orbitofrontal cortex (OFC) as
encoding decision confidence in an olfactory classification
task. In the task, a mixture of odors A and B was categorized
as A or B, depending on which odor was predominant. The
difficulty of the task could be controlled by varying the
proportion of the two odors. A second experiment was under-
taken to examine the ability of the rats to behave in accordance
with the confidence-related information. In this second exper-
iment the rat had the possibility of aborting the current trial
without waiting for the reward outcome and thus starting a new
trial. The results showed that a second decision (about whether
to abort the trial) could be made based on confidence in the first
decision, in that the rats were more likely to abort a trial if they
had made an error in the odor classification. Two different
decisions should then be distinguished: a first-stage decision
(about the stimulus) and a second-stage decision based on the
level of confidence in the first decision.
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Here we propose an integrate-and-fire attractor network
model (shown in Fig. 1), to account for decision confidence
mechanisms (and described in detail in the Supplemental
material).! This is a “mechanistic” biologically realistic ap-
proach and not a “phenomenological” approach such as an
accumulator or race model that accumulates noisy evidence
with a linear integrator until some threshold is reached (Gold
and Shadlen 2007; Ratcliff and Rouder 1998; Ratcliff et al.
1999; Usher and McClelland 2001; Vickers and Packer 1982).
We show that decision confidence is an emergent property of
decision-making neural networks (for well-known implemen-
tations see Deco and Rolls (2006); Wang (2002)) encoded in
the firing rates of the neurons (the first module in Fig. 1).
However, this does not account for subsequent confidence-
based decisions as in the second experiment of Kepecs et al.
(2008). For this we propose that a second decision-making
network is needed (the second module in Fig. 1). Thus our
main proposal is for a two-layer model of confidence-related
decision making, which can account for the two decision-
making processes and elucidates how confidence-related deci-
sion-making mechanisms could operate in the brain. We ana-
lyze how such a system would work, analyze its properties, and
show that it accounts for the neurophysiological results de-
scribed by Kepecs et al. (2008). Moreover, the model leads to
predictions about new properties of these neurons that can be
tested.

METHODS

Neuron and synapse model

At the neuronal level we used single-compartment leaky integrate-
and-fire (IF) neurons that incorporate biophysically realistic parame-
ters (Abeles 1991) without being computationally intractable (Brunel
and Wang 2001; Dayan and Abbott 2001; Deco and Rolls 2006; Wang
2002). The integrate-and-fire formulation is very important because
the spiking of the neurons in the network is close to random in its
timing for a given mean firing rate (Poisson-like), which introduces
noise into the network that enables it to account for probabilistic
decision making because the choices are influenced by the spiking-
related coherent statistical fluctuations that are produced in a finite-
size network.

The dynamics of the membrane potential in the subthreshold
regime is determined by the membrane capacitance and a leakage
term, following the equation

CoV(1) = =g, (V(t) = Vp) — Iyu(D) 0))

where C,, is the membrane capacitance, g; is the membrane conduc-
tance that provides the leakage current, V| is the resting potential, and
I, is the total input synaptic current. When the depolarization of the

membrane reaches a threshold value V,, the neuron fires a spike, its

! The online version of this article contains supplemental data.
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Reference

FIG. 1. Network architecture for decisions about confidence estimates. The
first network is a decision-making network and its outputs are sent to a second
network that makes decisions based on the firing rates from the first network,
which reflect the decision confidence. In the first network, high firing of
neuronal population (or pool) DA represents decision A and high firing of
population DB represents decision B. Pools DA and DB receive a stimulus-
related input (A, and Ag, respectively), the evidence for each of the decisions,
and these bias the attractor networks, which have internal positive feedback
produced by the recurrent excitatory connections. Pools DA and DB compete
through inhibitory interneurons. The neurons are integrate-and-fire spiking
neurons with random spiking times (for a given mean firing rate), which
introduce noise into the network and influence the decision making, making it
probabilistic. The second network is a confidence decision attractor network
and receives inputs from the first network. The confidence network has two
selective pools of neurons, one of which (C) responds to represent confidence
in the decision and the other of which responds when there is little or a lack of
confidence in the decision (LC). The C neurons receive the outputs from the
selective pools of the (first) decision-making network and the LC neurons
TeCeiVe Ageferences Which saturates at 40 spikes/s, a rate that is close to the rates
averaged across correct and error trials of the sum of the firing in the selective
pools in the (first) decision-making network. In each network the excitatory
pool is divided into 3 subpopulations: a nonspecific one and two stimulus-
selective populations. Each selective pool has strong recurrent connections
(w.), whereas the connections between the 2 selective pools are weak (w_).
All other connections are set to the default value 1.
voltage is reset to a given value V., and a refractory period 7,
follows during which the neuron is unable to fire another spike.

