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Abstract-The motion of the carotid artery wall has been 

previously estimated from ultrasound image sequences using 

block matching. In this paper, this conventional method was 

extended through its combination with Kalman filtering in two 

distinct scenarios; (a) by renewing the reference block and (b) by 

updating the estimate of the conventional algorithm. Both 

procedures were evaluated on synthetic image sequences through 

the estimation of the warping index. The results showed that 

incorporation of the Kalman filter in conventional block 

matching slightly improved the accuracy in arterial wall motion 

estimation. Updating the estimate of the conventional algorithm 

using Kalman filtering was the most efficient procedure and 

could be used to study further the displacements of the arterial 

wall in an attempt to obtain useful knowledge about arterial 

biomechanics. 
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I. INTRODUCTION 

B-mode ultrasound is widely used in the diagnosis of 
arterial disease because it allows non-invasive assessment of 
arterial wall morphology. Arterial wall motion during the 
cardiac cycle can also be estimated from B-mode ultrasound 
by recording image sequences and subsequently applying a 
motion estimation algorithm.  

Block matching has been previously used in estimating 
carotid artery wall motion from B-mode ultrasound [1]. The 
method relies on the use of a reference block of pixels in the 
first image of the sequence and the identification, in each 
subsequent image, of a block that shows the highest similarity 
to the reference block. Examples of applications of block 
matching in carotid artery wall motion include the estimation 
of the vessel diameter in systole and diastole, the arterial wall 
distensibility in two directions [1], the average motion 
amplitude and the shear strain within the wall [2]. The method 
was also used by Bang et al [3] to study motion dynamics of 
carotid atheromatous plaque.  

Adaptive block matching is an extension of the algorithm 
which updates the reference block using one or more of the 
previous frames. Four update strategies have been proposed, 
namely single-frame, multiframe, finite impulse response 
(FIR) filtering, and Kalman filtering, and it was shown that the 
use of Kalman filtering was the most robust strategy which 
minimized the mean tracking error [4]. The methods were also 
used to extract motor activity signals of selected anatomical 

sites from video recordings of neonatal seizures and the best 
performance was again achieved when Kalman filtering was 
used [5]. Kalman filtering has also been used in a dynamic 
contour tracking approach to reinforce the accuracy in 
tracking the myocardial boundaries from echocardiographic 
image sequences [6]. 

Based on the above, this work was undertaken in an 
attempt to further improve the performance of block 
matching-based arterial wall motion estimation, by 
incorporating an adaptive methodology. More specifically, in 
this paper the conventional block matching algorithm was 
combined with Kalman filtering in two distinct scenarios: (a) 
the algorithm was extended to adaptive block matching by 
introducing an update reference block strategy based on the 
Kalman filter and (b) Kalman filtering was used to renew the 
estimate of the conventional algorithm. 

II. BASIC PRINCIPLES OF KALMAN FILTERING 

Kalman filter is an efficient recursive filter that estimates 
the current state of a linear dynamic system from a series of 
noisy measurements [7]. Kalman filter assumes that the true 
state of the system at time k is related to the state at time (k-1) 
according to the model: 

𝒙𝑘 = 𝑨𝒙𝑘−1 + 𝑩𝒖𝑘 + 𝒏𝑘    (1) 

where 𝒙𝑘  is the state at time k, A is the state transition matrix 
applied to the previous state 𝒙𝑘−1, B is the control-input 
matrix applied to the control vector 𝒖𝑘  and 𝒏𝑘  is the process 
noise with a zero mean normal distribution described by the 
covariance matrix Q. At time k an observation, or 
measurement, 𝒛𝑘  of the true state 𝒙𝑘  is made according to the 
model: 

𝒛𝑘 = 𝑯𝒙𝑘 + 𝒗𝑘     (2) 

where H is the observation matrix that relates the 
measurement of the true state with the true state and 𝒗𝑘  is the 
observation noise the distribution of which is described by the 
covariance matrix C. To use Kalman filtering one should 
model the process according to the above equations.  

