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ABSTRACT
This paper presents a novel methodology for fault detection

in gas turbine engines based on the concept of dynamic neural
networks. The neural network structure belongs to the class of
locally recurrent globally feed-forward networks. The architec-
ture of the network is similar to the feed-forward multi-layer per-
ceptron with the difference that the processing units include dy-
namic characteristics. The dynamics present in these networks
make them a powerful tool useful for identification of nonlinear
systems. The dynamic neural network architecture that is de-
scribed in this paper is used for fault detection in a dual-spool
turbo fan engine. A number of simulation studies are conducted
to demonstrate and verify the advantages of our proposed neural
network diagnosis methodology.

NOMENCLATURE
Variables and Constants
E Rotor energy, J
η Efficiency

β Bypass ratio

WT Power generated by turbine, W
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Engineering Research Council of Canada (NSERC) under the industrial Collab-

orative Research and Development (CRD) partnership program.
†Address all correspondence to this author.

WC Power consumed by compressor, W

J Rotor moment of inertia, kg.m2

N Rotational Speed, RPM

N1 Rotational Speed of spool connecting high pressure com-

pressor to high pressure turbine, RPM

N2 Rotational Speed of spool connecting low pressure com-

pressor to low pressure turbine, RPM

P Pressure, Pascal

R Gas Constant, J
kg.K

T Temperature, K

V Volume, m3

ṁ Mass flow, kg
s

π Pressure ratio

γ Heat capacity ratio

cp Specific heat at constant pressure, J
kg.K

cv Specific heat at constant volume, J
kg.K

Hu Fuel specific heat, J
kg

u Speed, m
s

A Area, m2

M Mach

T0 Temperature at sea level at Standard Day

P0 Pressure at sea level at Standard Day

Subscripts
mech Mechanical
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C Compressor

T Turbine

o Stage output

i Stage input

CC Combustion chamber

f Fuel

d Intake

amb Ambient

LT Low pressure turbine

HT High pressure turbine

HC High pressure compressor

LC Low pressure compressor

n Nozzle

M Mixer

ni Nozzle input

no Nozzle output

crit Critical

1 INTRODUCTION
Stringent reliability and maintainability requirements for

jet engines demand development of state-of-the-art methods for

fault diagnosis. There is a large body of research on health

monitoring and fault diagnosis of aircraft engines (see e.g., sur-

veys [1–4] and the references therein). Fault diagnosis in gas tur-

bine engines has been investigated using model-free data-driven

methods as well as model-based approaches. Most of the model-

based approaches for fault diagnosis in aircraft engines use the

continuous dynamic models and rely on analytical redundancy

(see e.g. [4–7]). In [8], a model-based approach is developed for

diagnosis in jet engines using hybrid automata models.

Model-based approaches are mostly based on the idea of

analytical redundancy and demand an analytical mathematical

model of the system. However, in practice it is usually quite chal-

lenging and difficult to meet all the requirements of model-based

techniques due to the inevitable unmodeled dynamics, uncer-

tainties, model mismatch, noise, disturbances and inherent non-

linearities. In contrast, intelligence-based diagnosis approaches

such as those based on neural networks mostly rely on real-time

or historical data from the engine measurements, and do not re-

quire a detailed mathematical model of the engine.

In this paper, we develop a novel neural network diagnosis

methodology for the purpose of fault diagnosis in jet engines.

The developed neural network is designed based on the concept

of dynamic neurons. This neural network belongs to the class

of locally recurrent globally feed-forward neural networks. The

architecture of the network is similar to the feed-forward multi-

layer perceptron with the difference that the processing units in-

clude dynamic characteristics. Each dynamic neuron in our de-

veloped network consists of an adder module, a linear Finite Im-

pulse Response (FIR) filter, and a nonlinear activation module. A

powerful mapping and representational approximating tool may
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FIGURE 1. STRUCTURE OF A STATIC NEURON. [9, 10].

be obtained when dynamic neurons are connected into a multi-

layer structure. Since each neuron by itself possesses dynamic

characteristics, no global feedback to the network structure is

needed in our proposed solution. Therefore, a simpler architec-

ture is obtained when compared to the conventional recurrent

dynamic neural networks which use a global feedback in their

structure. Consequently, implementing a stabilizing learning al-

gorithm is relatively easier. Since the developed neural network

has dynamic characteristics, it can be utilized for modeling and

identification of general and highly complex nonlinear systems

such as jet engines. We employ our dynamic neural network ar-

chitecture for fault detection in a dual-spool turbo fan engine. A

number of simulation studies are conducted to demonstrate and

verify the advantages of our proposed neural network diagnosis

methodology.

