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Abstract:

While recent controversies concerning the weaknesses of current voting machines
have drawn some interest to methods of online voting, as well as other voting
technologies, the possibility of holding large scale public elections online is only one of
the motivations for studying the subject.  In addition to being a candidate technology for
use in elections, the problems associated with online voting provide a field on which to
explore cryptographic theory.  We approach the task of designing and implementing an
online voting protocol with both of these motivations in mind.

Various schemes for conducting online elections have been proposed by
cryptography researchers since the 1980s.  These proposals have attempted to maintain
the desired features of a “traditional” election in a domain where votes are submitted
electronically over some public network, such as the Internet, while also seeking to
expose unique advantages of online voting over other methods.  We have provided an
examination of these existing protocols and identified the strengths and weaknesses of
each under different election premises.  In the process of doing so, we have gained an
understanding of the cryptographic techniques employed in these systems, and also some
insights that have allowed us to make improvements to existing protocols and explore
ways of making them more secure and efficient.

We have constructed an implementation of an online voting system using an
adaptation of an already existing protocol.  This system is comprised of an interface for
conducting elections as well as a voting protocol that incorporates cryptographic methods
to prevent many attacks involving adversaries that may eavesdrop or create messages, or
corrupt election participants; however, security issues that are not addressed in other
electronic voting protocols (such as denial of service attacks or untrusted
software/hardware) were considered beyond the scope of our project.  We plan to
demonstrate the functionality and security of our voting system by designing a simulation
of an election scenario.

Related Work:

There have been many systems proposed to solve the problem of holding local
and national elections through an online system.  These systems begin with the goal of
implementing voting processes that employ the accessibility of the Internet, in hopes of
increasing voter turnout and making it easier for citizens to vote, while at the same time
maintaining the safety and security that are necessary for elections in a democratic nation.
Many have begun by outlining the various features that must be present in a free and fair
election, and those that are present in the current voting system used in the United States.
For example, Karro and Wang require that the following criteria be met for an online
voting system to be “secure and practical for large-scale elections”: “Democracy”,
“Accuracy”, “Privacy”, “Verifiability”, “Simplicity”, “Mobility”, “Efficiency”,
“Scalability”, and “Responsibility” [1].  Many other proposals outline a similar list of
required features.  For example, the protocol proposed by Fujioka, Okamoto, and Ohta [3]
also describes “Soundness,” “Eligibility,” and “Fairness” as desired properties of a good
election scheme.  More recently, schemes such as that of Juels and Jakobsson [4] also
point out that “Receipt-Freeness” and, more generally, “Coercion Resistance” are



necessary properties in order to avoid the occurrence of voter coercion or of vote buying
to violate the election.  The existing systems use various forms of cryptographic and
security protocols to ensure that these criteria are met in their implementation of an online
election system.

 Many of the existing systems begin by breaking the voting process up into
multiple phases, and also partitioning the responsibilities for these steps among various
different components.  For example, the system developed by Cranor and Cytron, breaks
the process up among four components: the “Registrar,” “Pollster,” “Validator,” and
“Tallier” [2].  In this scheme, the Registrar is “responsible for registering voters prior to
an election or poll.”  The Pollster then acts during the actual election to send “human
readable ballots to a voter, collecting the voter’s responses,” and perform “cryptographic
function on the voter’s behalf,” among other features.  The Validator verifies that a voter
is registered and ensures “that only one vote is cast by each registered voter.”  Finally, the
Tallier has the function of “collecting the voted ballots and tallying the results of the
election or survey” [2].  The system implements various cryptographic protocols for the
communication between these components and the voters’ machines to ensure the
security of the system and the satisfaction of the given criterion.   This system is based
closely on that proposed by Fujioka, Okamoto, and Ohta [3].  The system proposed by
Karro and Wang [1] not only breaks the process up into different components, but also
describes in detail different phases of the online voting scheme.  This process uses six
components, or “central facilities,” in the voting scheme: “the registrar, the authenticator,
the distributor, the counter, the matcher, and the verifier” [1].  In addition, the protocol
consists of four different phases: the “Registration phase”, “Pre-Voting phase”, “Voting
phase”, and “Announcement phase” [1].  Again, this protocol uses various cryptographic
procedures and encryption/decryption methods to ensure that the vote is administered
fairly and no fixing or changing of votes can take place.

In achieving these criteria, most of the schemes utilize a set of cryptographic
primitives to develop their election protocol and make it secure.  These primitives include
public-key cryptosystems, bit-commitment schemes, homomorphic encryptions, and mix-
nets.  These primitives allow the protocols to ensure the security of the information
exchanged and the accuracy, privacy, and fairness that are necessary in a good election
scheme.  A more detailed description of these primitives and how they are used in some
representative existing protocols is presented in our report entitled “A Survey of
Electronic Voting Schemes,” which we submitted as the result of our first semester work.

