
A New Virtual Hardware Laboratory for Remote FPGA
Experiments on Real Hardware

M. Reichenbach, M. Schmidt, B. Pfundt, D. Fey
{marc.reichenbach, michael.schmidt, benjamin.pfundt, dietmar.fey}@informatik.uni-erlangen.de

Department of Computer Science, Chair of Computer Architecture
University of Erlangen-Nürnberg, Erlangen, Germany

Abstract— E-learning systems become more and more im-
portant in higher education. But a lot of e-learning courses
are only based on theory or simulations, making them
inefficient and also uninteresting for students. Especially in
the field of computer engineering, the experience of using
real hardware is very important for the understanding of it.
Therefore, we propose a virtual hardware laboratory where
students are taught in circuit design, can simulate and finally
test their designs on real FPGA (Field Programmable Gate
Array) hardware via a remote connection. In this paper,
we present the requirements for such a virtual laboratory,
how we built the system and how it can be used. Finally,
a complete e-learning course called FPGA online with
practical exercises in an online laboratory was created and
is now part of the Virtual University of Bavaria (vhb).

Keywords: e-learning; virtual laboratory; FPGA Design; Remote
Experiments; Circuit Design

1. Introduction
The teaching of students in digital circuit design is a very

hard and time consuming task. First of all, most students
need quite a lot of time to understand the differences be-
tween a programming language and a hardware description
language (HDL). Furthermore, the development and desktop
environment for hardware design is very difficult for begin-
ners. One way to get familiar with hardware development,
is the usage of so-called FPGAs (Field Programmable Gate
Arrays) which are a type of reconfigurable devices. They can
be used to implement and test arbitrary hardware cicruits and
have been used for prototyping purposes in hardware design
for several years.

An e-learning course about FPGA development with only
theoretical background is not sensible, first of all for FPGA
beginners. Therefore, we decided to realize an e-learning
course with an online laboratory, because efficient learning
in the field of hardware development requires a mixture of
theoretical and practical exercises [1]. The reason is that for
hardware engineering it is not sufficient to simulate hardware
circuits only, because the real hardware behaves different
from simulation [2], [3].

There are a lot of advantages for such a course. The
students can work at home with their personal computers

with individual operating systems, editors and so on. They
have access to the hardware of the laboratory 24 h a day.
The laboratory can be realized very compact which saves a
lot of space and also staff costs are reduced.

The advantages of e-learning systems are not new and e-
learning in the field of engineering is used by a lot of other
universities until now [4], [5], [6], [7], [8], [9].

But many of such e-learning courses are only theoretical
or simulation based [10]. In order to realize a sensible
e-learning course in the field of engineering and to take
advantage of the reasons above, we decided to build an
online FPGA laboratory for remote access, which we will
present in this paper. The FPGA boards are connected to
a server at the University and will be programmed by the
server. The FPGA boards are monitored via cameras to see
the state of the boards, e.g. blinking LEDs or information
on an integrated display. To realize input signals by the user,
an additional IO board is connected to each FPGA board.
The advantage of such a system is that a few boards can be
shared between lots of students, because not all students need
a board at every time. Furthermore, the boards are protected
from incorrect handling. The whole system is supported
by a webportal for the lectures, exercises and tests. It is
realized with the Open Source tool Moodle [11] used as
Course Management System (CMS) and the lessons were
created with eLML (eLesson Markup Language) [12] which
is an Open Source XML framework for the realization of
structured eLessons.

The paper is divided into five sections. In the next section
we describe the requirements of such a system and how
to meet them. Afterwards, the creation of the e-learning
content together with the used tools are presented. Section
four describes the architecture of the system in a brief form.
In the fifth section, the implememtation details are discussed.
Finally, a conclusion and outlook are given.

2. Requirements
For creating a new virtual hardware laboratory, it is

important to fulfill some requirements. In this section, we
will present the requirements which are most important for
our e-learning course.



2.1 Learning Content
One of the biggest advantages of e-learning systems is

that they are available 24 h a day. To realize this, the content
should be provided on a webserver with the help of a CMS.
The CMS should support subjects, excercises and tests. The
content should be available in different output formats for
presentation on the web, but also for printing a hard copy
for the students. Besides, if possible, all this should be done
automatically to avoid a time consuming human interaction.
Finally, to build a low cost system, the used tools should
be Open Source and the content must be accessible with
free and common tools (for example common browsers and
PDF viewers). Because circuit design is a difficult task, it is
neccessary to offer a direct help from a teacher. Therefore, a
consultation hour via VoIP should be arranged. Additionally,
mailing lists, a forum and also a chat for discussions should
be used, for an efficient interaction with the students.