The remainder of the paper is organized as follows. In Sec-

tion 2, we present the neural network structure used in this paper.

In Section 3, the mathematical modeling of a dual-spool turbofan

jet engine is investigated. The utilization of the dynamic neural

network structure for fault detection in the gas turbine engine is

studied in Section 4. Simulation results are presented in Sec-

tion 5. We conclude the paper by presenting our conclusions in

Section 6.

2 DYNAMIC NEURAL NETWORKS
In this section, we describe dynamic neural networks used in

our work for fault detection of gas turbine engines. The details

of the dynamic neural network for identifying different types of

nonlinear systems can be found in [9, 10]. The dynamic neural

network used in this paper consists of dynamic neurons. First we

describe the structure of a dynamic neuron.

2.1 Dynamic Neuron with Embedded Adaptive Filter
Figure 1 shows the structure of a static neuron. In this

structure, the output of the neuron is calculated by passing the

weighted input ∑N
i=1 wixi through an activation function σ(·). In

contrast to static neurons, dynamic neurons have a Finite Impulse
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FIGURE 2. STRUCTURE OF A DYNAMIC NEURON. [9, 10].

Response (FIR) filter

H(q−1) =
1

1−a1q−1−a2q−2−·· ·aDq−D

after their activation function, where D is the order of the FIR

filter. The FIR filter creates a dynamic mapping between the

input and the output of the neuron. Figure 2 shows the structure

of a dynamic neuron. The input-output relation of the dynamic

neuron is governed by

y(t) = σ(
N

∑
i=1

wixi)+a1y(t−1)+a2y(t−2)+ · · ·aDy(t−D),

where ai’s are the coefficients of the filter H(q−1). In this work,

these coefficients are also adjustable and will be updated in the

training phase. The dynamic neural network in our work is con-

structed by using the dynamic neurons described above in a mul-

tilayer feedforward neural network. In the following, a simple

neuro-dynamic structure is introduced to describe the capability

of the network in identifying non-liear maps. In Section 2.4, we

will present a modified structure for identifying a more general

class of nonlinear systems.

2.2 The Structure of the Dynamic Neural Network
Figure 3 shows the structure of a simple dynamic neural net-

work. This structure is similar to a multilayer perceptron, with

the difference that instead of conventional static neurons, dy-

namic neurons have been used. The network consists of L layers

with Nl neurons in layer l for 1 ≤ l ≤ L. For simplicity of the

discussion and without the loss of generality, only a Single-Input

Single-Output (SISO) dynamic system is considered. Hence,

the network has only one input and one output neurons. Any

bounded, monotonically increasing and differentiable nonlinear

function may be used as an activation function for the neurons.

In this paper, we use a tangent hyperbolic function as the acti-

vation function. The following notation is used throughout the

paper. The output of the jth neuron in the lth layer at time t is

H
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FIGURE 3. STRUCTURE OF A MULTILAYER DYNAMIC NEU-

RAL NETWORK. [9, 10].

denoted by ol
j(t). The weight connecting the jth neuron in the

lth layer to the ith neuron in the (l−1)th layer is denoted by wl
ji

and the dth filter coefficient for the jth neuron in the lth layer is

denoted by al
jd . Here, j ∈ [1 Nl ], i ∈ [1 Nl−1], d ∈ [1 D] and

l ∈ [1 L].
It can be shown that if the order of the filter (D) and the num-

ber of layers (L) are appropriately selected, the above-mentioned

dynamic neural network can be used for identification of a class

of nonlinear system represented by [9, 10]

y(t) =
Ns

∑
i=1

αiy(t− i)+g[u(t−1),u(t−2), · · · ,u(t−Ms)], (1)

where Ms ≤ Ns. The following inequality must hold as well

D ≥ Ns. According to the approximation theorem of [11], for

approximation of any nonlinear function, the network must have

at least two layers. Therefore, we must also have L≥ 2.