In this report, we have looked at a reflective sample set of protocols and explored
their respective strengths and weaknesses.  We have also outlined a list of the criteria that
these schemes have suggested and that we see as being necessary for a safe and secure
voting scheme.  The final set of criteria that we determined was the most robust and
complete includes:

• Privacy, which refers to the secrecy of each voter's vote being maintained throughout
the election.

• Eligibility, which is realized if only eligible voters can vote, and they are only able to
vote once.

• Fairness, which is provided if no party can gain information about any intermediate
results during the election process.



• Soundness, also referred to as robustness, which is exhibited if faulty or dishonest
behavior by any participants does not cause any unreasonable delay or invalidation of
the whole election.

• Verifiability, which means that the announced results of the election can be checked.
In a scheme that provides individual verifiability, voters can confirm that their own
votes were received and counted, although they cannot confirm the overall results of
the election.  A scheme providing universal verifiability allows any observer to
confirm that the results of an election are correct based on public transcripts generated
during the voting process.

• Receipt-freeness, which is an important property required to prevent the practices of
coercion, in which voters are threatened to vote in a certain way, and vote-buying, in
which voters willingly accept some form of payment in exchange for their voting in a
certain way.  In an election scheme that is receipt-free, voters are unable to construct
any receipt that can convince anybody of how they voted, so coercers or vote-buyers
have no means of confirming that voters acted as they were instructed.

• Coercion-resistance, which extends upon receipt-freeness to prevent a number of
additional coercion attacks.

We have attempted to replicate all of the positive and effective aspects of these
sample protocols in the implementation that we have created.  At the same time we have
tried to improve upon any shortcomings that we found in their methods, in an attempt to
create a more secure and efficient protocol for online voting.

Although there are many proposed schemes, we are not aware of many full
implementations.  Two that we have encountered are eVox [6] and Sensus [7], both based
on the scheme by Fujioka, Okamoto, and Ohta [3].  As we have explained in our report
on electronic voting schemes, this scheme is far from the most sophisticated available in
today's current literature.  Our goal of implementing a more feature rich protocol is novel,
in this respect.

Technical Approach:

The final product of our work on this topic is an implementation of an existing
online voting scheme that, while not fully functional for real world online elections,
employs the various security features and attempts to achieve the desired criterion that we
had outlined in our first semester report.  In exploring the many existing schemes to
determine the most robust and secure to use in our implementation, we found that the
scheme proposed by Alessandro Acquisti [5] best satisfied these requirements.  Acquisti’s
scheme comes closest of all that we surveyed to satisfying all of the desired
characteristics that we laid out for a secure and robust voting scheme.  In addition, it is
the scheme that provides the easiest transition to implementation, as it makes the fewest
physical assumptions and provides more efficient methods for achieving a secure scheme.
For these reasons, we chose this scheme as the basis for our demonstration electronic
voting system.

Our goal was to create an implementation of this scheme that, while not providing
a full working system for running online elections, offers a framework that could
potentially be used for implementing such a system.  In addition, we hoped to gain further



insight into the challenges that arise in creating an online election system, and how they
could be overcome.

Brief Overview of Voting System

Components

Our implementation is based on Acquisti’s scheme, but also includes various
changes and improvements to this original model.  It is comprised of a set of Java
applications that provide the functionality for the different components used in the
Acqusiti scheme.  There are three major components to this scheme, as can be seen in the
Main Election Components diagram in the appendix.  The first component is the voter
application, which implements the functionality of the Voter entities described in the
model.  This application provides a user interface for the voter to interact with in
participating in the election, as well as implementations of the various cryptographic
protocols employed on the voter end of the scheme.  The second major component is the
administrator application.  This implements the election Authority entities that Acquisti
describes, and provides the functionality for running and overseeing an election.  The
administrator application provides the services of publicly distributing the election
choices, distributing credentials to valid voters, and collecting and tallying the votes in
the election.  This application also implements the various cryptographic protocols that
are used in making the election secure and in satisfying the fair election criteria.  Finally,
the Bulletin Board application provides the functionality of a publicly readable “broadcast
channel with memory” [5] and allows for the fairness and legitimacy of the running of the
election to be verified.  It provides an interface into a database where all of the results and
calculations of the election are stored and made available publicly for the purposes of
verifying the election.