Because Kalman filter is a recursive estimator, only the 
estimated state from the previous time step (𝒙 𝑘−1) and the 
current measurement (𝒛𝑘 ) are needed to compute the estimate 
for the current state (𝒙 𝑘 ). Kalman filter acts in two distinct 
phases: prediction and update. The prediction phase produces 
an a priori estimate of the state (𝒙 𝑘

−) and the filter’s error, the 



distribution of which is represented by the covariance matrix 
(𝑷𝑘

−). 

𝒙 𝑘
− = 𝑨𝒙 𝑘−1 + 𝑩𝒖𝑘−1    (3) 

𝑷𝑘
− = 𝑨𝑷𝑘−1𝑨

𝑇 + 𝑸    (4) 

In the update phase, the a priori estimate is considered a 
linear combination of the a priori state estimate and the 
difference (multiplied with an appropriate factor) between the 
observation and the prediction of the observation: 

𝒙 𝑘 = 𝒙 𝑘
− + 𝑲(𝒛𝑘 − 𝑯𝒙 𝑘

−)   (5) 

This factor is represented by the Kalman gain K: 

𝑲 = 𝑷𝑘
−𝑯𝑇 𝑯𝑷𝑘

−𝑯𝑇 + 𝑪 −1   (6) 

In case of high process noise the Kalman gain gives 
priority to the update, whereas in case of high observation 
noise the term of the a priori state estimate dominates. The 
improved estimate is termed the a posteriori estimate of the 
current state (𝒙 𝑘 ) and the filter’s error is updated according to 
the following equation: 

𝑷𝑘 =  𝑰 − 𝑲𝑯 𝑷𝑘
−    (7) 

III. METHODS 

A. Block matching 

Block matching assumes that a block of pixels remains 
constant over motion and that all its pixels have the same 
velocity. The algorithm consists in finding a block (best-
matched block) in an image that shows the highest similarity 
to the reference block which is chosen by the user in the first 
image. The search for the best-matched block is performed in 
a limited image region, called search window, around the best-
matched block of the previous image. 

 In this work block matching methods were implemented 
in Matlab (The MathWorks, Natick, Massachussetts, USA), 
using the correlation coefficient as the similarity measure,  
25x17 pixels reference blocks selected in the first frame and 
10x10 pixels search windows. This size of the search window 
was suggested in [1] as the most appropriate for this 
application. 

B. Adaptive block matching using Kalman filtering 

In adaptive block matching the reference block is updated 
to take into consideration the changes in the appearance of the 
target [4]. Kalman filtering can be used in adaptive block 
matching because it can estimate the reference block which is 
used for image k by modeling the process as: 

𝒙𝑘 = 𝑹𝑘 = 𝑹𝑘−1 + 𝒏𝑘       (8) 

𝒛𝑘 = 𝑴𝑘−1 = 𝑹𝑘−1 + 𝒗𝑘    (9) 

where R is the reference block and M is the best-matched 
block. With reference to (1) and (2) A=H=I and B=0. 
Consequently, (3)-(7) are valid for 𝒙 ≡ 𝑹 and 𝒛𝑘 ≡ 𝑴𝑘−1. 

Matrices Q and C were considered proportional to the 
identity (Q=qI, C=cI) and the method was optimized in terms 
of the multiplication factors q, c. Experimentation with these 
parameters showed that the method maximized its 
performance when c>>q. Therefore in this study q=0.1 and 

c=100 were used. This observation shows that the error is 
minimized when each image tends to maintain the a priori 
estimate, which means to use the previous reference block as a 
reference block, with a slight improvement derived from the 
difference between the best-matched block and the reference 
block of the previous image. 

C. Updating the estimation of conventional block matching 

using Kalman filtering 

Kalman filtering can be used to improve the motion 
detection of the conventional block matching algorithm, by 
modeling the process as:  

𝒙𝑘 =  

𝑌(𝑘)
𝑋(𝑘)
𝑑𝑌(𝑘)

𝑑𝑋(𝑘)

 =  

1 0
0 1

1 0
0 1

0 0
0 0

1 0
0 1

  

𝑌(𝑘 − 1)
𝑋(𝑘 − 1)
𝑑𝑌(𝑘 − 1)

𝑑𝑋(𝑘 − 1)