2.3 Adaptation Laws
The adaptation laws for w′s and a′s [9,10] are derived based

on the steepest descent gradient method and conventional back-

propagation learning law [12]. The network parameters, namely,

the neuron weights and the filter coefficients are updated so that

the norm of the identification error defined as

E(t) =
1

2

K

∑
k=1

(yk(t)−oL
k (t))2 (2)

is minimized, where yk(t) is the kth output of the network at time

t.
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2.3.1 Output Layer Adaptation Laws The follow-

ing update laws are derived for the weights and filter parameters

in the output layer [9, 10].

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ΔwL
k j = ηδ L

k (t) ∂oL
k (t)

∂wL
k j

δ L
k (t) = yk(t)−oL

k (t)
∂oL

k (t)
∂wL

k j
= σ ′(netL

k (t))oL−1
j (t)+∑D

d=1 aL
kd

∂oL
k (t−d)
∂wL

k j

. (3)

For SISO systems, we have NL = K = 1. The term
∂oL

k (t)
∂wL

k j
is cal-

culated recursively by initially assigning some random values to
∂oL

k (t−d)
∂wL

k j
for d = 1,2, · · · ,D [9, 10].

⎧⎪⎪⎨
⎪⎪⎩

ΔaL
kd = ηδ L

k (t) ∂oL
k (t)

∂aL
kd

δ L
k (t) = yk(t)−oL

k (t)
∂oL

k (t)
∂aL

kd
= oL

k (t−d)+∑D
d=1 aL

kd
∂oL

k (t−d)
∂aL

kd

(4)

2.3.2 Hidden Layer Adaptation Laws
The following update laws are derived for the weights and filter

parameters in the hidden layers [9, 10].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δwl
ji = ηδ l

j(t)
∂ol

j(t)

∂wl
ji

δ l
j(t) = ∑Nl+1

n=1 δ l+1
n (t) ∂ol+1

n (t)
∂ol

j(t)
∂ol+1

n (t)
∂ol

j(t)
= σ ′(netl+1

n (t))wl+1
n j +∑D

d=1 al+1
nd

∂ol+1
n (t−d)
∂ol

j(t)
∂ol

j(t)

∂wl
ji

= σ ′(netl
j(t))o

l−1
i (t)+∑D

d=1 al
jd

∂ol
j(t−d)

∂wl
ji

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δal
jd = ηδ l

j(t)
∂ol

j(t)

∂al
jd

δ l
j(t) = ∑Nl+1

n=1 δ l+1
n (t) ∂ol+1

n (t)
∂ol

j(t)
∂ol+1

n (t)
∂ol

j(t)
= σ ′(netl+1

n (t))wl+1
n j +∑D

d=1 al+1
nd

∂ol+1
n (t−d)
∂ol

j(t)
∂ol

j(t)

∂al
jd

= ol
j(t−d)+∑D

d=1 al
jd

∂ol
j(t−d)

∂al
jd

(6)

2.4 Identification of a More General Class of Nonlin-
ear Systems

As mentioned earlier, the dynamic neural network described

in the previous subsection has the capability of identifying the
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FIGURE 4. A SERIES-PARALLEL DYNAMIC NEURAL NET-

WORK ARCHITECTURE FOR IDENTIFYING A CLASS OF NON-

LINEAR SYSTEMS.

nonlinear system in the form of (1). However, many nonlin-

ear systems may not be represented by system (1). In [9, 10],

the generalization of the neural network to three more classes of

nonlinear systems has been developed. Here, we describe the

extension of the results to the nonlinear system in the form

y(t) = f [y(t−1), · · · ,y(t−Ns),u(t−1), · · · ,u(t−Ms)] (7)

where Ms ≤ Ns. The dynamic behavior of gas turbine engines in

our work has been assumed to belong to this class of nonlinear

systems.