2.2 Technical Requirements
As mentioned in Section 1, it is important that the students

can work at home on their local computers. Hence, the tools
for the practical exercises have to be installed locally by
the students which has a big advantage. There is no need
for a powerful server for hardware development which is
also very important for the scalability of the system. But
to realize this, the tools for practical exercises have to be
available for the students for free and should be installable
on different operating systems.

For an interaction with the FPGA boards via a remote
connection, we decided to use a monitoring with a camera
system. Hence, there are additional requirements, because
a connection via the internet is slow and has a big latency.
Therefore, we have to choose a sufficient video codec which
requires a low bandwidth only, but allows a monitoring of
the board in a sufficient quality.

A last important point is the access to the FPGA boards
via a remote connection. The user must be able to set inputs
to the FPGA board. Normally, this is realized by the push-
buttons and switches of the boards. But this is not possible
with a remote connection and must be emulated. Hence,
an additional IO board is required, which is connected to
a FPGA board and can be controlled via HTTP. It allows
to send signals to the interface of the FPGA board for an
emulation of the pushbuttons and switches.

2.3 Resources Management
For the management of the online laboratory, a server with

a resource-management-tool is required. Because we have
choosen a Linux server, we have implemented this tool as
deamon, which we call VHBD (Virtual University of Bavaria
Deamon). The main challenge is to arbitrate the access from
many users to a limited number of boards. Every student
should get the chance to use a board and after the usage, the
access to the board has to be released. It is very important,

that there is no possibility to block a board for a greater
amount of time. After a fixed time slot, a user should be
banned for a short amount of time.

For a remote connection, the topic of security has also
be attended to. The VHBD has to be secured for incorrect
access and in the best case, it uses security mechanisms
of the underlying OS, in our case a secure Linux system.
Finally, the deamon should generate logfiles and statistics.

3. e-Learning Content
3.1 E-learning Infrastructure

The efficient creation and refurbishment of the e-learning
materials plays a very decisive role in an e-learning course.
Sustainability and longevity of the e-learning content and
infrastructure is essential [13]. The content and infrastructure
must be easily extentable, modifiable and also scalable for
an arbitrary number of users. For the e-learning material it is
important that different types of output formats are available,
like a presentation for a website or a printable document
format. It was also important for us to use Open Source
software and tools to reduce the overall costs. Therefore, we
decided to use the eLesson Markup Language (eLML) which
is an open source XML framework for creating structured
eLessons using XML [12] in combination with Moodle as
a Open Source Course Management System (CMS) [11]. In
the following, we will take a closer look at eLML, Moodle
and we will give an overview of the content of our basic
FPGA course.

3.2 eLML
The eLesson Markup Language (eLML) is a XML based

framework and was published as an Open Source project
under the GPL [14]. The pedagogical concept behind eLML
is the ECLASS model from Gerson [15], where ECLASS
is an acronym for entry, clarify, look, act, self-assessment
and summary. This model was combined with a lot of other
important elements which makes eLML very flexible for the
creation of e-learning courses. The top-level elements of the
eLML structure are illustrated in Figure 1 [12].

Every lesson starts with the element entry with a short
introduction about a lesson and the element goals with a
summerization of the learning goals for this lesson. The
content of a lesson is distinguished in several units. The
elements entry and goals are provided optionally for units.
Every unit consists of learningObjects which are described
with the elements clarify, look and act. The clarify element
contains the theoretical background of a topic, the elements
look and act can be used for the presentation of an example.
A lesson can be finished optionally with a selfAssessment,
summary and some other elements, like glossary or bibliog-
raphy. All dahsed boxes of Figure 1 are optional features of
eLML.



Fig. 1: Basic eLML Structure

The main reason for using an XML framework is the
availability of different output formats which is mandatory
for an e-learning course. By XSL Transformation, the XML
description of the material can be transformed to (X)HTML
for an online presentation on a webserver or to PDF as
printable document. Furthermore, eLML provides the for-
mats SCORM and IMS CP for the integration in a Course
Management System (CMS) like Moodle.