Phases of Election System

The voting system proceeds through three major phases, as can be seen in the
Election Timeline diagram in the appendix.  It is assumed that, before the election process
begins, the administrators possess a list of eligible voters and their corresponding public
encryption keys.  This is assumed to be done in some sort of registration phase completed
before our application is run.  In the scheme proposed by Acquisti, the administrators are
assumed to share, in a threshold manner, three sets of private encryption keys, the
corresponding public keys being posted to the bulletin board and known publicly.  The
first two sets are El Gamal keys, implementing a homomorphic scheme, about which we
will give more details later on, and the third set is a set of RSA keys.  By a threshold
scheme, it is meant that each of the administrators holds a share of each private key, such
that a certain subset of the administrators must work together to decrypt any ciphertext,
and any smaller subset cannot decrypt the ciphertext.  After the sets of keys are generated,
each of the administrators selects a random number and posts its encryption under each of
the El Gamal keys to the bulletin board.  This will be done once by each administrator for
each of the possible choices in the election.  Each of these encryptions will represent a
share of an acceptable ballot, so that each voter will take one share corresponding to each
administrator and combine them for the ballot that they wish to submit.  Next, each



administrator selects another random number for each eligible voter, which will serve as a
share of the credential for that voter.  The administrator posts one encryption of this to the
Bulletin Board, and sends another, under the other El Gamal key, to the corresponding
eligible voter.  Each administrator also presents proofs that they have used the same
number for the two different encryptions for both the ballot shares and credential shares,
using a proof such that they do not actually reveal any of the random numbers.  By
generating the acceptable ballots and the credentials in such a way, we ensure that no one
administrator knows what values the ballots and credentials take, since they only generate
a share of each.  This ensures that a corrupt administrator would not be able to create and
post fake votes using the credentials, since they would have to know the values for all of
the credential shares in order to do so.

After the voter has received his credential share and proof from each
administrator, he proceeds to the voting phase.  In this phase, the voter combines the
shares of the credential that he received from each administrator to get an encryption of
the full credential.  In addition, he takes from the bulletin board the shares of the ballot
corresponding to the choice that he wishes to make in the election, and again combines
these shares to get an encryption of the ballot under the El Gamal key.  He combines the
encryption of the ballot with the encryption of the credential, encrypts it again under the
threshold RSA key, and posts it to the bulletin board.  After all voters have voted or a
certain time is reached, the voting phase ends.

The final phase is the tallying phase, in which the administrators jointly decrypt
submitted votes and tally the totals.  To do this, they first decrypt the outer RSA layer of
encryption for each vote.  They then pass this list of votes through what is known as a
mix net, which permutes the votes in such a way the no one can connect the vote to the
voter who submitted it.  In addition, the administrators take the shares of the credentials
that were posted to the bulletin board in the first phase and combine them to get a list of
encryptions of valid credentials, which they pass through another mix net.  Finally, they
take this list of valid credentials and check it against the list of votes submitted to find
which votes had valid credentials.  The increase the tally for the corresponding ballot
choice each time they find a vote with a valid credential.  Once they have counted every
vote, they post the results of the election and the election is completed. 

Implementing the Required Components

Threshold El Gamal Cryptosystem

The portion of the Acquisti scheme in which we most departed from the protocol
proposed in his paper was in the use of the El Gamal cryptosystem for the encryption of
the ballot and credential shares produced by the administrators.  A brief description of
this system is given in Appendix A.  In the original scheme, the ballot and credential
shares are encrypted under a different threshold encryption system, called the Paillier
cryptosystem.  Both El Gamal and Paillier share certain features, in that they can be
employed in a threshold decryption manner and also can be made to be homomorphic, in
that the multiplication of ciphertexts would correspond to the addition of the underlying
plaintexts.  In fact, Acquisti mentions in an appendix to his paper that his scheme could in
fact be implemented with El Gamal instead of Paillier.  He cites the better efficiency of
the Paillier system as his reason for using it.  We chose El Gamal, however, for a couple



of reasons.  First, we were more familiar with El Gamal and felt that it would be simpler
to implement and to make efficient.  In addition, we believed that, for our purposes of
studying a demonstration voting system, the differences in efficiency between El Gamal
and Paillier were not appreciable.  Also, we implemented the encryptions of the votes so
that it was not necessary to take a discrete log in the decryption phase, as it had been in
the original scheme.  When it is necessary to take such a discrete logarithm, the Paillier
scheme offers significantly improved efficiency over the El Gamal scheme.  In light of
this, the El Gamal system provided a sufficiently efficient and easy to implement scheme,
relative to Paillier.

