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Abstract In this paper, the problem of fault tolerance in grid computing is addressed
and a novel adaptive task replication based fault tolerant job scheduling strategy for
economy driven grid is proposed. The proposed strategy maintains fault history of the
resources termed as resource fault index. Fault index entry for the resource is updated
based on successful completion or failure of an assigned task by the grid resource.
Grid Resource Broker then replicates the task (submitting the same task to different
backup resources) with different intensity, based on vulnerability of resource towards
faults suggested by resource fault index. Consequently, in case of possible fault at
a resource the results of replicated task(s) on other backup resource(s) can be used.
Hence, user job(s) can be completed within specified deadline and assigned budget,
even on the event of faults at the grid resource(s).

Through extensive simulations, performance of the proposed strategy is evalu-
ated and compared with the Time Optimization and Checkpointing based Strategy
in an economy driven grid environment. The experimental results demonstrate that
in the presence of faults, proposed fault tolerant strategy improves the number of
tasks completed with varied deadline and fixed budget as well as number of tasks
completed with varied budget and fixed deadline. Additionally, the proposed strategy
used a smaller percentage of deadline time as compare to both Time Optimization
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and Checkpointing based Strategy. Although the proposed strategy has a percentage
of budget spent greater than that of Time Optimization Strategy and Checkpointing
based Strategy, it is accepted as a proposed strategy in time optimization where the
main objective is to maximize tasks completed within a given deadline. It can be
concluded from the experiments that the proposed strategy shows improvement in
satisfying the user QoS requirements. It can effectively schedule tasks and tolerate
faults gracefully even in the presence of failures, but the costs are slightly higher in
terms of budget consumption. Hence, the proposed fault tolerant strategy helps in sus-
taining user’s faith in the grid, by enabling the grid to deliver reliable and consistent
performance in the presence of faults.

Keywords Economy driven grid - Grid job scheduling - Grid resource
management - Fault tolerance - Task replication - Grid computing

1 Introduction

The term grid computing was introduced in the early 1990s by Ian Foster and Carl
Kesselman [1-4]. Grid computing uses idle computational power from different geo-
graphical places, by the runtime aggregation of these resources in the form of Virtual
Organization [1-4], according to the needs of a job submitted by a grid user. It was in-
tended to be done in the same pervasive fashion as we access the electric power grid
[3, 4]. Lack of centralized controlled environment, predominant execution of long
jobs, diversity of geographical distribution of resources from different administrative
domains, and heterogeneous nature of grid resources in large scale grid increase the
probability of failures exponentially. Consequently, in the absence of a fault tolerance
mechanism, grid performance can considerably worsen, when compared with the tra-
ditional systems. Thus, the incorporation of fault tolerance related features in grid job
scheduling policy is not an optional feature, but a necessity.

Economy Driven Grid model [5, 6] is a user-centric [7] approach. In an econ-
omy driven grid, a grid user submits a job to the grid resource broker by specifying
job characteristics such as the number of tasks and their length, as well as Quality-
of-Service (QoS) requirements, such as the computational strategy, processing time
(deadline), and budget. In an economy driven grid, the job scheduling decisions are
made dynamically at runtime, with the primary aim to satisfy the user’s QoS require-
ments. Contrary to a conventional cost model, which often deals with software and
hardware costs for running applications, the economy driven grid model primarily
charges the grid user for services they consume, based on the value they derive from
grid resources. As in the conventional market, a pricing model in a competitive econ-
omy driven grid is based on the demand of users and the supply of grid resources.
An economy driven grid [8-10], on the one hand, offers profits for resource own-
ers for contribution of their resources and, on the other hand, gives users a dynamic
environment to optimize their gains given cost and time requirements.

The rapid growth of the Internet in the last 10 years was the first major facilita-
tor of the renewed interest in fault tolerance and related techniques. We believe that
the emergence of grid computing will further increase the importance of fault toler-
ance. Grid computing will impose a number of unique new conceptual and technical
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challenges to fault-tolerance researchers. Thus, the incorporation of fault tolerance
related features in a grid job scheduling strategy should not be an optional feature,
but a necessity. Fault tolerance becomes more critical when an economy based grid
environment [11-13] is considered. Failing to meet the deadline and user’s QoS will
adversely affect user’s faith in the grid, resulting in loss of business.