A series-parallel architecture is used in [9, 10] to develop

a neuro-dynamic structure for identifying the class of nonlinear

systems in the form of (7). Figure 4 shows the structure of the dy-

namic neural network. A multilayer feedforward structure with

two inputs is used to approximate the nonlinearity f (·) in (7). We

have [9, 10]

o1
i (t) =

D

∑
d=1

a1
ido1

i (t−d)+σ(w1
i1x1(t−1)+w1

i2x2(t−1)) (8)

where x1(t− 1) and x2(t− 1) are the inputs to the network. By

substituting o1
i in o2

j , we obtain [9, 10]

o2
j(t) =

D
∑

d=1
a2

jdo2
j(t−d)+σ [

N1

∑
i=1

w2
ji(

D
∑

d=1
a1

ido1
i (t−d)+

σ(w1
i1x1(t−1)+w1

i2x2(t−1))]
(9)

The second term in (9) contains o1
i to o1

i (t−D) terms, and o1
i (t−

d) contains x1(t−d) and x2(t−d). Therefore, equation (9) can
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be rewritten as [9, 10]

o2
j(t) =

D
∑

d=1
a2

jdo2
j(t−d)+ψ[x1(t−1), · · · ,x1(t−1−D), · · · ,

x2(t−1), · · · ,x2(t−1−D), · · · ]
(10)

where ψ is a lower and upper bounded nonlinear function. Sim-

ilarly, we can show that the output of the last layer is [9, 10]

oL
j (t) =

D
∑

d=1
aL

jdoL
j (t−d)+Λ f [x1(t−1), · · · ,x1(t− p), · · · ,

x2(t−1), · · · ,x2(t−q)]
(11)

where Λ f is to approximate f (·) and p and q are arbitrary large

numbers. By substituting x1(t−1) = y(t−1), x2(t−1) = u(t−
1), p = Ns and q = Ms in (11), we obtain [9, 10]

oL
j (t) =

D
∑

d=1
aL

jdoL
j (t−d)+Λ f [y(t−1), · · · ,y(t−Ns), · · · ,

u(t−1), · · · ,u(t−Ms)]
(12)

Comparing the output of the nonlinear system (7) with the output

of the dynamic network given by equation (12), we realize that

in order to identify the nonlinear system (7), the filters have to be

removed from the output layer, i.e., aL
jd = 0 [9,10]. We also must

have L≥ 2. The update laws for the network are similar to those

presented in the previous section. A discussion on the stability

of the update laws has been presented in [9, 10].

3 Jet Engine Mathematical Model

A nonlinear mathematical model for a dual spool jet engine

is developed. For transient response modeling of the jet engine,

rotor dynamics and volume dynamics are considered. In order to

take into account the volume dynamics, the engine components

are assumed to be volume-less and a volume among components

is considered to model an imbalance mass flow rate [13]. This

modeling consideration allows the elimination of large algebraic

loops and provides a reasonable ground for development of a

generic and a modular model of the jet engine dynamics. The

modules and the information flow amongst the various compo-

nents for a dual spool engine is shown in Figure 5. In the follow-

ing, detailed mathematical expressions corresponding to the en-

gine dynamics as well as each specific component are presented.
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FIGURE 5. INFORMATION FLOW DIAGRAM IN A MODULAR

MODELING OF THE JET ENGINE DYNAMICS.

3.1 Rotor Dynamics
Energy balance between the shaft and the compressor results

in the following differential equation:

dE
dt

= ηmechWT −WC (13)

where E = J( N.2π
60 )2

2 . Refer to the nomenclature section for spe-

cific definitions of the various terms and variables.

3.2 Volume Dynamics
As mentioned above, the volume dynamics is considered

to take into account the unbalance mass flow rates among var-

ious components. Assuming that the gas has zero speed and has

homogenous properties over volumes, this dynamics can be de-

scribed by the following equation:

Ṗ =
RT
V

(Σṁin−Σṁout) (14)

3.3 Components
3.3.1 Compressor

The compressor behavior, as a quasi-steady component, is de-

termined by using the compressor performance map (this map

is obtained from the commercial software package GSP [14]).

Given the pressure ratio (πC) and the corrected rotational speed
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(N/
√

θ ), one can obtain the corrected mass flow rate (ṁC
√

θ/δ )

and efficiency (ηC) from the performance map by using a proper

interpolation technique, where θ = Ti/T0 and δ = Pi/P0, i.e.