In addition to implementing the system using El Gamal instead of Paillier, we also
added a new feature, not mentioned in the Acquisti proposal, to the Threshold El Gamal
system that was intended to improve the security of the system.  This feature addressed
the generation of the El Gamal parameters and shared secret keys, which in many
applications is assumed to be done by a trusted third party dealer.  However, for our
scheme we found a protocol, proposed by Pedersen, [9] that allows the shared secret key
to be generated in a distributed manner, so that no party ever has possession of the entire
secret key, but each administrator gets a share of the key that can be used to decrypt in a
threshold manner.  This improves the security of the scheme, as it is no longer necessary
to assume that there is a trusted third party that generates the keys, and thus the security
of the El Gamal is fully guaranteed as long as a threshold number of administrators are
honest, even if all other administrators act maliciously.

In the scheme proposed, the shares of the ballots and the shares of the credentials
produced by the administrators are each encrypted twice, under two different El Gamal
keys.  In the case of the ballot shares, both encryptions are posted to the bulletin board,
and in the case of the credentials, one encryption is posted and the other secretly sent to
the voter.  So, in order for the scheme to be provably legitimate, it is necessary for each
administrator to prove, without revealing any information, that the two encryptions of the
ballot shares under different keys contain the same underlying plaintext, and similarly for
the credential shares.  In addition, for the proof involving the credentials share, the proof
must be done in a designated verifier manner, so that only the voter for whom the
credential is intended can verify that the proof is valid.  This prevents the voter from
being coerced by an outside force to reveal his credentials, as the voter can provide a false
credential and false proof of its validity to the coercer.  Acquisti provides a way for the
administrator to do this under the Paillier scheme, but does not provide any way of
proving this using the El Gamal scheme.  Thus, we had to develop our own method of
providing this proof, based on similar proofs presented by Hirt and Sako [10] and in the
Cryptovote paper [11].  A more detailed description of the proof of equivalent plaintext
and the designated verifier proof are given in Appendix B.

Threshold RSA Cryptosystem

Threshold RSA encryption [15] is used by voters when submitting their votes as a
means of making the submitted vote secure against certain attacks.  The purpose of this
extra layer of encryption is to prevent an attack in which an adversary intercepts the
submitted vote from the voter and alters it in such a way that the credential remains the
same but the ballot has been changed, thus changing the voters intended vote.  This



would be possible if the vote were just encrypted under the El Gamal keys, but is
prevented by the extra layer of RSA encryption.

In our implementation, we made the choice, unlike in the case of the threshold El
Gamal system, of not generating the RSA key in a distributed manner.  Acquisti’s scheme
does not address the problem of the generation of these RSA keys, so this was one of the
choices we had in our implementation.  Thus, we assume there is a trusted third party
dealer that creates the keys and distributes a share of the private key to each
administrator.  The major reason that we chose not to implement this distributed key
generation for RSA [12] was that it was far more complicated and more inefficient than
the distributed key generation procedure for El Gamal.  In a real implementation of a
system, this distributed key generation would provide additional security, as it removes
the trusted third party and allows for a system where no single party possess the full
private key.  For the purposes of our demonstration applications, however, we chose not
to implement this due to the cost in efficiency.

Another feature that we added to our implementation but was not present in the
original Acquisti scheme deals with the administrators proving that they have correctly
decrypted their share of a ciphertext.  In the threshold system, each administrator uses its
share of the private key to produce a share of the decryption of the ciphertext.  A certain
subset of these shares must be valid and are then combined to produce the full decryption.
Each administrator must thus provide a proof that he decrypted his share correctly, for
each ciphertext decrypted.  We implemented a batch proof system, developed by Aditya,
et al, [13] that allows each administrator to prove in a single proof that he decrypted a
whole set of ciphertexts correctly.  Thus, when each administrator has to decrypt a share
of each submitted vote, he can present a single proof that shows he did this correctly for
all votes.  This greatly improves the efficiency of the voting system, especially in a real
world election in which potentially millions of votes could be submitted.  This batch
proof method is used with both the RSA and El Gamal decryptions in our
implementation.

Mix Net Servers

The protocol of a mix net server provides a way to achieve privacy and anonymity
of votes by taking the list of submitted votes and permuting and re-encrypting it in such a
way that the connection between the voter who submitted the vote and the final vote that
is tallied is hidden.  This is achieved by having each of the different administrators
generate a secret permutation on the list of votes, then permuting and re-encrypting the
votes in sequence with the other administrators.  Specifically, the first administrator
applies its secret permutation to the original list of votes and re-encrypts them by
changing the encryption randomness, then passes this to the second administrator, which
performs the same task and passes the output to the third, and so on.  By the end of the
process, no one can trace a vote in the final list to the original vote in the first list.