The motivation of this paper is to develop a fault tolerant grid scheduling strat-
egy for economy based grid systems. We investigated the performance of efficient
scheduling in the presence of faults so that the penalty paid by the resource provider
is minimized [31]. This also enables the grid to uphold the faith of the user by not
compromising its QoS requirements due to faults at grid resources. Some of the main
contributions of the paper are:

1. We advocate the need for a fault tolerant job scheduling mechanism for an econ-
omy based grid environment. A fault tolerant grid-scheduling model for an econ-
omy based grid is proposed. This paper modifies the model for time optimization
strategy presented in [8] and adds fault tolerant features.

2. The paper presents an adaptive task replication based fault tolerant job schedul-
ing strategy for an economy based grid. It addresses the problem of fault tolerant
job scheduling for an economy based grid. The proposed strategy uses an adap-
tive heuristic of task replication, enabling the grid to complete grid jobs within
specified deadline and allotted budget. It is done by using the result of one of task
replicas in case of possible fault occurrence at grid resource(s).

3. To simulate the proposed strategy, we enhanced the GridSim Toolkit-4.0 to ex-
hibit fault tolerant related behavior. The paper defines the interaction protocol for
communication between the core GridSim entities and new entities introduced by
this paper for fault tolerance.

4. Through extensive simulation, the paper compares the performance of the pro-
posed strategy with the time optimization strategy in economy grid environments.

The rest of this paper is organized as follows. Section 2 briefly explains review
of important research efforts for providing fault tolerance in grid computing. Sec-
tion 3 elaborates the problem formulation. In Sect. 4, explanation of proposed inter-
action protocol is given. Section 5 elaborates the proposed adaptive fault tolerant job
scheduling strategy. Section 6 discusses simulation environment, experimental setup,
results and their importance. The final section includes conclusions and suggests fu-
ture work.

2 Related work

Fault tolerance or graceful degradation is the property of a distributed computing
system which distinguishes it from sequential computing. It enables distributed com-
putation to carry on its computation even on individual component’s failure without
terminating the entire computation [20, 21]. Due to the diverse nature of grids and
large scale applications on grids, fault tolerance becomes a challenge in developing,
deploying, and running applications on the grid environment [22, 23]. A grid envi-
ronment, due to scale of complexity and heterogeneous nature of a grid, is more vul-
nerable to failures than traditional distributed systems. Hence the fault tolerance tech-
niques (FTTs) of traditional distributed systems are not enough to manage faults in a
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grid environment. Therefore, we require special FTTs that could work well in com-
plex and heterogeneous grids. Consequently, over the years researchers have yielded
considerable theoretical and practical knowledge of fault detection, handling, and re-
covery techniques [20, 24].

In the literature, research on fault tolerance in the grid environment can be di-
vided into two main types: pro-active and post-active. A pro-active fault tolerance
mechanism takes into account the failure of a grid resource before scheduling jobs
on grid resources. On the other hand, a post-active mechanism considers and takes
appropriate measures on job faults after the job failure. Most researchers apply the
latter approach to deal with failures using different methods such as grid monitoring
approach as mentioned in [32].

As far as fault detection in any resource of a grid is concerned, there are two main
strategies: the pull model and the push model as described in [11]. In the pull model,
different grid components are responsible for sending periodic signals to a fault de-
tector. In the absence of any such signal from any grid component, the fault detector
recognizes that failure has occurred at that grid component. It then implements ap-
propriate measures dictated by the predefined fault tolerance mechanism. In the push
model, it is the responsibility of the fault detection component to send periodic sig-
nals to the different grid components. Furthermore, the fault detection component is
responsible for detecting and processing the faults.

Task-level techniques refer to recovery techniques that are applied at the task level
to mask the effect of faults irrespective of fault types [22, 25]. Task level FTTs [24]
include the following:

1. Retry—The retry technique for fault tolerance [24] is the simplest technique being
used. After a failure, it retries the task on the same grid resource regardless of the
cause of failure up to some threshold value with the hope that there will be no
failure in successive attempts.

2. Alternate Resource—The alternate resource technique works just like the retry
technique except it retries on an alternate resource rather than retrying on the same
resource again and again [25, 27].

3. Checkpoint—The checkpoint technique [19, 28, 29] periodically saves the state
of an application. On failure it moves the task to another resource and starts the
execution from the last saved checkpoint.

4. Replication— The replication technique in fault tolerance [23, 30] runs different
replicas of same task on different grid resources simultaneously hoping that at
least one of them will complete successfully.

Because of the simplicity of implementation, retry and alternate resource tech-
niques are being used most often [27] as compared to replication and check-pointing
[18, 26] techniques.