 +  

𝑛𝑌
𝑛𝑋
𝑛𝑑𝑌
𝑛𝑑𝑋

    (10) 

where X, Y are the coordinates of the centre of the best-
matched block in the longitudinal and radial direction, 
respectively, and dX, dY are the displacements in relation to 
the previous image. The estimate of conventional block 
matching for the coordinates of the centre of each best-
matched block found in the images of a sequence is 
considered as observation information: 

𝒛𝑘 =  
𝑍𝑌(𝑘)

𝑍𝑋 𝑘 
 =  

1 0
0 1

0 0
0 0

  

𝑌(𝑘)

𝑋(𝑘)
𝑑𝑌(𝑘)

𝑑𝑋(𝑘)

 +  
𝑣𝑋
𝑣𝑌

     (11) 

This idea can be implemented during (version 1) or after 
(version 2) the execution of the algorithm. 

In this case performance is still dependent on matrices Q 
and C which are defined in the same way as before. 
Consequently the method was again optimized in terms of the 
multiplication factors q and c. The experimentation showed 
that it minimized its deviation from real motion when the 
process error was double the observation error. Therefore the 
evaluation of the two versions was made by selecting q=4 and 
c=2. This choice shows that the method requires "confidence" 
in the estimate of the conventional block matching algorithm, 
leaving room for improvement coming from the Kalman 
filtering. 

D. Performance evaluation 

The methods described above were optimized and 
evaluated by applying them to four synthetic 87-image 
sequences of the common carotid artery, corresponding to 
three cardiac cycles. The first synthetic sequence (“synthetic”) 
was created by distorting a real ultrasonic B-mode image (Fig. 
1(a)) according to a mathematical motion model [8]. Two 
additional sequences were created by adding noise levels of 25 
decibels (“synthetic25”) and 15 decibels (“synthetic15”), 
respectively, to the first sequence. The fourth synthetic 
sequence (“field”) was constructed using the Field II software 
package and a mathematical motion model [8]. Fig. 1 presents 
the first image of the four synthetic sequences. 

Performance was assessed by means of the warping index 
defined by (12) and (13), separately for the longitudinal and 
radial directions as well as for the whole movement.  



𝑤𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 =     𝑙𝑜𝑛 𝑔𝑟𝑒𝑎𝑙  𝑘,𝑖 −𝑙𝑜𝑛 𝑔𝑒𝑠𝑡  𝑘,𝑖  
2𝑛

𝑖=1
𝑚
𝑘=1

𝑛∙𝑚
     (12) 

𝑤𝑟𝑎𝑑𝑖𝑎𝑙 =     𝑟𝑎𝑑𝑖𝑎 𝑙𝑟𝑒𝑎𝑙  𝑘,𝑖 −𝑟𝑎𝑑𝑖𝑎 𝑙𝑒𝑠𝑡  𝑘,𝑖  
2𝑛

𝑖=1
𝑚
𝑘=1

𝑛∙𝑚
    (13) 

𝑤 =  𝑤𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙
2 + 𝑤𝑟𝑎𝑑𝑖𝑎𝑙

2           (14)           

where m is the number of selected blocks and n is the number 
of images of each sequence. The warping index was computed 
by choosing 176 block centres for sequences “synthetic” (Fig. 
1(a)), “synthetic25” (Fig. 1(b)), “synthetic15” (Fig. 1(c)) and 
196 block centres for the sequence “field” (Fig. 1(d)).  

 

  

(a) (b) 

  

(c) (d) 

Figure 1. Examples of images of the common carotid artery wall of synthetic 

sequences (a) “synthetic”, (b) “synthetic25”, (c) “synthetic15” and (d) “field”. 

The white marks represent the selected block centres. 