3.3 Moodle Server
Moodle is an Open Source Course Management Sys-

tem (CMS) [11]. Nine different e-learning platforms were
analyzed in detail in [16] and Moodle obtained the best
results. It can be installed on a webserver and provides an
interactive platform for the e-learning materials. It contains
also a discussion forum, a calendar, a news section and
a Wiki. Furthermore, Moodle supports a lot of additional
plugins and a user can write own modules in PHP. So far,
there are several thousand registered sites which are using
Moodle [17] as CMS.

3.4 Extend eLML and Moodle Server
For our practical circuit design course, we required VHDL

source code examples in the content of the lessons. But
eLML provides only a simple code environment and does
not support source code with syntax highlighting. Also the
usage of colors, for a manually formatting of source code, is
not supported. On the other side, it is not a good practice to
use source code screenshots in the content because there is
no possibility to mark or copy code subsets of the examples.

Therefore, we extended the standard eLML package by
creating new rules in the transformation scenarios for html

and pdf. A code environment was added and we imple-
mented XML tags for colors, a non-breaking space and a
line wrap. With these new features, it is possible to format
the VHDL source code manually. But this is complicated and
very time-consuming. Therefore, we developed a tool which
transforms a given VHDL code file, into well formatted
XML code. In this process, every space is converted in
a non-breaking space to allow indenting. Special VHDL
keywords are embedded between color tags to realize syntax
highlighting which results in a clearly arranged code. The
transformation tool is written very flexible and uses regular
expressions and color patterns in external configuration
files. This allows an easy adaption for other programming
languages, like C code which is required by us for another
online course. After the XML file, which contains the well
formatted source code, was produced, it can be integrated in
a lesson utilizing XInclude [18].

To publish a lesson on the Moodle Server, several steps
are required. First, the XSL transformation and generation
of so called IMS content packages from the transformation
results has to be realized. After that, the package has to
be uploaded to the server and, finally, the package has
to be deployed via the web interface. Doing these steps
manually for every lesson is a very time-consuming task.
To automatize this procedure, it was necessary to write
some scripts which execute the tasks above, every time the
sources on our repository were changed. In this context, the
big challenge was the deployment of the IMS packages,
because commonly, this can be done only via the web
interface. Therefore, we have written a new plugin for the
Moodle Server which allows an autodeployment of changed
packages.

3.5 Course Content

Our e-learning course, which will be provided by vhb, is a
basic course for FPGA beginners. It is intended for bachelor
students but also for employees which are interested in using
FPGAs for hardware development. The course starts with an
historical overview about programmable devices. After that,
the basic structure of an FPGA is presented in detail. In our
course, VHDL (Very-high-speed integrated circuits Hard-
ware Description Language) is used for designing hardware
circuits for FPGAs. Therefore, we integrated some compact
lessons about VHDL in our course. After that, the design
flow is presented together with important information about
the tools and the hardware infrastructure. In the main part of
our course, several important hardware circuits are presented,
how they have to be described in VHDL and how they are
mapped to resources of the FPGA. In the practical excercises
of the course, the students have to implement some of these
circuits and test their designs in the online laboratory.



Fig. 2: Digilent Nexys2 FPGA Board

3.6 Development Tools
The FPGA board, which is used in this course, contains

a FPGA from the manufacturer Xilinx. Xilinx provides
the free tools ISE Webpack and ISim Simulator for FPGA
development. Hence, the students can install these tools and
implement their FPGA designs at home. Also the simulation
can be performed at their local computers at home. The
testing of realized hardware circuits is done via a remote
connection at the online laboratory.

4. Architecture
After defining the requirements and presenting the content

of our course, we will present our hardware system in more
detail in this section.

4.1 FPGA Boards
For our course, we have choosen the Nexys2 board [19]

from the manufacturer Digilent. The Nexys2 board (see Fig-
ure 2) contains a modern and low cost Spartan3E FPGA [20]
from Xilinx. The big advantage of the board are the visual
outputs. It contains a 4-Digit 7-Segment display and 8 LEDs,
which can be controlled easily by the user. Therefore, the
students can get fast successes with simple hardware circuits
e.g. adders and multipliers. The board contains also inputs
e.g. switches and pushbuttons, but they can not be used
remotely and have to be emulated, utilizing an additional IO
board (later more). Normally, the board can be programmed
via the JTAG interface of the board. This interface is also
connected to a Cypress FX2 [21] chip for a USB connection.
This connection is used for a remote programming of the
boards.