Workflow level FTTs [22] change the flow of execution on failure based on the
knowledge of task execution context. Workflow level FTTs [24] are classified as fol-
lows:

1. Alternate Task—The alternate task technique is similar to the retry technique.
The only difference is that it exchanges a task with different implementation of
the same task with different execution characteristics on failure of the first one
[25, 27].
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2. Redundancy—The redundancy technique [30] requires different implementations
of same task with different execution characteristics which run in parallel as op-
posed to task level replication technique where same tasks are replicated on dif-
ferent grid resources.

3. User Defined Exception Handling— In the user defined exception handling tech-
nique [24, 30], the user specifies a particular treatment to workflow of a task on
failure.

4. Rescue Workflow—The rescue workflow technique [24] allows the workflow to
continue even if the task fails until and unless it becomes impossible to move
forward without catering the failed task.

In addition to the above mentioned basic fault tolerance techniques, there are sev-
eral strategies using different heuristics to provide fault tolerance in grid computing.
The following is a review of some important techniques.

In [12], an agent oriented pro-active fault tolerant grid framework is proposed.
It divided the faults in a grid environment into six classes which include hardware
faults, application and operating system faults, network faults, software faults, re-
sponse faults, and timeout faults. Different software agents for different classes of
faults are used to deal with faults in a proactive manner. These agents maintain in-
formation about different characteristics of the grid environment, such as memory
consumption at resources, hardware conditions of resources, number of resources
available, number of active processes at grid resources, condition of the network, and
component Mean Time between Failures (MTBF). Based on this information and
critical states collected by the agents, the agents enable the grid system to tolerate
different types of faults gracefully.

In [13], mobile agents are used for providing fault tolerance, the mechanism is
named MAG (Mobile Agents Technology for Grid Computing Environments), and
also grid middleware is proposed. Here fault tolerant components are developed as
mobile agents to provide fault tolerance in a grid environment. Mobile agents form a
multi-agent society which provides fault tolerance for grid components.

In [14], when a grid node is recognized as faulty, all the jobs which are assigned
to this faulty node are remapped to some other grid node. Moreover, no new jobs will
be assigned for a specific period based on the Mean Time to Repair (MTTR) of the
node.

A review of the references [12—14] and [22-30] reveals that grid environments
are more failure-prone than general distributed systems. Fault tolerant measures in a
grid environment are different from those of general distributed systems. Although
there is some work done on fault tolerance in traditional and to an extent in a grid
system, still, according to the literature, limited work is done on fault tolerance in
an economy based grid environment. Thus, there is a need of new fault tolerance
scheduling mechanism for the economy based grid environment.

3 Problem formulation
Grid jobs are executed by an economy based grid as follows:
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1. Grid users submit their jobs to the grid resource broker (GRB) by specifying their
QoS requirements, i.e., the deadline by which users want their jobs to be executed
and the budget which users have for the completion of jobs.

2. The Grid Resource Broker schedules user jobs on the best available resource by
optimizing time.

3. The result of the job is submitted to the user upon successful completion.

Such an economy based environment has the following two major limitations:

1. If a fault occurs at a grid resource, present heuristics merely reschedule the job on
another resource, which eventually results in failing to satisfy the user’s QoS re-
quirements, i.e., budget and deadline. The reason is simple—the job is re-executed
and hence consumes more budget and time.

2. In the economy based grid environments, there are resources that fulfill the criteria
of deadline and budget constraints (QoS requirements), but they have a tendency
towards faults. In such a scenario, the grid resource broker goes ahead to select
the same resource for the mere reason that the grid resource promises to meet QoS
requirements of the grid jobs. It eventually results in compromising the user’s QoS
parameters in order to complete the task.

In this paper, in order to address the first problem, a task replication heuristic is
used. It enables the system to use a task replica successfully received from some other
resource, when a failure occurs at any resource. Consequently, an economy based grid
is able to tolerate faults gracefully.

In order to address the second problem, we make our replication strategy adaptive
by maintaining a fault index. The fault index is maintained by taking into considera-
tion the fault occurrence history information of the grid resource. In this way, the pro-
posed strategy is able to introduce task replication mostly when it is necessary. Simu-
lation experiments show that the proposed strategy is able to tolerate faults gracefully
by taking appropriate measures according to resource vulnerability towards faults.

4 Adaptive task replication based fault tolerant job scheduling strategy for
economy driven grid

In this section, the proposed system model and the proposed scheduling strategy are
explained in detail (see Fig. 1). It explains how the proposed strategy works and
enables the system to tolerate fault gracefully.