One of the facets of a mix net that our implementation addresses but was not
touched on in the Acquisti paper has to do with proving the validity of mixing.  In order
for the mix output to be trusted, each administrator must prove that it mixed and re-
encrypted in a legitimate way, so that the underlying plaintexts of the final list of
messages are indeed simply a permutation of the plaintexts in the first list.  However, they
cannot simply reveal the permutations they used, as that would violate the privacy of the



process.  Thus, we searched through various different proposed methods for proving
correct operation of a mix net.  We decided on a protocol, developed by Jakobsson, Juels,
and Rivest [14] that was both efficient and probabilistically secure for this purpose.
Essentially, the protocol works by having each administrator randomly reveal a certain
fraction of their permutation input-output correspondences, so that we still have the
property that no vote can be traced from the first list to the final, but at the same time we
are assured with large probability, due to the fact that the correspondences that need to be
revealed are random, that each server mixed the list legally.  As opposed to some of the
other existing schemes for providing this proof, which need to provide a proof for each
administrator and for each output element in the list, the scheme we chose allows the
proof to be given for all elements in the output list of one administrator at once.  This
allowed us to prove in a very efficient manner the correct operation of the mix net, even
when the list to be mixed is very long, as in the case of the list of votes.  This is the major
contribution our implementation makes to this portion of Acquisti’s scheme.

Technologies and Tools Employed in our Implementation

Our implementation was constructed using Java, which provided us with many
conveniences.  Perhaps the most important was its existing support for arithmetic
operations involving unboundedly large integers, which is provided by its BigInteger
class.  This class' well-implemented methods for modular exponentiation, multiplication,
and modular inversion were used heavily, and it integrated well with our methods for
computing hashes and writing the numbers to a database, thanks to its support for
conversion to and from byte arrays.

Java's Cryptography Architecture API provides a simple interface for performing
other common tasks.  The API is designed to allow various algorithms for producing
cryptographic hashes, random numbers, signatures, and encryptions to be enabled under
one common interface by plugging in an appropriate “provider” of the underlying
algorithms' implementations.  The Cryptix Project [16] makes available one such
provider that implements a number of algorithms including RSA encryption/decryption
with secure padding, RSA signatures, and various hash algorithms including SHA-1 and
its larger variants, as well as algorithms for public/private key generation.  These were
used extensively in our implementation: SHA-512 hashes implemented in Cryptix were
used in commitment schemes, as well as in generation of challenges for non-interactive
proofs; the non-threshold RSA encryption and signature systems called for in the election
scheme were all implemented using the Cryptix provided algorithms, which perform well
and conform to specifications outlined by RSA Security [17].

Communication between the various participants in the election scheme is done
over TCP/IP, which is easily accomplished with Java's support for sockets and streams.
Its support for threads and synchronized methods is used by both the bulletin board and
administrator modules to support multiple clients at once, and to manage the reading and
writing of information as it is posted to the bulletin board while avoiding race conditions
and other synchronization issues.

Originally, we had thought of implementing the voter client using a web-based
interface, which would have provided convenient access to voters.  However, in the end
we chose to make the voter client a Java application, like the other modules.  This
simplified the design, and had a few other advantages.  For instance, to provide RSA



encryption of the posted votes in a browser-based interface, either the browser would
have to encrypt the data itself, or the host of the web application would have to be trusted
to do so while the plaintext was sent over HTTP using a secure socket layer, both much
more complicated solutions.  Also, a case can be made for using stand-alone client
software rather than a commonly accessed web interface based on security, since a web
interface opens the possibility of spoofing attacks in which a false voting site could be
presented to voters, or a corrupt administrator himself could present a dysfunctional site.
While trust of a voter's own client software is still an issue using a stand-alone
application, the voter is free to obtain the software from a trusted source, and savvy voters
could even possibly program their own voting clients to conform to the protocol.

We did suffer one disadvantage in our use of Java, specifically its Cryptography
Architecture API: the default installation of the Java VM places limits on the strength of
cryptography that can be used when running applications and the key sizes we were using
exceeded them, requiring us to install Sun's policy extender on our machines in order to
lift these limits.  This made testing our software on multiple systems difficult, since we
were not aware of many other machines on which we would have the authority to modify
the Java runtime environment in order for us to be able to test our code.

The other main tool in our implementation is a MySQL database server which
provides permanent storage of the election data.  Our implementation would probably
have been demonstrated just as well without it, since the election data could have been
stored in memory by the bulletin board application, but any fully developed election
system would certainly provide a permanent record of the transmissions so that the
election results could be verified and examined by others afterwards.  Our integration of a
database server is a step towards this.  We would like to provide a separate module that
could query the database and independently verify the election data that exists on it,
however we are not sure at the time of writing whether this will be ready before the
demonstration.