4.2 IO Boards and Connector Boards
For a user interaction with the FPGA board, the so called

IO board (see Figure 3) is used. It is a Celeritous PICWEB
board [22], hosting a small webserver. Through a remote
connection to a webpage of this server, the user has access
to a virtual interface for the FPGA board. A connection to
the board is established via the onboard ethernet interface
and the power for the board is provided by a USB connector.
To meet our requirements, the original webserver of the IO

Fig. 3: Celeritous PICWEB IO Board

Fig. 4: Connector Board beween FPGA Board and IO Board

board was adapted by us for an emulation of the pushbuttons
and switches. This was accomplished by reprogramming the
PIC microcontroller with a special PIC Programmer.

To connect the IO boards with the FPGA boards, a
connector board was designed by us which is shown in
Figure 4. This board contains no logic, it only connects
the IO Pins with the FPGA pins. With integrated resistors,
this connection is short circuit protected which secures the
hardware in case of a incorrect handling by the students. An
additional LED per wire was added, to allow the student to
observe the state of a wire.

4.3 Webcams
For a monitoring of the hardware, a video stream will be

sent to the user. To capture the video data, a low cost webcam
from Logitech is used. The Logitech webcam C500 [23] has
an integrated 1.3 mega pixel image sensor. With 30 frames
per second at a resolution of 1280 × 1024, it is fast enough
and the quality is sufficient for our purposes. The webcam
uses an usb interface for a universal and easy use.

4.4 Server and Deamon
We require two server systems for our course. The Moo-

dle server provides the e-learning content, as described in
Section 3.3. The second one is a resource management
sever (RM Server), where all FPGA boards, IO boards
and webcams are connected. The VHBD is installed on
this server and runs the tasks, described in Section 2.3.
Additionally, it compresses the video stream to reduce the
transmitting latency. Hence, a more powerful server was
required which is in our case a Intel Core i7 870 @ 2.93GHz
CPU with 4 GB RAM. Because several boards and webcams



Fig. 5: Overall System

are connected to this server via USB, it contains additional
USB cards, providing 30 USB slots.

4.5 Physical Architecture
The physical architecture of our system is shown in

Figure 5. On the top, there is the RM server with a monitor
and a keyboard for simple debugging and maintenance. On
the bottom, 10 FPGA boards, connected via the connector
boards to the IO boards, are shown. Above the boards, the 10
webcams are mounted and every camera monitors one FPGA
board. For an optimal illumination, there are two fluorescent
tubes mounted in the box. Additionally, there is a switch on
the left side of the box which connects the IO boards via
ethernet with the RM server. The box has as small dimension
of 80× 80× 150 cm. and stand on rolls, for flexibility and
an easy movement.

4.6 User Workflow
We have defined all system components and want to

explain now, how a user can work with the system. Initially,
he has to install all required tools on his local desktop
computer. Then, he has to login on the moodle server and
study the relating session content together with exercises
and tests. After that, he writes VHDL code and implements
a FPGA design with the tools installed on his computer. He
has to generate a programming file for the Nexys2 board.
The user has to login on the RM server and to upload the
generated programming file. The VHBD programs the board
and shows an address of a video stream and a website for
the IO board input. The videostream can be watched in an
arbitrary video player and the inputs can be controlled via a
browser. All steps are fully OS independent and very easy
to perform. As desired, all single steps could be plugged
together in a common web interface.

5. Implementation
5.1 FPGA Boards
5.1.1 Programming the Boards using UrJTAG

One of our requirements was that only Open Source
software and tools should be used on our servers if pos-
sible. Xilinx delivers with the ISE Webpack a programming
tool called impact [24], as freeware but Closed Source.
But this tool is only compatible with the Parallel-JTAG-
Programming-Cable which uses a parallel port. For program-
ming the board via USB, a special software from Digilent,
the so called Adept Suite [25], is required. But this tool is
also Closed Source.

An Open Source tool called UrJTAG [26] is available
for Linux based platforms. The problem is, that no driver
exists for the Nexys2 board. But by reprogramming the
Cypress FX2 chip on the FPGA board, it can be adapted
and programmed via UrJTAG. This problem was already
identified from other Nexys2 users and they have developed
a new firmware for the FX2 chip [27] which emulates a USB
Blaster device from Altera [28]. In conclusion, the JTAG
ports from the FPGA will be controlled by the new firmware
which emulates an USB Blaster interface.