4.1 Grid user

A grid user submits a job to the grid by specifying job characteristics such as the
number of gridlets and its length, Quality-of-Service (QoS) requirements such as the
computational strategy, processing time (deadline), and budget. Here a gridlet [5] is
a package that contains all the information related to the job and its execution man-
agement details, such as job length expressed in Million of Instruction Per Second
(MIPS), disk Input/Output operations, the size of input and output files, and the job
originator.
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Fig. 1 Interaction of different grid components during job scheduling

4.2 Grid information server (GIS)

GIS contains information about all the available grid nodes with their computing
capacity and cost at which they offer their services to the grid users. All the grid
nodes joining and leaving the grid are known to the GIS. Whenever a grid broker
has jobs to execute, it consults the GIS to find the currently available grid resources.
At one time, services provided by each resource are static, and a resource is given
only to those jobs for which they have registered their services at the GIS. When a
resource want to add another service(s) it wants to provide, it will first register this
service with the GIS, only then jobs for new services are send to them. The resource
broker takes the resource allocation decision based on the information it gets from
the GIS.

4.3 Grid resources

Grid resources offer their services to the grid users by registering them with the GIS
by specifying their capabilities such as the number of processors, cost of process-
ing, speed of processing, internal process scheduling policy, for example, time-shared
(round robin) or space-shared (FIFO) local load factor, and time zone. The GIS main-
tains this information of grid resources. These basic parameters help in determining
execution time, the time required to transport input and output files between users
and grid resources, and returning the processed gridlets back to the originator along
with the results. A grid user submits a job to the grid resource broker by specify-
ing job characteristics and Quality-of-Service (QoS) requirements. The broker then
schedules the tasks according to the scheduling policy in consultation with GIS.
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4.4 Fault tolerant schedule manager

If a grid resource is unable to complete a job in a given time, it means that a
fault has occurred. Fault index of a grid node will illustrate its vulnerability to-
wards failure. Our strategy maintains and constantly updates the fault index about
all the available resources in the grid environment. Fault index of a resource is in-
cremented every time, whenever it fails to complete an assigned task as per contract.
It is decremented when it competes successfully. Fault Tolerant Schedule Manager
(FTScheduleManager) maintains the Fault Index Table about a grid resource and in-
crements/decrements the resource fault index based on the feedback of the grid broker
about its performance. It also maintains a gridlet replication table which contains in-
formation about one or two backup resource(s), where the gridlet is being executed
in the form of a gridlet replica. The entries of the gridlet replication table are updated
by receiving messages from the schedule advisor, when gridlets and their replicas are
being assigned to different resources.

Algorithm A: Gridlet Resource Selection algorithm

Input: List of available grid resources eligible for a job execution
Output:  Grid resource(s) selected for the job execution.
Begin
1. while counter <= number of available resources do
2. if selected resource has fault index >= 0 AND fault index <=2 then
3. The gridlet is queued to the selected resource.
4. GOTO Step6
5. else if selected resource has fault index >=3 AND fault index <=5 then
6. Gridlet is queued to that resource only:
7. if there exists one backup grid resource having fault index >= 4 AND
8. fault index <=7 then
9. Queue the gridlet to the selected resource AND Queue one replica of
10. gridlet to that one backup resource.
11. GOTO Step 6.
12. endif
13. endif

14. if selected resource has fault index >= 6 AND fault index <=8 then
15. | Gridlet is queued to that resource only:

16. if there exist two backup grid resources having fault index >= 4 AND fault
17. index <=7 then

18. Queue the gridlet to the selected resource AND Queue two replicas of
19. gridlet to those two backup resources.

20. GOTO Step6.

21. end if

22. endif

23. if selected resource has fault index > 8 then
24. | Remove this resource from the table of available resources list and label as
25. | unavailable resource (i.e., no job is assigned) to that node until:

26. It passes Alive Time successfully. The Alive Time is the time interval for which a grid resource remained

up and connected. It is measured by sending periodic beacon signals to the resource for the set time interval
27. (Alive Time). After surviving Alive Time, the grid resource is then included into the available resource list.
28. endif

29. Add the gridlet to the unassigned job list and reapply the time optimization algorithm to this gridlet on available
resources.
30. endwhile
End

4.5 Schedule advisor

Schedule Advisor is an integral unit of the Grid Resource Broker. When a broker
receives a job from a user, the Schedule Advisor prepares a list of resources with
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the help of the GIS that can execute the gridlet satisfying the QoS requirements. The
Schedule Advisor gets the fault index of the selected resources from the FTSchedule-
Manager and finalizes a suitable resource depending on the value of the Fault Index
(a higher fault index depicts a more failure-prone and hence less reliable resource).
Algorithm A implements the activities of the Schedule Advisor.