Other Challenges and Design Decisions

A number of design issues that are not discussed in detail by Acquisti were
encountered during the planning of our implementation.  His election scheme, as well as
many others, begins by assuming a distribution of various keys to the election
participants.  In addition to the three sets of threshold keys which are shared among the
administrators, there are El Gamal and RSA key pairs associated to each registered voter,
as well as two sets of RSA key pairs for each administrator, one of which is used for
encryption, the other for providing digital signatures of the administrator's posted data.
The overall security of the election scheme relies on the secure and trusted distribution of
all of these keys.  Rather than attempt to accomplish this within the system we
implemented, we started off making the same assumption that participants already had
their own private keys as well as the public keys of other participants.  In practice, this is
a reasonable assumption.  Our system achieves it by using utilities which generate the
required keys for participants and write them to files, so that the files containing the
public components can be distributed beforehand by means that meet the security
requirements of the election and that the election participants would trust.



The stage at which voters communicate with administrators to receive their
encrypted credentials presented other issues that were not fully discussed in Acquisti's
scheme.  A method by which voters could authenticate themselves to the administrators
had to be implemented.  We chose to have voters authenticate themselves by providing a
zero-knowledge proof that they know the private key corresponding to their public El
Gamal key.  This establishes the voter's identity (assuming their private key remains
private) and also helps ensure the effectiveness of the designated verifier proof that the
administrator sends, since it confirms that the voter has the ability to construct fake
proofs of what credentials were received from the administrator.  Additionally, each voter
has a unique RSA key pair which the administrators use to encrypt the credential shares
and designated verifier proofs that are sent to the voter.

One weakness of Acquisti's scheme which we perceived was that during the voter-
administrator interaction, a voter could be denied a correct credential share from a corrupt
administrator.  The voter would immediately realize this (the designated verifier proof
would not verify, or the administrator simply would refuse to communicate at all),
however there would be little recourse since there is no way for the voter to prove the
authorship of the designated verifier proof.  We explored whether we could modify the
election scheme so that only a certain threshold of credentials would have to be collected
and combined by a voter in order to form a valid vote, possibly using secret sharing
techniques similar to those in the El Gamal threshold key generation, but were unable to
find a way.  This is certainly an area of the Acquisti scheme that could be explored and
improved.

The implementation of the bulletin board described in the scheme also brought
with it some design decisions and assumptions.  The bulletin board is supposed to
provide a repository of all the current election data which should be readable by anybody,
but the existing contents should not be altered or deleted.  Achieving these requirements
is very difficult without making some additional assumptions.  For instance, if the
bulletin board is implemented by designating a server which receives all the data and
records it as an official record (as in our system), an untrustworthy bulletin board server
could perform a number of attacks, including withholding information from certain
voters, or denying certain voters the ability to post their votes (although the information
upon which it could selectively discriminate is limited to packet headers, since the data of
the posted vote contains no identifying information).  A fully developed system might
minimize the amount of trust required by distributing the bulletin board across multiple
servers in some way, so that only a fraction would need to act honestly.  Implementing
such a system would be a very large task, so we have made the simplifying assumption
that our bulletin board server does not perform the mentioned attacks.

We also trust the bulletin board to perform other tasks in our implementation.
One of them is the combining of decryption shares that are posted by the administrators
under the various threshold cryptosystems.  This could be performed independently by
any observer with access to the public bulletin board contents, however for purposes of
automating the election process it was assigned to the bulletin board.  Since the results
can be independently obtained, the bulletin board cannot falsify them without being
caught.

Our implementation also trusts the bulletin board to coordinate the timing of
commitment protocols between the administrators in the key generation and mix net
phases.  It is responsible for monitoring which commitments have been posted to the



bulletin board and then notifying the administrators when all the commitments have been
made public so that they may then be revealed.  This was another task assigned to the
bulletin board as a matter of convenience, since the administrators are capable of
monitoring the published commitments themselves.

Conclusion:

Our final application provides a demonstration implementation of the Acquisti
scheme that satisfies the majority of the criteria that were required for a secure electronic
voting scheme.  There is still a great amount of work that would have to be done to
provide a fully developed system for conducting online elections, such as implementing a
more robust bulletin board system, implementing a distributed RSA key generation
protocol, exploring different authentication methods, and attempting to resolve some of
the remaining weaknesses of the scheme which we have mentioned.  Still, our
implementation accomplishes a large part of what is involved in such a system, and has
given us a clear idea of what the main remaining challenges are to providing secure
online elections.
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Appendix A: El Gamal Cryptosystem

One example of a public-key cryptosystem utilized in many of the election
protocols, and also used as a homomorphic encryption scheme, is the El Gamal
encryption scheme, presented in [8]  In this system, the keys are based on a large prime p
and a generator g of Zp