The total synaptic current is the sum of the external excitatory
currents mediated by a-amino-3-hydroxy-5-methyl-4-isoxazolepropi-
onic acid (AMPA) receptors (I 5y ipa ex)> FECUITENL €XCitatory currents
mediated by both AMPA receptors (Inpa rec) and N-methyl-D-aspar-
tate (NMDA) receptors (Iympa)> and inhibitory currents mediated by
y-aminobutyric acid (GABA) receptors (Igapa)

Lign(1) = Tampaexd(D) T Tampa rec(D) + Inmpa(®) + Igapa(®)  (2)

Each current is defined by

chl
Invpaex(®) = 8ampa.ex V(D) — VE>E1 sMPASX(p) 3
J=
Np
Lawpasec(d = gampasec( V(D) — VE>EI wistMPAE) - (4)
=

_ gnmpa(V(@) — Vi) 0l NMDA
haoAlt) = N2 exp(—0.062V(1))/3.57 ,:EI s
%)
Ny
IgaBa(1) = goaBa(V(D) — VI)EI WijGABA(f) (©)
=

Where g Avpa ext 8aMPA rec» SNMpA: A 8 apa are the receptor-specific
synaptic conductances; V; and V; are the reversal potentials, respectively,
for the excitatory and inhibitory neurons; N,,,, Ng, and N, are, respec-
tively, the number of external neurons residing in other cortical areas, of
excitatory neurons and of inhibitory neurons; sMMPAX gAMPATee
siMPA and 74P are the receptor-specific fractions of open channels;
and w; are the synaptic weights, defining the pools. The NMDA receptor-
activated synaptic currents are dependent on the membrane voltage and
are controlled by the extracellular concentration of magnesium [Mg>*].

The fraction of open channels is given by

d /_\MPA,ext ¢ AMPA,ext ¢
PO s )
dr TAMPA k
dsAMPA,rec t SAMPA,rec ¢
®_ ()+§‘,5(z—z§) (8)
dr TAMPA k ’
dsNMDA 4 GNMDA
Oy +ax (1 —siMPA@) ()
dt TNMDA,dccuy ’
dxNMPA 1y MDA ()
L = + 8t — 1 10)
dr TNMDA rise ; !
dsGABA SGABA
PO ()+28(r—tj‘) 1)
dr TGABA k

\yhere TAMPA ext> TAMPA rec> TNMDA decay? qnd Toana are the decay
time constants and Tyypa sise 1 the rise time constant for NMDA

synapses. The rise times for AMPA and GABA synapses are ne-
glected because they are <1 ms. The sums over & represent the sums
over spikes formulated as &-peaks [8(f)] emitted by presynaptic
neuron j at time k.

The values for the neuronal and synaptic dynamics are provided in
Table 1. We implemented synaptic dynamics and, although not
essential for the model, included in them the slow synaptic dynamics
produced by the long time constant of the NMDA receptors because,
as shown by Wang (1999), to stabilize the network the recurrent
excitation should be dominated by slow synaptic dynamics, such as
those produced by the NMDA receptors. Moreover, we used these
synaptic dynamics to avoid synchrony and oscillations, following
Brunel and Wang (2003). We did not implement synaptic delays for

TABLE 1. Default parameters used in the simulations

Parameter Value Parameter Value
C,, (excitatory) 0.5 nF Vg 0mV
C,, (inhibitory) 0.2 nF Vi —70 mV
f 0.15 Vi —70 mV
ZamMPpA ext (EXCitatory) 2.08nS Vi =55 mV
&ampa.ext (inhibitory) 1.62nS V, =50 mV
ZAMPA rec (EXCitatory) 0.104 nS  w, (decision-making 1.8

network)
ZaMPA rec (inhibitory) 0.081 nS w, (confidence network) 1.7
8gcana (excitatory) 1.287nS « 0.5ms™!
8:apa (inhibitory) 1.002 0SS Apeference 40 Hz
gnmpa (excitatory) 0.327nS A 2.4 kHz
45 Hz AX [030] Hz

gnmpa (inhibitory) 0.258 S Tompa 2 ms
NE 800 TGABA 10 ms
N 200 TNMDA decay 100 ms
Nexl 800 TNMDA.rise 2 ms
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simplicity. Transmission delays help to prevent synchrony in the
network (Mattia and Del Giudice 2003), producing similar effects in
this respect to slow synaptic dynamics (implemented in the NMDA
receptors). Since we used NMDA receptors, we expect our results to
remain valid without explicitly implementing synaptic delays.

Parameter setting

We use a mean-field reduction (Brunel and Wang 2001) to study
the space of the principal parameters of each network. All other
parameters were set according to the results of Marti and colleagues
(2006). Details of the mean-field analysis are given in the Supple-
mental materials. Once the parameters of the two separate modules
had been set, we chose the values of the intermodule connections to
be the same as those of the standard connections from the external
inputs. All parameter values are reported in Table 1.