ṁC
√

θ/δ = fṁC(N/
√

θ ,πC) and ηC = fηC(N/
√

θ ,πC). Once

these parameters are obtained, the compressor temperature rise

and the mechanical power are obtained as follows:

To = Ti

[
1+

1

ηC
(π

γ−1
γ

C −1)
]

(15)

WC = ṁCcp(To−Ti) (16)

3.3.2 Turbine
Similar to the compressor, the turbine behavior is also deter-

mined by using the turbine performance map (from the soft-

ware package GSP [14]). Given the pressure ratio (πT ) and

the corrected rotational speed (N/
√

θ ), the corrected mass flow

rate (ṁT
√

θ/δ ) and the efficiency (ηT ) are obtained from the

performance map, i.e. ṁT
√

θ/δ = fṁT (N/
√

θ ,πT ) and ηT =
fηT (N/

√
θ ,πT ). The temperature drop and the turbine mechan-

ical power are obtained as follows:

To = Ti

[
1−ηT (1−π

γ−1
γ

T )
]

(17)

WT = ṁT cp(Ti−To) (18)

3.3.3 Combustion Chamber
The dynamics inside the combustion chamber is governed by

equations (19) and (20). In fact, the combustion chamber rep-

resents both the energy accumulation and the volume dynamics

between the high pressure compressor and the high pressure tur-

bine at the same time. In other words, we have

ṖCC =
PCC

TCC
ṪCC +

γRTCC

VCC
(ṁC + ṁ f − ṁT ) (19)

ṪCC =
1

cvmCC
[(cpTCṁC +ηCCHuṁ f − cpTCCṁT )−

cvTCC(ṁC + ṁ f − ṁT )]
(20)

3.4 Set of Nonlinear Equations
In this section, a set of nonlinear equations corresponding

to a dual spool jet engine is provided. In the engine intakes, by

assuming adiabatic process, the pressure and the temperature are

computed as follows:

Pd

Pamb
=

[
1+ηd

γ−1

2
M2

] γ
γ−1

(21)

Td

Tamb
= 1+

γ−1

2
M2 (22)

For a low pressure compressor, the pressure ratio πLC is calcu-

lated from the volume dynamics between the high pressure com-

pressure and the low pressure compressor as described by equa-

tion (14). The rotational speed (N2) is obtained from the solution

to equation (13) for the spool that is connecting the low pressure

compressor to the low pressure turbine. According to the pres-

sure ratio and the rotational speed, the corrected mass flow and

the efficiency are obtained from the performance map, therefore

the temperature rise can be obtained from equation (15). Simi-

lar to the low pressure compressor, for high pressure compressor,

pressure is obtained from the volume dynamics that is described

by equation (19). The rotational speed (N1) is obtained from

equation (13) for a spool that is connecting the high pressure

compressor to the high pressure turbine.

Finally, the pressure ratio of high pressure turbine is ob-

tained from the volume dynamics between the high and the low

pressure turbines, and the pressure ratio for the low pressure tur-

bine is calculated by using the volume dynamics after the low

pressure turbine. The mass flow rate of the nozzle is computed

as follows. If condition (23) holds, the mass flow rate is obtained

from equation (24), otherwise, it is determined from equation

(25). In other words, we have

Pamb

Pni

<

[
1+

1− γ
ηn(1+ γ)

] γ
γ−1

(23)

ṁn
√

Tni

Pni

=
u√
Tni

An

R
Pamb

Pni

Tni

Tno

(24)

where u√
Tni

=
√

2cpηn(1− (Pamb
Pni

)
γ−1

γ ), Tno
Tni

= 1 − ηn(1 −

(Pamb
Pni

)
γ−1

γ ), and
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ṁn
√

Tni

Pni

=
u√
Tni

An

R
Pcrit

Pni

Tni

Tcrit
(25)

and where Pcrit
Pni

= (1− 1
ηn

( γ−1
γ+1 ))

γ
γ−1 , u√

Tni
= 2γR

γ+1 , and Tcrit
Tni

= 2
γ+1 .