*.  The private key is a value x, chosen from Zp-1, and the public key
is y = gx.  To encrypt a message m, the pair (a, b) = (gr, m yr), where r is a random value
chosen from Zp, called the randomness, is calculated by anyone who knows the public

key.  To decrypt, the holder of the secret key calculates
b
a x , which will retrieve the

message m.  Without the secret key, it is believed to be very hard to decrypt the
ciphertext, as it would be necessary to find the exponent x from the value y = gx.  This is a
problem known as the discrete log problem, and there is no known way to solve this
problem in polynomial time.  To make the scheme useable with homomorphic
encryption, the following protocol is applied.  To encrypt a message m, one instead



encrypts Gm, where G is another generator of Zp
*.  If encryption is used this way, then the

component-wise multiplication of ciphertexts corresponds to the addition of plaintexts.
Given (a1, b1) = E (m1) and (a2, b2) = E (m2), it can be seen that (a1 a2, b1 b2) = E (m1 + m2)
in the homomorphic variant.  This cryptosystem also supports a function called threshold
decryption[15].  Similar to secret sharing, it provides the functionality that a group of
parties each get a share of the secret key, and only when t + 1 or more of the parties,
where t is some security parameter, put their shares together can they decrypt a message.
In this case, the secret key itself is shared in a secret sharing scheme, where each party
gets a share xi of the key.  Then, each member can decrypt using their share, computing

b
a xi

, and any group of t + 1 or more parties can combine these values to find the

plaintext message, while any group of t or fewer parties can learn nothing about the
plaintext.

Appendix B: Proofs of Equivalent Plaintexts

Here, we describe how a prover can prove to a verifier that two encryptions it has
produced, under two different keys and using two different encryption randomness
values, have the same underlying plaintext.  This is used in the pre-voting phase when the
administrator proves that the two different encryptions of the ballot shares contain the
same plaintext m, and similarly for the credentials shares.  Let v ,v=g r1 , hv

r1 m
and c ,c=g r2 , hc

r2 m be the two encryptions, known to both prover and verifier.
First, the prover randomly selects a value r and secretly computes 1,1=g r , hv

r m
and 2,2=g r , hc

r m .  The prover then sends to the verifier the following six
values:

a1=
v

1
, a2=1=2 , a3=

2

c
,

b1=
v

1

,
b2=

1

2

,
b3=

2

c

Upon receiving these values from the prover, the verifier checks that a1⋅a2=
v

c

and that b1⋅b2⋅b3=
v

c
.  Then, the verifier selects a random value c from the set {0, 1,

2} and sends c to the prover.  Based upon this value c, the prover produces a proof of
equivalence of discrete logarithm for two values.  If c = 0, the prover presents a proof that

logg a1=loghv
b1 , which shows that v ,v and 1,1 contain the same plaintext.

If c = 1, the prover presents a proof that logg a2=log hv

hc

b2 , which proves that 1,1

and 2,2 contain the same plaintext.  Finally, if c = 2, the prover provides a proof
that logg a3=loghc

b3 , which shows that 2,2 and c ,c contain the same
plaintext.  When the proof is used for ballot shares, each of these second proofs is a
simple proof of discrete log equivalence, which is described in detail in [11].  When done



for credentials shares, each of the second proofs is done in a designated verifier manner,
which will be described below.  Thus, in this process, the prover shows to the verifier that
one of three plaintext equivalences is true.  We see that if all three are true, then we will
have that v ,v and c ,c contain the same plaintext, which is the desired result.
So, since the challenge c is picked randomly, a prover who is lying about one of the

equivalences can fool the verifier with a probability of 2
3 .  If we repeat the above

procedure  times, we see that a lying prover only succeeds with a probability of

 2
3



, which is a probability that shrinks quickly if we repeat enough times.  Thus, the

verifier can be sure with a large probability that the plaintext equivalence is true after a
number of repetitions of this proof.  Also, we see that this is a zero knowledge proof,
since a simulator who does not know the underlying plaintexts or randomness values can
produce a transcript of the proof that is indistinguishable in its distribution from a real
transcript.  This can be done since the simulator can guess the value that c will take, and
adjust the a1 , a2 , a3 , b1 , b2 ,  and b3 values so that the appropriate proof is true given
that c.  The other two proofs of plaintext equivalence will not be true in the simulator, but
since it only needs to show the proof selected by the value of c, the simulator passes the
proof.  Thus, we see that the proof does not reveal any information about the plaintexts,
other than the desired equivalence, since a simulator that knows nothing more about the
plaintexts than their equivalence can give an accepted proof.