Once the parameters were fixed using the mean-field analysis we
ran spiking simulations. Both the mean-field reduction and spiking
simulations were implemented in custom C++ programs. For the
mean-field numerical integration we used a Euler routine with a step
size of 0.1. For the spiking simulations we used a second-order
Runge—Kutta routine, with a time step of 0.02 ms, to perform
numerical integration of the coupled differential equations that de-
scribe the dynamics of all cells and synapses. The population firing
rates were calculated by performing a spike count over a 50 ms
window moved with a time step of 5 ms. This sum was then divided
by the number of neurons in the population and by the window size.

RESULTS
The model: network architecture

Our model is composed of two modules. Each one is an
attractor neural network implementing a decision-making pro-
cess. The first module is designed to make a perceptual deci-
sion (odor classification). We will refer to it as the decision-
making (first) network. The second module, which receives
inputs from the decision-making network, “decides” whether
to abort the task, estimating the level of confidence in the first
perceptual decision. We will refer to it as the confidence
decision-making (second) network (see Fig. 1).

The simple scheme of a neural network implementing a
decision-making process, developed by Wang (2002), is com-
posed of two selective pools of excitatory neurons, one non-
selective pool of excitatory neurons, and one pool of inhibitory
neurons. The nonselective pool represents the background
activity of the neurons not responding to the stimulus. The two
selective pools represent the choices. The neurons within each
excitatory selective population have strong recurrent connec-
tions and there are weak connections between the pools. When
an external input is delivered to one or both of the selective
pools the activity increases, causing an enhancement of the
inhibition. Since the two pools are mutually connected they
cooperate in increasing the activity. When the inhibitory cur-
rent is sufficiently strong a competition takes place between the
selective pools. One of the two pools wins the competition and
ends up with a high firing rate, whereas the other pool ends up
with a low firing rate, indicating that a decision state is reached.
The balance between competition and cooperation depends
principally on the parameters of the mutual connections be-
tween the pools and the recurrent connections within a pool.
The evidence for each decision is applied as an external
excitatory input to each population of neurons and biases the
competition in favor of one of the two pools. The arriving

random spike trains (with a Poissonian spike time distribution)
together with finite-size effects produce the stochastic dynam-
ics of the network and the probabilistic decision making, as
described in more detail elsewhere (Deco and Marti 2007,
Deco et al. 2009; Marti et al. 2008; Rolls and Deco 2010).

The two selective pools of the decision-making network are
DA and DB, which become active for decisions A and B,
respectively. During the stimulation, pool DA (DB) receives
sensory information about odor A (or B) via external input
Aap- When stimulus A (or B) is applied, pool DA (or DB) will
usually win the competition and end up with high firing,
indicating that decision A (or B) has been reached. When a
mixture is applied, the decision-making network will probabi-
listically choose DA or DB, influenced by the proportion of A
and B in the mixture.

The parameters of the decision-making (first) network were
chosen as follows. The inputs to the network from the sensory
stimuli A and B and the synaptic weights between the neurons
within a pool were set so that the network operated in a bistable
regime, by which we mean that the spontaneous state is no
longer stable when the decision cues are being applied. Then
noise and sensory inputs bias the landscape and provoke a
transition to a decision state. Thus the attractor basins are
influenced by the stimulus. Whether the network can present
persistent activity in the absence of stimulation is not important
for our purpose. In addition the inputs were set so that with
only one stimulus in the mixture, the decision was roughly
100% correct. Details of the mean-field analytic approach are
provided in the Supplemental material.

The confidence network has two selective pools of neurons,
one of which (C) responds to indicate confidence in the first
decision and to stay with the first decision based on a level of
firing from the first network, which indicates high confidence,
and the other of which (LC) responds when there is little or a
lack of confidence in the first-stage decision. In the experiment
of Kepecs et al. (2008), C corresponds to a decision to stay and
wait for a reward, i.e., what they call the positive outcome
population, although it really represents confidence or a pre-
diction that the decision just made will have a positive out-
come. LC corresponds to a second decision to abort a trial and
not wait for a possible reward, i.e., what they call the negative
outcome population, although it really represents lack of con-
fidence that the perceptual decision just made will have a
positive outcome, equivalent to confidence that the decision
just made will have a negative outcome.

The two networks are connected by AMPA synapses that
link the selective pools DA and DB of the (first) decision-
making network to confidence network selective pool C. (The
synaptic conductances of these connections are set to the value
gampaext = 2.08 nS, although this value is not crucial for the
mechanism.) The selective pool LC in the confidence network
receives an external input that saturates at 40 spikes/s, to set the
competition with pool C. This input could come from the same
source as that to the C network, or could come from other brain
areas, and could reflect the subject’s bias in his or her confi-
dence.