Now it is possible to program the FPGA with UrJTAG,
but with one restriction. UrJTAG chooses the right driver
according to the vendor and product IDs (VID/PID). After
reprogramming the FX2 Chip, all FPGA boards have the
same VID and PID. Hence, a distinction between the single
boards is not possible. To solve this problem, we created for
each FPGA board an own firmware with an unique VID/PID.
This allows to set a special enviroment in UrJTAG which is
able to identify the correct boards.

For the creation process of the FX2 firmwares, some
scripts have been created by us which automatically replace
the PID/VID from the FX2 source code and, afterwards,
compile it with the sdcc [29]. As VID the free ID 0x2357
for the Friedrich-Alexander-University Erlangen-Nuremberg
(FAU) was choosen to avoid conflicts with other devices.
The PID counts up, from 1 to n.

5.1.2 Identification of the Boards
As mentioned before, the boards can not be distinguished

by the server before reprogramming the FX2 chip. Also the
serial number is zero at any time when new usb devices
are detected. Hence, the server has no idea, which board is
dedicated to a camera, respectively is connected to which IO
board. To solve this problem, every FPGA is programmed,
after reprogramming the FX2 chip, with an unique circuit
which outputs the PID via the IO Pins to the IO board.
Because the IO board has a fixed IP address, every IO board
can be read out by the server to get the unique ID. In
conclusion, it is possible to distinguish the boards and to
determine the assignment of every board to a webcam. This
problems occurs only at a startup or restart of the system



Fig. 6: FPGA-, Connector- and IO Board

and will not occur during application. The induvidual circuit
generation for the FPGAs is also done fully automatically,
by replacing the specific lines in the source code, afterwards,
synthesizing and implementing it to a FPGA programming
file.

5.2 IO Board and Connector Board
There are three features, we had to implemented to fit our

requirements. First of all, it has to be possible to write and
read values from specific pins of the IO board. As mentioned
before, the webserver of the IO board had to be adapted
accordingly. As described in the previous section, the board
IDs can now be read via a http-request by the server. To
set the values of the input pins of the FPGA, the user has
to connect to the webpage on the IO board and to set the
emulated switches or pushbuttons on the virtual interface of
the webpage.

Secondly, a major problem is the authentication of the
users. Only the inputs of the board, which is assigned to the
user, should be changeable. Therefore, the concept of Session
IDs has been introduced. A random alphanumeric sequence
of characters is set as key, to control an IO board. Without
this sequence, which can be set to an arbitrary length, the
user can not access the webpage and set the inputs. When a
board is assigned to a user, the daemon generates a Session
ID and initializes the specific IO board. The ID is then part
of the URL of the IO board which is send to the user.
Only requests with the proper session are allowed. To set
the Session ID of the IO board itself, a master password
is needed as part of the URL. This master password is
also required when requesting the board ID. Thus, only the
daemon can assign the Session ID and request the board
IDs and only the user, to whom the board is assigned, can
control it.

A third feature are time constrained input signals. To
generate inputs e.g. according to the PS/2 protocol which
is required for some of the exercises, a sequences of inputs
is required which is time constrained. Therefore, a sequence
generator has been implemented which produces PS/2 pro-
tocol sequences out of user input characters submitted via
the web interface.

For the connector board, we have developed an own PCB
Layout. It was manufactured in a two-layer technology and

only contains some wires and for every wire an indicator
LED. Figure 6 illustrates such a board, connected on the
one side to the PMOD connectors of the FPGA board where
resistors for short circuit protection are integrated. On the
other side, it is connected to the IO board. The connector
board for the connection of the FPGA and the IO board
contains wires for the emulation of 8 Switches, 4 Pushbut-
tons and 2 wires for the PS/2 protocol emulation. The board
contains also 4 additional LEDs for the monitoring of the
board identification and one power LED.

5.3 Server and VHBD
For using a secure and flexible system based on Open

Source, the resource management server is running on
Gentoo Linux. The VHDB is written in C and is installed
on the server. Thereby, all critial system tasks, like user
management, are done with the help of the operating system.
This results in a very stable and secure system.