IV. RESULTS 

Table 1 shows the warping index values for each synthetic 
sequence when motion was estimated by conventional block 
matching (BM), adaptive block matching using Kalman 
filtering (KF), update of BM’s estimation applying Kalman 
filtering during tracking (K1) and update of BM’s estimate 
applying Kalman filtering at the end of tracking (K2). As we 
can see, errors were generally greater in the longitudinal 
direction probably because of relatively higher homogeneity 
of image intensities in that direction. In most cases the Kalman 
filter minimized the warping index, which means that it 
improved motion estimation for the majority of selected 
blocks. Highest performance was achieved by the use of 
Kalman filtering to update the BM’s estimate after tracking 
(K2). Fig. 2 shows examples of radial and longitudinal 
displacements, respectively, of a block located in the lower 
wall-lumen interface in the first image of the sequence 
“synthetic25” using the four investigated methods, BM, KF, 
K1, and K2. The root-mean-square errors for these cases were 
1.42, 1.31, 1.34 and 1.16 pixels, respectively. 

TABLE I.        WARPING INDEX VALUES IN PIXELS FOR 

BM, KF, K1 AND K2 FOR THE SEQUENCES “synthetic”, 

“synthetic25”, “synthetic15”, AND “field” 

“synthetic” w wradial wlongitudinal 

BM 1.1938 1.0753 0.5185 

KF 1.1939 1.0749 0.5196 

K1 1.1893 1.0753 0.508 

K2 1.1758 1.0703 0.487 

“synthetic25” w wradial wlongitudinal 

BM 3.8863 2.267 3.1567 

KF 3.9102 2.3921 3.0931 

K1 3.3553 2.2668 2.4738 

K2 3.8484 2.258 3.1164 

“synthetic15” w wradial wlongitudinal 

BM 13.9839 3.7012 13.4852 

KF 13.9136 3.89 13.3587 

K1 14.0717 3.6509 13.5895 

K2 13.9327 3.6282 13.452 

“field” w wradial wlongitudinal 

BM 1.6476 1.1313 1.1979 

KF 1.6485 1.1353 1.1952 

K1 1.6374 1.1317 1.1834 

K2 1.6266 1.1254 1.1744 

 
The method that generally produced the lowest error, K2, 

was applied to a real ultrasound image sequence of the carotid 
artery of a young normal subject. The first frame of this 
sequence is shown in Fig. 1(a). Fig. 3 shows examples of 
radial and longitudinal displacements, respectively, of a block 
located in the lower wall-lumen interface in the first image of 
this sequence using K2 and BM. K2 differs from BM mainly 
in the radial direction while maintaining both the periodicity 
and the expected motion pattern. 

 

 

 



 

 
Figure 2. Radial (top) and longitudinal (bottom) displacements of a block 
located in the lower wall-lumen interface in the first image of the sequence 

“synthetic25” using BM, KF, K1 and K2. 

 

 

 
Figure 3. Radial (top) and longitudinal (bottom) displacements of a block 

located in the lower wall-lumen interface in the first image of the real 

sequence using BM and K2. 

V. DISCUSSION 

Kalman filtering managed to slightly enhance motion 
detection accuracy when it is used for either renewing the 
reference block, or updating the estimate of the conventional 
algorithm. In the first case the error is smoothed because the 
algorithm takes into consideration changes in brightness of the 

image, which would be essential under real conditions where 
these changes may stem from the patient's movement or errors 
during the processing of images. In the second case Kalman 
filtering limits the displacements estimate according to the 
defined models and prevents the transmission of considerable 
errors in the subsequent images. However, the improvement 
does not respond to Kalman filter potential, especially in case 
of noisy sequences. KF creates a better reference block for 
each image, but it searches for the best-matched block within a 
search window around the best-matched block of the previous 
image, without preventing error transmission. K2 limits error 
transmission, whereas it still uses the reference block of the 
first image as a reference block for all images.  

The fact that Kalman filtering reinforces the conventional 
algorithm, without entailing high complexity or high 
computational cost, makes the methods worth implementing. 
Taking into consideration the reasons which limited the 
improvement range, it is recommended to use the above 
methods in combination to study the movement of important 
anatomical areas of the carotid artery, correlate motion with 
structural and mechanical properties of the wall and create a 
user-friendly software to visualize the results. 

VI. CONCLUSION 

Kalman filtering for updating the estimate of the 
conventional block matching algorithm may be efficiently 
used for arterial tissue motion estimation. Systematic 
application of this sophisticated form of the algorithm in 
additional samples of real data, including different image 
areas, would provide new knowledge about the mechanical 
deformations of the arterial wall during the cardiac cycle. 
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