The total number of neurons in the model is N = 2,000. For
simplicity we chose to have the same number of neurons in each
of the two networks: N,,., = N/2. Therefore each network has
Ng = 0.8 - N4 excitatory pyramidal neurons and Ny = 0.2 - N, 4
inhibitory interneurons, the proportions observed in the cerebral
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cortex (Abeles 1991). The number of neurons in each selective pool
iS Ny = Ng = Nc = N, ¢ = Ng - f, where fis the fraction of excitatory
neurons in each selective pool. In this study we set f = 0.15.
Each nonspecific pool in each network contains the remaining
Ng — N, — Ng excitatory neurons. We modeled an equal
number of neurons in each selective pool to keep the model as
simple as possible and note that equal numbers of neurons for
the different attractors need not be present in this class of attractor
network (Rolls 2008). Each network is fully connected—i.e., all
neurons are connected to each other. We note that sparse
connectivity does not change the overall dynamics of the
network (i.e., the mechanism is also reproducible with a
sparsely connected network), bringing about merely an in-
crease of the noise in the network due to the finite-size effect
(Mattia and Del Giudice 2002, 2004). We make the plausible
hypothesis that the connection strengths have been modified
from their default value of 1 by a previous learning process and
thus we set them following a Hebb-like rule: i.e., the synaptic
efficacy between two cells is high if the cells had correlated
activity in the past, whereas uncorrelated activity results in a
weak synapse. Cells in one selective pool have strong recurrent
connections w_, whereas synaptic efficacy between the two
selective pools is decreased, given by w_ = (1 — fw_)/(1 — f).
We set these parameters (w,, w_) to slightly different values
for the two modules. To achieve a better correspondence with
the results of Kepecs et al. (2008) we used a weaker w__ in the
confidence network than that in the decision-making network,
as shown in Table 1. During the simulation all the synaptic
weights are kept fixed. All neurons receive an external input
Aexr» modeled as Poisson spike trains, from 800 external neu-
rons each firing at a rate of 3 Hz, consistent with observed
values in the cortex. During the stimulation the external input
changes for the selective pools as described earlier.

Our model has a two-stage structure and assumes some type
of connectivity between the two modules or stages: the deci-
sion-making network and confidence network. These modules
could both be within the OFC or they could be in different
brain regions.

In the Supplemental material we describe the details of the
mean-field approximation used to determine the parameters of
the synaptic strengths in the model to obtain stable operation.
Other details of the architecture that was implemented are
reported in Table 2 and shown in Fig. 1.

Simulation results

Once the parameter values had been determined using the
mean-field analysis, we ran simulation trials with these values,
increasing the bias value, which corresponds to altering the
stimulus identity, which in this case corresponds to altering the
proportion of the two odors in the mixture. On each trial the network
received for the first 500 ms the external spontaneous firing
level input A, With this input the only stable state of the
network is the spontaneous activity. After that, each selective
pool DA and pool DB received in addition to A, the stimulus
input A,y = A = AX, which provides the stimulus-specific
information for the decision and drives the network dynamics.
We ran different sets of simulations with A values of 0, 10,
20, and 30 Hz. We considered that a decision was reached
when the selectivity index S = |Inv,/vg | took a value >1.7
and did not decrease for =100 ms, where v, and vy are the

J Neurophysiol « VOL 104 »

firing rates of pools A and B. The same criterion was used to
determine the decision in the second network using the firing
rates of the C and LC pools. Pool C received the external input
and the output of pools DA and DB. Pool LC received just
external input for 700 ms and after that an additional input,
modeled as a Poisson process of mean rate 40 Hz. We main-
tained the stimulation throughout the trial. This does not
correspond to the experimental paradigm of Kepecs et al.
(2008), although we hypothesized a working memory process
upstream like the one described by Brody et al. (2003) and
Machens et al. (2005).

First, we show how the firing rates of the (first) decision-
making network reflect decision confidence. Figure 2C shows
the proportion of correct perceptual decisions as a function
of the proportion of stimulus A and stimulus B in the mixture.
The decision making is probabilistic because of the spiking-
related randomness in the network (Deco and Rolls 2006; Rolls
and Deco 2010; Wang 2002). Figure 2A shows that on trials
when the DA neuronal population that represents decision A
correctly wins and has a high firing rate, the firing rate
increases further with the discriminability of the stimuli AA and
thus encodes increasing confidence. The reason for the increase
of firing rate with AX on correct trials is that the external inputs
from stimulus A or stimulus B then support the (noise-influ-
enced) winning attractor (pool DA) and add to the firing rates
being produced by the recurrent collateral connections in the
winning attractor. On the other hand, on error trials the firing
rates of the winning pool (now DB, which represents decision
B and wins despite the evidence because of noisy firing in the
network) become lower as AA increases because then the
external sensory inputs are inconsistent with the perceptual
decision that has been made and do not support and increase
the firing rate of the winning pool (Rolls and Deco 2010; E. T.
Rolls, F. Grabenhorst, and G. Deco, unpublished data). This
modulation by stimulus difficulty of the firing rates of the
decision-making populations was also observed experimen-
tally by Felsen and Mainen (2009) in the superior colliculus.
Confidence, which increases with AA on correct trials and
decreases with AA on error trials (Jonsson et al. 2005; Kepecs
et al. 2008; Vickers 1979; Vickers and Packer 1982; Rolls et
al., unpublished data), is thus encoded in the firing rates of the
winning attractor and is an emergent property of the decision-
making network because it was not directly implemented in the
model, but arises from the simple decision process (Rolls and
Deco 2010; Wang 2002).