4.6 Gridlet dispatcher

The Gridlet Dispatcher dispatches the gridlets from the queue one by one to the re-
spective resources for which they are queued for execution.

4.7 Gridlet receptor
The Gridlet Receptor collects the result(s) of the gridlet execution from the grid re-

source where the gridlet is dispatched by the dispatcher. The following Algorithm B
implements the activities of Schedule Receptor.

Algorithm B: Fault Index Updating Algorithm.

Input: Execution status of the assigned gridlet from the grid resource.
Output: Update the fault index of the grid resource and cancel the gridlet replica(s) if required
Begin

1. Receive the execution status of assigned gridlet(s) from the grid resource.

f the grid resource successfully completes the execution of the gridlet then
3. |Gridlet Receptor sends a message to FTScheduleManager to decrement the fault
4. |index of the resource that successfully completes the assigned gridlet.
S. Gridlet Receptor checks the replication table from FTSchedule Manager.
6. if the replica of that gridlet is also being dispatched to some
7 backup resource(s) then
8 Send message to the resource to stop the execution of that
9. gridlet.
10. GOTO Step 3.
11. endif
12. endif
13. if the grid resource fails to complete the execution of the gridlet then
14. Gridlet Receptor sends a message to FTScheduleManger to increment the
15. fault index of the resource that fails to complete the assigned gridlet.
16. Gridlet Receptor checks the replication table from FTSchedule Manager
17. f the replica of the gridlet is already dispatched to some backup
18. Resource then
19. Wait for the result from the backup resource.
20. GOTO Step 1
21. endif
22. if the replica of that gridlet is not dispatched to a backup resource. then
23. Add the job to the list of unassigned jobs and send it to Schedule
24. Advisor for rescheduling.
25. GOTO Step3.
26. end if
27. end if
End

5 Interaction protocol for communication in GridSim environment
To simulate the proposed strategy, this paper enhances the GridSim Toolkit-4.0 [16]
to exhibit fault tolerance related behavior. In GridSim based simulations, the interac-

tion between different GridSim entities takes place through events. These events can
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be synchronous (wait until a destination entity performs required action), or asyn-
chronous (do not wait for a destination entity to perform required action). Events
can be internal (event destined to be delivered to the same entity that generated
it) or external (event generating and destination entities are different). In GridSim,
external events could be synchronous or asynchronous, but internal events must be
asynchronous. The source entity can generate any event to itself or any other en-
tity. Furthermore, any entity can be a source/destination entity. All the basic GridSim
entities like a user, broker, resource, information service, statistics, shutdown, and
report writer raise external events for other entities or internal event to itself for the
request/delivery of any service.

To incorporate the fault tolerance feature, new entities in the GridSim environment
are introduced. The interaction protocol for communication between different Grid-
Sim entities and proposed entities in our proposed scheduling model (see Fig. 2) will
be as follows:

1. When GridSim starts, the resource entities that form the simulated grid environ-
ment, for example, resource entity 1 and resource entity 2 (see Fig. 2), register
themselves with the Grid Information Service (GIS) entity, by sending events.

Grid User1
Entity

User1 Grid
Broker Entity

FT Schedule
Manager

Grid Information
Service Entity

Register Resource—————————————f

— iy
- —
———Get Res: List—»|
" Initialize
Fault Index

— N _— S

-Submit Expt; [I s ———Register Resource
—— ——Get Resource List——
Getres
fault Index "
e ub: Grdilet!—»f{
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Gridett Finfif —EYON__
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. Getres
—  Gridlet fault Index
Completion
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Fault o
Index
A Get Res
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| fault Index
T Gridlet

“Fault Index

Fig.2 An event diagram for the Interaction Protocol for communication between GridSim entities
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2. The Fault Tolerant Schedule Manager (FTScheduleManager) sends a synchronous
event to the GIS entities to send the list of resource(s) available.

3. The GIS entity returns a list of registered resources to the FT'ScheduleManager.
The FTScheduleManager initializes the resource fault occurrence history table
that contains the fault index (suggesting resource vulnerability towards failures)
of the resources available. As the simulation progresses, it will update that table
(increment or decrement resource fault index) upon receiving an external event
from the broker (explained below).