All resources come together at the VHBD. When the
daemon is started, it reprograms the FX2 chips on the
boards, followed by a reprogramming of the FPGAs and
identification of the boards, as mentioned before. Then the
server waits for user interactions. If a user wants to program
a board, the server looks for the next free board, assigns
this board to the user who has access to the board now.
The user gets a Session ID and has a fixed amount of time
for experiments. If the time is over, or the user has logged
out, the board will be released and can be assigned again to
a requesting user. If a user requires more time, he has the
possibility to extend the current experiment session. Some
other scenarios are implemented, too. For example, a user is
able to allocate a board for a specific time period. If the user
is logged in at this time, an allocated board will be assigned
to him.

The VHBD is programmed in a very modular manner.
That means, every component of the system is an own
process which communicates via IPC e.g. pipes. Hence,
the system can be easily extended with more boards and
maybe more servers. Then, only the pipes have to be
replaced by sockets. Such a system is currently developed in
cooperation with the University of Passau. Additionally, such
a multi-process system allows a high degree of independence
between the processes. Since every user has his own process,
many users can work on the system in parallel.

The Server has two network interfaces. One is connected
to the internet, where the students can connect to the system
to use the VHDB. The other interface is connected internally
to the switch, where all IO boards are connected. If a user
wants to make IOs for a special IO board, the request is
always sent to the RM server. With the help of IP tables, the
request is transformed and will be forwarded to the choosen
IO board. By means of this feature, we are able to save
public IP adresses.



5.4 Cameras
The webcams are connected via USB to the server which

also has the problem to distinguish the different cameras.
But this distinction is easier than the distinction of the
FPGA boards, because every used webcams has a unique
serial number. After plugging in a camera, a new device
(/dev/videoX) is automatically created. With the help of
udev [30] and some rules, it is possibe to create logical
mappings from the physical devices /dev/videoX to logical
devices /dev/vhbcamx which are now in the right order.
Hence, the daemon knows for example, that /dev/vhbcam0
is always the bottommost left camera.

The devices will be controlled with video for linux 2 (v4l2)
and streamed utilizing a video lan client. We have choosen
a MPEG-2 encoding with a variable bitrate of 400 kbits/sec.
This leads to a low required bandwidth with a sufficient
video quality.

6. Conclusion and Outlook
In this paper, we presented a new remote FPGA hardware

laboratory for our e-learning course FPGA online. Because
of the available practical exercises in the online laboratory,
the students can learn important basics in circuit design more
efficiently by testing their circuits on real hardware. Because
of a modular structure, our system is secure, flexible and
can be easily extended for a greater number of users. The
initial costs for creating the course and the operating costs
were greatly reduced by the consistent usage of Open Source
software for the e-learning content and also for the online
laboratory.

Acknowledgment
The work was supported by funding from the Virtual

University of Bavaria (vhb), a network of universities
and universities of applied sciences of the Free State of
Bavaria/Germany.

References
[1] D. Hercog, B. Gergic, S. Uran, and K. Jezernik, “A dsp-based remote

control laboratory,” Industrial Electronics, IEEE Transactions on,
vol. 54, no. 6, pp. 3057 –3068, 2007.

[2] L. Bello, O. Mirabella, and A. Raucea, “Design and implementation of
an educational testbed for experiencing with industrial communication
networks,” Industrial Electronics, IEEE Transactions on, vol. 54,
no. 6, pp. 3122 –3133, 2007.

[3] A. Rojko, D. Hercog, and K. Jezernik, “Power engineering and motion
control web laboratory: Design, implementation, and evaluation of
mechatronics course,” Industrial Electronics, IEEE Transactions on,
vol. 57, no. 10, pp. 3343 –3354, 2010.

[4] F. Zeiger, M. Schmidt, and K. Schilling, “Remote experiments with
mobile-robot hardware via internet at limited link capacity,” Industrial
Electronics, IEEE Transactions on, vol. 56, no. 12, pp. 4798 –4805,
2009.

[5] M. Wu, J.-H. She, G.-X. Zeng, and Y. Ohyama, “Internet-based
teaching and experiment system for control engineering course,”
Industrial Electronics, IEEE Transactions on, vol. 55, no. 6, pp. 2386
–2396, 2008.

[6] W. Li, G. Joos, and J. Belanger, “Real-time simulation of a wind
turbine generator coupled with a battery supercapacitor energy storage
system,” Industrial Electronics, IEEE Transactions on, vol. 57, no. 4,
pp. 1137 –1145, 2010.