Moreover, the sum of the activity of the winning and losing
populations also represents decision confidence on correct and
error trials, as shown in Fig. 2B. It is this total firing from pools
DA and DB of the first, decision-making, network that reflects
decision confidence, which is provided as the input to the
confidence (second) network.

We now consider the operation of the confidence decision
(second) network. If the firing rate of the winning attractor of
the first, decision-making, network is high, then the confidence
decision network acting as a second-level network makes the
second-stage decision, probabilistically as before, to have con-
fidence in the first-stage decision and the C population proba-
bilistically wins the competition. If the output firing of DA and
DB (reflected in their sum) is low because the perceptual
decision just made has sensory inputs that are not consonant
with the decision, then with weaker driving inputs to the C
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TABLE 2. Neuron and synapse model

A. Model Summary

Populations Eight
Topology Two modules partially connected
Connectivity Full, no synaptic delay

Neuron model
Channel models
Synapse model

Leaky integrate-and-fire (IF), fixed threshold, fixed refractory time

Instantaneous jump and exponential decay for AMPA and GABA and exponential jump and decay for NMDA receptors

Plasticity
Input Independent fixed-rate Poisson spike trains to all neurons
Measurements Spike activity

B. Populations

Total number of neurons N = 2,000
Excitatory neurons in each module Ng = 0.8 - Npog
Inhibitory neurons in each module Ny =02 Nyoa

Name Size

DA (decision A) Np=/fNg
DB (decision B) Ng =f-Ng
C (confidence) Nc =f- Ng
LC (lack of confidence) Nic =fNg

In each module Npyoa = NI2
Name Size
Nonspecific (1st module) Ng — Ny, — Ng
Inhibitory (1st module) 0.2 - Npog
Nonspecific (2nd module) Ng — Nec — Ny ¢
Inhibitory (2nd module) 0.2 - Npog

C. Neuron and Synapse Model

Type
Subthreshold dynamics

Synaptic currents

Leaky IF, conductance-based synapses
CV(0) = —gt(V(0) = Vi) = Litpa, exd®) = Langpa, rec ) = Inppa (1) — Igapa(®)
Livipa, e () = ampae(V(0) — Vi) EJNQ’ S}q MPA €x1(7)

Listea, ree (1) = Sanparec(V() = Vi) 20 wis P4 ()
Iyupa () = gnupa(V() — VE)/l + [Mg?*]exp( — 0.062V(1))3.57 XEJN:E] wfsj_\/MDA(t)
Ioapa () = gaapa(V(t) — V) EJN:’I stj(';ABA(I)

Fraction of open channels

ds’;‘MPA' m(t)/dt = - S‘;‘MPA' m(t)/TAMPA + 280 — tI;)

ds’;'MPA’ r(’c(t)/dt - _ S..?MPA, n’('(t)/TAMPA + Ek 8([ _ tj()
asPND) fdt = = SMPAG) / Tuggp, ey + al0) (1= 54

dxfwm(t)/dt = - #VMDA(I)/TAMPAT e T 2801 = tf)

dsy@) fdi = = xP0) [ aupn + 28— 1))
Spiking IfVe)y =V AN >rf + 1,
Lt¥ =t
2. Emit spike at time #*
3. V) = Vieer
D. Input
Type Description
Poisson generator Fixed rate, N,,, Poisson generators per neuron; each one projects to one neuron

E. Measurements

Spike activity; firing rates calculated using spike count in a 50 ms time window shifted by 5 ms step

Model is summarized in section A and detailed in sections B—E. Parameter values are given in Table 1.

network, it loses the competition with LC. The confidence
network in this case makes the second decision, probabilisti-
cally as before, to have a lack of confidence in the first
decision, in that the LC population wins the competition. The
confidence decision network thus acts as a decision-making
network to make confident decisions if the firing rates from the
first, decision-making, network are high and to make lack of
confidence decisions if the firing rates from the first, decision-
making, network are low.