4. The broker sends a synchronous event for resource discovery to the GIS entity.
The GIS entity returns a list of registered resources and their contact details.

5. After receiving the available resource list event from GIS, the broker entity finds
the current work load condition of the resources. It sends events to resource enti-
ties requesting to send their resource configuration and properties.

6. Resource entities respond to this event by sending their dynamic information that
includes resources cost, capability, availability, load, and other configuration pa-
rameters.

7. The broker entity selects the resource(s) for the execution of that gridlet, using
time optimization scheduling strategy.

8. The broker entity sends synchronous events to the FTScheduleManager to get the
resource fault index list.

9. The broker entity, after receiving the resource fault index list, dispatches gridlet(s)
to resource entities. Furthermore, if needed (i.e., suggested by the fault index of
selected resource(s)), the broker entity replicates the job to one or more resource(s)
using Algorithm A. It dispatches a gridlet and its replica to one or more resource(s)
according to Algorithm A.

10. Ataresource entity when gridlet processing is finished, the resource entity sends
a synchronous event of the completion of the gridlet to the gridlet receptor in a
broker entity.

11. The gridlet receptor in a broker entity, on receiving the event from the resource
entity, checks the event and does one of the following steps:

(a) The CPManager entity, on the receipt of a checkpoint completion event from
the resource entity, sends a gridlet completion event to the broker entity.

(b) The CPManager entity, on the receipt of a gridlet failure event from a resource
entity, sends an asynchronous gridlet failure event to the broker entity.

12. The broker entity, on a receipt of an event form the CPManager, does one of the
following steps using Algorithm B:

(a) The gridlet receptor in a broker entity, on a receipt of gridlet completion event
from the resource entity,

(i) Sends an asynchronous event to the FT'ScheduleManager entity to decre-
ment resource fault index which completed the assigned gridlet.

(i) Sends an asynchronous event to the FT'ScheduleManager entity to check
the replication table. It checks whether any of the replicas of this gridlet
is assigned to any other resource(s). If yes, the dispatcher sends a syn-
chronous event to that resource entity to stop/cancel execution of that job
and decrement resource fault index which completed the assigned gridlet.

(b) The broker entity, on a receipt of a gridlet failure event from a resource entity,

does the following steps using Algorithm B:
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(i) Sends an asynchronous event to the FTScheduleManager entity to incre-
ment resource fault index which failed to complete the assigned gridlet.
(i) Sends an asynchronous event to the FT'ScheduleManager entity to check
the replication table. It checks whether any of the gridlet replicas of this
gridlet is assigned to any other resource(s).
1. If yes, it waits for the result of that replica from the resource entity to
which it was assigned.
2. Ifno, it sends a synchronous event to the schedule advisor of the broker
entity to reschedule the gridlet (see Fig. 2).

6 Experiment results and discussion

To evaluate the performance of proposed strategy, GridSim toolkit-4.0 [16] is used.
In GridSim, time units are simulation time units which are modeled after the base
value of SPECCPU (INT) 2000 benchmark ratings published in [17]. The budget is
expressed in terms of Grid Dollar (G$) which is an artificial currency used in Grid-
Sim.

6.1 Simulation setup

A detailed description of the simulation environment in terms of the characteristics
of resources simulated and specification of job submitted by a user is as below.

6.1.1 Resource modeling

For the simulation of the proposed strategy, GridSim Toolkit-4.0 [15] is used and
modified to support fault tolerance related features. A number of space-shared re-
sources are used with characteristics, cost and capability as they are used by World
Wide Grid (WWG test bed) for economic based scheduling in [20] with modifica-
tions, i.e., all the resources used are made space shared and the processing element
of a single resource is changed to 1. The simulated resources are obtained from three
different sites taken from the WWG testbed with four resources from each site. To
emulate failure behavior in the resources, we make four sub-types at each site re-
source, i.e. 0 % (no failures), 10 %, 20 %, and 30 %, where the failure rate suggests
percentage of the grid resources that fail to complete during the simulation.

6.1.2 Application modeling

In simulation, one user is simulated which submitted 200 gridlets In GridSim, the
length of a gridlet is expressed in Million of Instructions (MI) and the size of input
file/output files is in bytes. The length of gridlets varies between 1000—12000 Million
of Instruction Per Second (MIPS) and the size of input/output file varies in the range
of 500-700 bytes at random.