[7] L. Bello, O. Mirabella, A. Raucea, and L. Capetta, “Enel pilot:
From a research testbed to a virtual educational laboratory,” Industrial
Electronics, IEEE Transactions on, vol. 56, no. 12, pp. 4844 –4853,
2009.

[8] G. Farias, R. De Keyser, S. Dormido, and F. Esquembre, “Developing
networked control labs: A matlab and easy java simulations approach,”
Industrial Electronics, IEEE Transactions on, vol. 57, no. 10, pp. 3266
–3275, 2010.

[9] G. Donzellini and D. Ponta, “A simulation environment for e-learning
in digital design,” Industrial Electronics, IEEE Transactions on,
vol. 54, no. 6, pp. 3078 –3085, 2007.

[10] J. Ma and J. V. Nickerson, “Hands-on, simulated, and remote labo-
ratories: A comparative literature review,” ACM Computing Surveys
(CSUR), vol. 38, no. 3, 2006.

[11] Moodle. (2011) Moodle. [Online]. Available: http://moodle.org
[12] J. Fisler. (2011) elml-elesson markup language. [Online]. Available:

http://www.elml.ch
[13] R. Weibel, S. Bleisch, S. Nebiker, J. Fisler, T. Grossmann,

M. Niederhuber, C. Collet, and L. Hurni, “Achieving more sustainable
e-learning programs for giscience,” Geomatica, vol. 63, no. 2, pp.
109–118, 2009. [Online]. Available: http://www.zora.uzh.ch/25589/

[14] J. Fisler and F. Schneider, “Creating, handling and implementing e-
learning courses and content using the open source tools olat and elml
at the university of zurich,” in ISPRS Conference, Bejing, 2008.

[15] S. M. Gerson, “E-class: Creating a guide to online course
development for distance learning faculty,” Online Journal of Distance
Learning Administration [online], vol. 3, 2000. [Online]. Available:
http://www.westga.edu/ distance/ojdla/winter34/winter34.htm

[16] S. Graf and B. List, “An evaluation of open source e-learning
platforms stressing adaptation issues,” in Advanced Learning Tech-
nologies, 2005. ICALT 2005. Fifth IEEE International Conference on,
2005, pp. 163 – 165.

[17] Moodle. (2011) Moodle statistics. [Online]. Available:
http://moodle.org/stats/

[18] W3C. (2006) Xml inclusions (xinclude) version 1.0 (second edition).
[Online]. Available: http://www.w3.org/TR/xinclude/

[19] Digilent, Digilent Nexys2 Board Refer-
ence Manual, 2008. [Online]. Available:
http://digilentinc.com/Data/Products/NEXYS2/Nexys2_rm.pdf

[20] Xilinx, Spartan-3E FPGA Family: Data Sheet (DS 312),
2009. [Online]. Available: http://www.xilinx.com/support/ docu-
mentation/data_sheets/ds312.pdf

[21] Cypress, EZ-USB(R) FX2LP(TM) USB Microcontroller High-
Speed USB Peripheral Controller, 2011. [Online]. Available:
http://www.cypress.com/?docID=27092

[22] Celeritous. (2011) Pic 18f67j60 web server module. [Online].
Available: http://www.celeritous.com/estore/PICWEB_Server_Kit

[23] Logitech. (2011) Logitech webcam c500. [Online]. Available:
http://www.logitech.com/de-at/38/5866

[24] Xilinx, iMPACT User Guide - 4.1, 2011. [Online]. Available:
http://www.xilinx.com/itp/xilinx4/pdf/docs/pac/pac.pdf

[25] Digilent. (2011) Digilent adept. [Online]. Available:
http://www.digilentinc.com/Products/Detail.cfm?Prod=ADEPT

[26] UrJTAG. (2011) Urjtag documentation. [Online]. Available:
http://urjtag.org

[27] K. Waschk. (2011) usb_jtag - usb jtag adapter firmware. [Online].
Available: http://ixo-jtag.sourceforge.net/

[28] Altera, USB-Blaster Download User Guide, 2011. [Online]. Available:
http://www.altera.com/literature/ug/ug_usb_blstr.pdf

[29] S. D. et al. (2011) Sdcc - small device c compiler. [Online].
Available: http://sdcc.sourceforge.net

[30] kernel.org. (2011) The linux kernel archives -
udev. [Online]. Available: http://git.kernel.org/?p=linux/ hot-
plug/udev.git;a=blob;hb=HEAD;f=README