On trials when the (first) decision network is correct, the
input to the C population coming from the DA and DB neurons

increases as a function of AA and the C pool tends to win the
competition more frequently (see Fig. 3). Thus a decision to act
confidently about one’s first decision is more likely to be made
as A\ increases on correct trials. On the other hand, when the
first network makes an error, the C population tends to win the
competition less frequently as AX increases, as shown in Fig. 3,
and correspondingly on error trials the proportion of trials on
which the LC population wins increases with AA. (The per-
centage correct of the LC population is the complement of that
shown in Fig. 3.) Thus a decision to lack confidence about
one’s first decision is more likely to be made as AA increases
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FIG. 2. Performance of the decision-making (first) network.
A: when pool DA correctly wins the competition, its firing rates
are high and increase as a function of AX. When pool DB
incorrectly wins, making an error due to the noise, and has a
high firing rate, its firing rate decreases as a function of AA. This
modulation of the firing rates by AA was also observed exper-
. imentally (personal communication from Z. Mainen). The low
N firing rates when DB loses the competition on correct trials and
A when DA loses the competition on error trials are also shown.
The error bars represent the SE. (The numbers of correct trials

0 10 20 30 0 10

Correct trials [%]

0 10 20 30
AN [HZ]

on error trials and this might make one abort such a trial, as in
the experiment of Kepecs et al. (2008).

The general time structure of the neuronal activity in the
model is in qualitative accordance with the experimental
results (Kepecs et al. 2008). As shown in Fig. 4, the
confidence decision takes place after the first decision and
separation of the firing rates of the two selective populations
C and LC occurs after the decision-making network has
reached a decision state, as in Fig. 3, A—D of Kepecs et al.
(2008).

It is important to examine the firing rates in the C and the LC
attractor neuronal populations as a function of AX on correct
and incorrect trials because they provide an account for neu-
ronal responses recorded during decision making (Kepecs et al.
2008) and those neurophysiological results in turn validate the

0.9

DMnet correct

0.7y 1

Stay probability

0.5¢ 1

0 10 20 30
AL [HZ]

FIG. 3. Performance of the confidence decision (second) network. The
proportion of trials on which in the second network the Confidence (C)
population won the competition as a function of AA for trials on which the
decision-making (first) network (DMnet) was correct or incorrect. The perfor-
mance of the LC population was the complement of this. [The parameters were
set so that with AX close to 0, roughly 60% of the trials were C trials, to be
qualitatively in the same direction as in the experimental findings of Kepecs et
al. (2008).]

were between 524 and 990 and the numbers of error trials from
52 to 472.) Confidence is thus encoded in the firing rates of the
winning attractor and is an emergent property of the decision-
making network. The firing rates were calculated averaging
over trials the activity of neurons in the last second of each trial,
from time ¢ = 2,000 ms to t = 3,000 ms. B: sum of the firing
rates from the DA and DB populations as a function of AA. This
provides the input to the confidence (second) network selective
pool C. The error bars show the SE. C: the percentage correct
performance of the decision-making network as a function of
AA. (The error bars were estimated from the binomial distribu-
tion and were small. The points are fitted by a Weibull
function.)

model. We find for the confidence decision-making network
that on correct trials with high AX = 30 (easy perceptual
decisions), C has a high firing rate, whereas it has a lower rate
for AN = 10 (i.e, difficult decisions), as shown in Fig. 5.
Conversely, on error trials when the firing rates in the first-
level, decision-making, network are lower, the confidence
neurons C lose the competition and have relatively low firing
rates, which decrease even further as the magnitude of AA
increases.

The firing rates (mean) in the confidence decision-making
network of the C (confident, “positive outcome”) and LC (lack
of confidence, “negative outcome”) populations of neurons for
trials when the first decision-making network is correct or
incorrect as a function of AA are shown in Fig. 6. The thick
lines show the mean firing rates for the C and LC pools for all
trials on which the first network was correct or in error. We
identify the LC population of neurons with the negative out-
come population of neurons described by Kepecs et al. (2008),
which have similar properties, as shown in Supplemental Fig.
S1. Further, we identify the C population of neurons with the
positive outcome population of neurons described by Kepecs et
al. (2008), which have similar properties, as shown in Supple-
mental Fig. S1.

However, as shown in Fig. 3, the confidence decision-
making network was itself increasingly incorrect [i.e., took a
confidence decision that was inconsistent with the decision
made by the (first) decision-making network] as AA ap-
proached 0 and the firing rates in the thick lines of Fig. 6 reflect
the fact that on some trials the C pool won the competition and
on some trials it lost. This is effectively how Kepecs et al.
(2008) presented their data (for they knew only whether the
first-stage decision itself was correct and did not measure while
recording whether the rat took a confidence-related decision to
stay with or abort a trial) and there is good correspondence, as
can be seen by comparing Supplemental Fig. S1 with Fig. 3. If
instead of taking the mean firing rate of the C neurons based
only on whether the first decision was correct, we take just the
trials on which the C (confidence) pool won the competition,
the thin lines of Fig. 6 show for the C pool an average rate of
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FIG. 4. Examples of the time courses of
the neuronal activity in the selective pools
of the decision-making (first) network and of
the confidence decision (second) network for
a decision at chance (AX = 0). A and B: the
activity in time of selective pools in the
decision-making network and in the confi-
dence network. Raster plots show the activ-
ity of 20 sample neurons for each selective
population in one trial (dashed vertical lines
mark stimulus onset). Superimposed lines
show the average firing rates for that trial. On
60% of trials the confidence network selec-
tive pool C won the competition (A). On
40% of trials pool LC won the competition
(B). C and D: the average firing rates over all
correct trials for the same conditions, respec-
tively, as A and B. The separation of the firing
rates begins after the decision is made and the
general temporal structure of the network is in
qualitative accordance with the experimental
results of Kepecs et al. (2008).