@ Springer



Replication based fault tolerant job scheduling strategy for economy 867

Fig. 3 Number of gridlets 200 &—RFTGS
completed for deadline (100
time units) and budget b 180
(21000 GS$) o 160
g 140
o
9 120
2 100
c
'(*_5 80
60
40
20
0

0 1 2 3 4 5 6 7 8
Fault Index Threshold

6.1.3 Choice of fault index threshold

In this experiment, 200 gridlets are submitted with a deadline of 100 time units and
budget of 21000 G$. The fault index threshold is varied from O to 9. The purpose of
this experiment is to find the optimum threshold of fault index in RFTGS at which
resources are able to complete the maximum of gridlets. It is observed that (see Fig. 3)
the RFTGS Strategy will be able to complete the maximum number of gridlets when
the fault index threshold is 2. Similarly, the fault index threshold values are selected
for threshold values 3, 6, and 8.

6.2 Results and discussion

In all the four proceeding experiments, there is only one user who submits 200 gri-
dlets. In the following experiments, the performance of Replication Based Fault Tol-
erant Job Scheduling (RFTGS) Strategy is evaluated against Deadline and Budget
Constrained Time Optimization Strategy [5] and Checkpointing Fault Tolerant Grid
Strategy (CFTGS) [29].

6.2.1 Experiment I

In this experiment, 200 gridlets are submitted with a fixed deadline of 100 time units.
The budget is varied from 5000 G$ to 21000 G$. The objective of the experiment
is to compare the number of gridlets completed in the three strategies. As depicted
in Fig. 4, it is observed that the RFTGS Strategy maintains its supremacy over Time
Optimization Strategy as well as CFTGS throughout the experiment in terms of the
number of gridlets completed.

Throughout the experiment, the Time Optimization Strategy had fewer gridlets
executed than RFTGS within a fixed deadline. It is because of the fact that the Time
Optimization Strategy assigns gridlets to grid resources without considering the fault
occurrence history. On failure, it merely reschedules the gridlet on some other re-
source, which results in extra delay as the gridlet is executed on anther resource(s),
ultimately decreasing the number of gridlets executed by the fixed deadline. RFTGS
has more gridlets executed than CFTGS. Although CFTGS has the mechanism of pe-
riodically saving the state of an application and on failure it moves the task to another
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resource and starts the execution from the last saved checkpoint, it has checkpointing
overhead as well as involves network delay in moving the checkpointed task and its
result between the resource(s). At the same time, the RFTGS Strategy considers the
reliability of a grid resource based on its fault index and replicates the task (using
Algorithm A) on multiple grid resources only when it is required. Consequently, in
case of failure at a grid resource, RFTGS Strategy will be able to get the results of
the task from its replica, which saves time and resources to re-execute the task.

As both Time Optimization Strategy and CFTGS will have to reschedule the af-
fected gridlet from scratch or from the last checkpoint results, it results in a delay in
gridlet execution. For these reasons, the number of gridlets completed by the RFTGS
Strategy is more than for both the Time Optimization Strategy and CFTGS.

6.2.2 Experiment Il

In this experiment, the budget is fixed at 5000 G$ and the deadline varies from 100 to
3700 time units. It is observed (see Fig. 5) that the number of gridlets completed by
the RFTGS Strategy is more than for the Time Optimization Strategy and CFTGS.

RFTGS has more gridlets completed with lesser deadline than the Time Opti-
mization Strategy within the fixed budget. The reason is that the Time Optimization
Strategy has to re-execute the job in case of a failure, which results in extra budget
consumption, whereas RFTGS at first has to consider the failure history (fault index)
of the resource and accordingly take counter measures in terms of task replica to ex-
ecute the gridlet. Thus, when a failure occurs it uses the result of a gridlet replica
which decreases the budget consumption in the RFTGS.

The RFTGS has more gridlets completed than the CFTGS with smaller budget.
It is because of the fact that in CFTGS extra budget is consumed in the event of
a failure while re-executing the checkpointed task on some other resource. While
in RFTGS, by virtue of a gridlet replica, there is no need to re-schedule the job,
ultimately resulting in smaller budgets.

6.2.3 Experiment IIl

In this experiment, the deadline is fixed at 100 time units and the budget varies from
5000 G$ to 25000 G$. We measure the percentage of deadline time utilized for dif-
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Fig. 6 Percentage of deadline time utilized in the three models

ferent budgets. It is observed (see Fig. 6) that the RFTGS Strategy’s percentage of
deadline time utilization is less than for the Time Optimization Strategy and CFTGS.