The following designated verifier proof for discrete log equivalence is based on
the normal proof of equivalence presented in [11] and the designated verifier proof shown
in [10].  In the following procedure, the prover wishes to show to a verifier, who has a
known public key hv and a secret key sv , where hv=g sv , that logg x=logh y=l ,
for some value l.  The first step in the proof involves the prover randomly selecting three
values, d, r, and w.  The prover then computes a=g d , b=hd ,and s=gw hv

r and sends
a, b, and s to the verifier.  The verifier then picks a random challenge value c and sends
this to the prover.  The prover then computes z=dl⋅cw  and sends z, r, and w to
the verifier.  The verifier checks that s=gw hv

r ,  g z=a xcw ,and hz=b ycw .  The
second and third checks show the indeed the discrete logs are equal and are known by the
prover.  The first check provides the designated verifier aspect of the proof.  Since the
verifier knows the secret key sv , it can be shown that he can select different values for
w and r after the random challenge has been received so that the three checks will work
even if the discrete logs are not equal.  Thus, if a coercer were to force the verifier to
repeat the proof to the coercer, the verifier could produce a false transcript with a
different value for x and y that would still pass the checks.  Thus, the coercer could not be
sure that the proof presented by the designated verifier is valid.  This is useful in the
context of our election scheme in that it allows the voters, who are the designated
verifiers in our case, to provide fake credentials and a fake proof to a coercer that is
attempting to steal their credentials and vote for them.  So, a voter could fool the coercer
in to thinking that he gave the coercer correct credentials, and then vote for his desired
choice anyway with his real credentials.



Main Election Components

Voters

Bulletin Board

Administrators

- Publicly writeable/readable 
database.  Non-erasable.
- Public information, proceedings 
and results of election are posted 
and can be seen and verified by 
any observer.
- Distributes election parameters 
to authorities and voters.
- Coordinates the administrators 
and steps in the election

- Set of authorities that oversees the running of the 
election
- Shares three sets of decryption keys, two ElGamal 
keys, one RSA key
- Creates ballot and credential shares used in election.
- Distributes credential shares to voters, encrypted 
under first ElGamal key, post second set to BB, 
encrypted under second ElGamal key, and posts two 
sets of ballot shares to BB encrypted under each 
ElGamal key
- Performs Mix Net operation on credential shares 
posted to BB.
- Performs Mix Net operation on list of votes submitted.
- Decrypts RSA layers from votes submitted
- Searches through submitted votes, compares to valid 
credentials and ballots, tallies election.

- Components that represent the participants/voters in the 
election.
- Receives credentials from Administrators, along with proofs of 
equivalence with set posted to BB.
- Selects desired ballot choice in election, downloads corre-
sponding ballot shares from BB.
- Combines ballot shares from BB, which are encrypted under 
first ElGamal key, with credentials received from Administra-
tors, also under first key.
- Encrypts resulting ciphertext under RSA key, which repre-
sents vote.
- Posts vote to BB.



Election Timeline

Bulletin Board

Administrators

Setup Phase

Administrators publically
commit to their polynomials via

cryptographic hashes and
modular exponentiation in   

El Gamal Key Generation for both Votes and
Credential Key Pairs

Voting Phase

Tallying Phase

Secret shares are
privately distributed between

 the administrators.  The
shares are verified against
the published commitments

Verification keys are posted
to the bulletin board

Encrypted ballot shares are
obtained from the bulletin board.

Voters select the shares
corresponding to their voting

choice and combine them with
their credential

Threshold RSA decryption and verification keys are
distributed to the administrators

El Gamal encrypted ballot and credentials shares are
posted, along with proofs of plaintext equivalence

Voters

Voters retrieve election
parameters from the bulletin

board
Voters assemble their own El

Gamal encrypted credential from
shares obtained from each

administrator

Voters encrypt their vote under the threshold RSA
public key and post it to the bulletin board

Administrators generate
random polynomials to be

used in secret sharing

Administrators sign the
bulletin board to certify its contents

Credentials Mix Net
Administrators pass the published

combined credentials through a mix net

RSA Decryption of Votes
Administrators publish RSA decryption

shares of posted votes, along with a batch
proof of correct decryption

Bulletin board assembles a set of
proven decryptions and combines them,

retrieivng the underlying El Gamal
encrypted votes

Votes Mix Net Mix net is repeated with votes

El Gamal Decryption of Votes Administrators publish El Gamal decryption shares of votes, 
along with a batch proof of correct decryption

Matching Credential and ballot encryptions are systematically combined, decrypted, and matched
against the vote plaintexts; any matched credentials are removed, and the matched vote is tallied