time [s]

close to 28 spikes/s that tends to increase with AA when the
first network is correct and tends to decrease with AA when the
first network is in error. (This is supported by the data shown
in Fig. 5.) If we take just the trials on which the C population
lost the competition, the thin lines show for the C pool an
average rate of close to 2 spikes/s. Conversely, for the LC pool
of neurons, if we take just the trials on which the LC popula-
tion won the competition, the thin lines show for the LC pool
an average rate of close to 26 spikes/s. If we take just the trials
on which the LC population lost the competition, the thin lines
show for this LC pool an average rate of close to 2 spikes/s.
These firing rates shown in the thin lines in Fig. 6 are generally
as expected and the differences with AX are due to whether the
output of the decision-making (first) network shown in Fig. 2B
is consistent or inconsistent with the decision made by the
confidence decision (second) network, which is of course
influenced by the spiking noise in the confidence decision
network, which can make the wrong decision given the evi-
dence it receives from the decision-making network shown in
Fig. 2B.

DISCUSSION

We have shown how decision confidence is an emergent
property of a neurophysiologically based decision-making pro-

A Pool C B Pool LC
Correct Error
T AM=10 —-—-

30 AN=30 === 30

N

L.20 20

[0}

©

o))

£10

=

time [s]

cess and is encoded in a graded way by the continuously
graded firing rates of the neurons in an integrate-and-fire
attractor decision-making network. (This is shown by the
results for the first decision-making network.) We have also
shown how within this neurobiologically based framework for
decision making, two separate networks are essential for the
ability to make a decision involving a choice about one’s
confidence in a prior decision. We have also shown how the
model is confirmed by and provides a computational account
for the neurophysiological findings of Kepecs et al. (2008) (see
Supplemental Fig. S1) and also provides a new interpretation
of the data recorded by Kepecs et al. (2008), as described in
more detail in the following text. We also make new predic-
tions about the types of neuronal response that will be found
when a confidence-based decision must be made, as subse-
quently described.

The fact that the changes of firing rates found in the rat by
Kepecs et al. (2008), as shown in Supplemental Fig. S1 as a
function of AA, are comparable with those shown in the thick
lines in Fig. 6 provides good support for the present model.
However, Kepecs et al. (2008) did not distinguish trials in
which a second-layer confidence decision network was in error
or not because they did not record neuronal activity when they
could examine whether the rat aborted a trial—we suggest that

FIG. 5. Firing rates in the confidence decision-making net-
work of the C (confident) and LC (lack of confidence) popula-
tions of neurons for trials when the first decision-making
network is correct or incorrect for easy decisions (AA = 30) and
difficult decisions (AA = 10). The firing rates shown are
averaged merging together confident and lack of confidence
trials. The same mixture is shown in thick lines in Fig. 6, to
show the correspondence with the experimental results. (The
shaded areas represent the SE. The numbers of trials are in the
range from 72 to 990.) The decision cues were turned on at t =
500 ms.

time [s] time [s]
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FIG. 6. Firing rates (mean * SE) in the confidence decision-making network of the C (confident, “positive outcome”) and LC (lack of confidence, “negative
outcome”) populations of neurons. Labels “Confident trials” and “Lack of confidence trials” mark, respectively, trials on which the C (confidence) population
and LC (lack of confidence) population won the competition. The activities of the C and LC populations of neurons, averaged over all trials, confident and lack
of confidence, are shown with label “Average (all trials).” As shown in Fig. 3, the confidence decision-making network was itself increasingly incorrect as AA
approached O and the firing rates in the thick lines reflect the fact that on some trials the C population won the competition, and on some trials it lost. (There
is no correct/error distinction for trials with AA = 0. For illustration purposes, trials in which the final choice was A were labeled as correct trials and trials in
the choice was B were labeled as error trials.) The firing rates shown were calculated by averaging the activity of neurons in the last second of each trial, from
time ¢t = 2,000 ms to ¢ = 3,000 ms. [The error bars for the thin lines (confidence and lack of confidence decision trials) represent the SE and the number of trials
was in the range 28 to 760, with few error trials occurring with high values of AA.]