The percentage of deadline time consumed by RFTGS is less than by the Time
Optimization Strategy because in the Time Optimization Strategy a good amount of
deadline time is consumed in re-scheduling the gridlet in case of a failure, whereas
RFTGS maintains the history of fault occurrence at the grid resource in terms of fault
index and schedules the gridlet on a resource proactively dealing with the possibility
of gridlet failure suggested by fault index. Thus, the event of re-scheduling the gridlet
from scratch which consumes most of deadline time is minimized in RFTGS. Con-
sequently, the RFTGS has a smaller percentage of deadline time consumed than the
Time Optimization Strategy.

The RFTGS has a smaller percentage of deadline time utilized than the CFTGS.
It is because of the fact that CFTGS in case of a gridlet failure consumes most of its
deadline time in re-scheduling the checkpointed gridlet on some other resource. On
the other hand, RFTGS uses the gridlet replication heuristic to deal with a gridlet fail-
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ure, hence avoiding the gridlet re-scheduling event. Hence, the RFTGS has a smaller
percentage of deadline time consumed than the Time Optimization Strategy.

6.2.4 Experiment IV

In experiment IV, the budget is 5000 G$ and the deadline varies from 100 to 2900
time units. Here we measure the percentage of budget spent for different deadline
values. It is observed (see Fig. 7) that the RFTGS strategy’s percentage of budget
spent for different deadline time units is greater than that of the Time Optimization
Strategy and CFTGS.

The RFTGS has the percentage of budget spent greater than the Time Optimiza-
tion Strategy and CFTGS. The reason is that, to provide fault tolerance, the RFTGS
uses the task replication on the backup resource(s). At times it results in redundant
execution of gridlet(s), consequently causing extra budget utilization. The Time Opti-
mization Strategy and CFTGS have no redundant executions of a gridlet. It ultimately
contributes to minimizing budget consumption in both of these strategies. The over-
consumption of budget in the RFTGS is acceptable in comparison to the advantage
gained by the RFTGS in other parameters such as the number of gridlets completed
for varied budget and fixed deadline, the number of gridlets completed for varied
deadline and fixed budget, and the percentage of deadline time utilized. Additionally,
as RFTGS is a time optimization strategy where the main objective is to maximize the
number of gridlets executed within a given deadline, for such jobs it is more critical
to complete a user job within a deadline rather than save budget.

6.2.5 Conclusion based on the experiments
The experimental results demonstrated (see Table 1) that the RFTGS is able to max-

imize the number of gridlets completed for varied budget and fixed deadline, and
number of gridlets completed for varied deadline and fixed budget. It suggests that the
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Table 1 Comparison of RFTGS strategy with time optimization strategy and CTGS strategy

Performance comparison parameters RFTGS  Time CFTGS
strategy ~ optimization strategy
strategy
Number of gridlets (21000 G$, 100 time units) 95 % 65 % 84 %
Percentage of Deadline Time utilized (15000 G$, 100 time units) 75 % 96 % 64 %
Percentage of Budget Utilized (1700 time units, 5000 G$) 85 % 74 % 66 %

RFTGS improved the overall execution time of the gridlets. Furthermore, it has min-
imized the percentage of deadline time utilized. Consequently, it can be concluded
from the conducted experiments that the RFTGS effectively schedules gridlets and is
able to tolerate faults gracefully even in the presence of failures, but costs are slightly
higher in terms of budget consumption.

7 Conclusions

In this paper, the problem of fault tolerance in economy driven computational grid
was considered and a novel adaptive task replication based job scheduling strategy for
economy driven grid was proposed. The Proposed RFTGS Strategy included two al-
gorithms to tolerate faults gracefully. The experiment results demonstrated that when
compared with the CFTGS and Time Optimization Strategy, the RFTGS has im-
proved the overall execution time of the gridlets with varied deadline and fixed bud-
get as well as with varied budget and fixed deadline. Additionally, the RFTGS has
outperformed the CFTGS and Time Optimization Strategy with respect to the per-
centage of deadline time utilized. Although the RFTGS has the percentage of budget
spent greater than the Time Optimization Strategy and CFTGS, it is acceptable as the
RFTGS is a time optimization strategy where the main objective is to maximize the
number of gridlets executed within a given deadline, because for such jobs it is more
critical to complete a user job within deadline rather than save budget. Thus, it is con-
cluded that the RFTGS provides a suitable solution to fault tolerant scheduling in n
economy driven grid environment and has shown improvement in satisfying the user
QoS requirement. It enabled a grid to deliver reliable and consistent performance in
the presence of failures.
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