it would now be interesting to do this. Further, it is notable that
the change of firing rate with A found in the rat matches only
that of the thick lines in Fig. 6, which includes all trials
irrespective of the decision made by the confidence decision
(second) network and not by the thin lines in Fig. 6, which
reflect the decision made by the confidence network. This leads
to the novel prediction that results will be found different from
those presented by Kepecs et al. (2008) if in a future experi-
ment the responses of similar neurons are separated according
to whether each trial is aborted. We predict in particular that
the neurons will have activity like that shown in the thin lines
in Fig. 6 and will be of two types. One type will be similar to
that of the C (confident in the prior decision) neurons shown in
Fig. 6 in which the firing rate is /) high on trials on which the
confidence decision is to stay with the first decision and 2) low
if the confidence (second) decision is to abort the trial. The
prediction further is that the firing rates of these confidence
neurons will change with AA, as shown by the thin lines in Fig.
6A; that is, these high firing rates will tend to increase as a
function of AA if the first decision (made by the decision-
making, first, network) is consistent with the evidence (i.e.,
correct), as shown at the top of Fig. 6A, and to decrease as a
function of AA if the first decision (made by the decision-
making, first, network) is inconsistent with the evidence (i.e., is
an error), as also shown at the top of Fig. 3A. The second type
of neuron will be similar to that of the LC (lack of confidence
in the prior decision) neurons shown in Fig. 6B, in which the firing
rate is high on individual trials on which the confidence decision
is to abort the trial and low if the confidence (second) decision is
to stay with the first decision. (The firing rates of the LC popu-
lation do not change much with AA, as shown by the thin lines in
Fig. 6B, because the input from the saturating neurons has a fixed
firing rate.) It is only when we categorize the neurons according to
whether the first decision was correct that curves similar to those
shown by thick lines in Fig. 6 and, as reported by Kepecs et al.
(2008), will be found and such curves and analyses do not fully
capture the properties of the confidence decision-related neurons,
which are as shown in the thin lines in Fig. 6.

We used the model to account for neural data recorded in the
OFC by Kepecs et al. (2008). However, different brain areas
are involved in different types of decision making (Hernandez
et al. 2002; Kim and Shadlen 1999; Rolls and Deco 2010;
Romo et al. 2002) and it is accordingly plausible that other

J Neurophysiol « VOL 104 »

brain areas can process confidence-related information. There-
fore we tried to keep the model as simple as possible to propose
a generic mechanism for confidence-related representation and
decision making, which is not only consistent with and pro-
vides an interpretation of experimental data from Kepecs et al.
(2008), but also provides a generic account of confidence-
related decision making in other brain areas.

Our model is designed based on a binary decision-making
task, but it could also be slightly modified to encompass
multiple-choice decision making. In some recent work the
theoretical framework of biased competition that we adopted
has been developed to account for multiple-choice decision
making (Albantakis and Deco 2009; Furman and Wang 2008).
A possible extension of our model would be a combination of
an architecture like the one proposed by Albantakis and Deco
(2009), but with a second confidence network strongly con-
nected with the decision neurons. We propose that such an
extended model based on our idea can also account for deci-
sions based on confidence in multiple-choice decision-making
processes.

The architecture of our model is based on two layers: one for
the perceptual decision and one to monitor the confidence level
of the first decision. However, there is no restriction to two
layers and deeper architectures could be built to perform more
complex functions. In fact, the second layer also undertakes a
decision process and thus a third layer could monitor the
activity of the second layer. The proposed mechanism could
thus be extended to account for nested monitoring functions
(cf. Hofstadter 2007). Although no natural restriction is im-
posed on the mechanism and learning could shape a nested
network hierarchy, a second-order confidence-related decision
(and eventually a third-order) may be of less use than a
judgment about a first-level (e.g., perceptual) decision.

The confidence decision (second) network is in effect mon-
itoring the decisions made by the first network and can cause
a change of behavior, choosing to abort the trial, if the second
network’s assessment of the decision made by the first network
is that the first decision is not a confident decision. Now this is
the type of description and language used to describe “moni-
toring” functions, taken to be high-level cognitive processes,
possibly related to consciousness (Block 1995; Lycan 1997).
For example, in an experiment performed by Hampton (2001)
(experiment 3), a monkey performing a short-term memory
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task could choose an “escape flag” to start another trial. With
longer delays, when memory strength might be lower partly
due to noise in the system and confidence therefore might be
lower, the monkey was more likely to choose the escape flag.
The experiment is described as showing that the monkey is
thinking about his own memory, which is a case of meta-
memory that may be related to consciousness (Heyes 2008).
However, the decision about whether to escape from a trial can
be made just by adding a second decision network to the first
decision network. Thus we can account for what seem like
complex cognitive phenomena with a simple system of two
attractor decision-making networks (Fig. 1). The design of
Kepecs et al. (2008) was analogous, in that the rat could choose
to abort a trial if decision confidence was low and, again, this
functionality can be implemented by two attractor decision-
making networks, as described here.

There are other more complex types of “self-monitoring,”
such as that described as occurring in a commentary that might
be based on reflection on previous events and appears to be
more closely related to consciousness (Rolls 2007; Weiskrantz
1997). Our aim was not to account for such complex monitor-
ing functions. Rather we claim that some types of “self-
monitoring” are computationally simple and the model we
propose can be a building block for a better understanding of
such a high-level cognitive function.
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