Here, it is assumed that Pni = PLT and Tni = TM which is obtained

from of energy balance in the mixer as follows:

TM =
ṁLT TLT +β ṁLCTLC

ṁLT +β ṁLC

Also the input or the control signal is u = PLA which is related

to fuel flow rate by a gain, i.e. ṁ f = PLA× ṁmax
f , where ṁmax

f
is the maximum fuel flow rate. Moreover, all the performance

maps of the compressors and the turbines are adopted from the

commercial software package GSP [14].

4 FAULT DETECTION IN GAS TURBINE ENGINES
In this section, a fault detection methodology for a dual-

spool jet engine by using the dynamic neural network structure

described in Section 2 is developed. Before proceeding to fault

detection in the jet engine, we briefly describe the concept of

fault detection in dynamical systems.

4.1 Problem of Fault Detection
The purpose of a fault detection mechanism in dynamical

systems is to detect faults after they occur and before they evolve

into failures. Generally, for detecting a fault in a system, some

sort of redundancy is required. Hardware redundancy is a con-

ventional approach for fault detection. In this approach, multiple

sensors or actuators are utilized to measure and control a variable

of interest in a dynamical system. Typically, a voting mechanism

is utilized to determine if a fault has occurred. Due to the use of

redundant hardware, hardware redundancy approaches can be-

come very costly.

Fault detection approaches based on analytical redundancy

have attracted a great deal of attention. In analytical redundancy

methods, the inherent redundancy existing in the static and dy-

namic relationships among the system inputs and measured out-

puts is used for fault detection and isolation. In other words, sen-

sor measurements are compared with the values of the respective

variables which are obtained analytically based on a mathemati-

cal model of the system or through the process of historical data.

The resulting differences are called residuals. The residuals are

processed to determine which residuals can be considered nor-

mal and which ones indicate presence of a fault. When no fault

is present in the system, the residual should be normally zero or

TABLE 1. FAULTS CONSIDERED IN THE ENGINE.

Component Fault Description

feLC Change in the low pressure compressor efficiency

feHC Change in the high pressure compressor efficiency

fmLT Change in the low pressure turbine flow capacity

very close to zero, and when a fault occurs, the residual should be

distinguishably different from zero and above a specific thresh-

old. The algorithm or processor used to generate residuals is

called a residual generator.

The fault detection approaches based on analytical redun-

dancy can be categorized into model-based and computationally

intelligence-based schemes. In the model-based approaches, a

mathematical representation of the system is assumed to be avail-

able. In contrast, in intelligence-based approaches, fault detec-

tion is achieved via the process of historical data. Neural net-

works have been widely used as a powerful intelligence-based

technique for fault detection using the history of a system’s gen-

erated data.

4.2 Engine Component Faults
In this paper, we study three component faults in the engine.

Component faults can be modeled as changes in the component

efficiency and flow capacity. Table 1 shows the component faults

that are studied in this paper and their description.

4.3 Residual Generation
We first train the the neural network with a set of healthy

data. Since the network has learned the behavior of the engine, it

can be used for residual generation by comparing the engine out-

put with the neural network output. The fault detection algorithm

developed in this paper consists of two phases that are explained

below.

1- Training Phase
As stated in Section 2, the jet engine studied in this work is as-

sumed to belong to the class of nonlinear systems represented by

the input-output relation (7). Therefore, the structure of Figure 4

is used for training the network. In this paper, three dynamic

neural networks are developed and trained for modeling and rep-

resenting the dynamics of three engine outputs N1, N2 and TCC.

The inputs to each network for training processes are the fuel

mass flow rate to the combustion chamber and the one step delay

of the actual output of the jet engine.

1- Recall and Residual Generation Phase
In this phase, instead of the plant output, the one step delayed

output of the network is fed into the network. Figure 6 shows the

architecture of the network at the recall and the fault detection

phase.
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FIGURE 6. THE STRUCTURE OF THE DYNAMIC NEURAL

NETWORK FOR THE GENERALIZATION AND FAULT DETEC-

TION.

4.3.1 Threshold Selection
For fault detection purposes, a threshold testing process is ful-

filled. In this process, the network is tested with arbitrary random

inputs and the residual signals generated at each test (assuming

healthy operation of the engine) are processed to find an appro-

priate threshold for accomplishing the fault detection task during

the faulty operation of the engine.

5 SIMULATION RESULTS
For simplicity of discussions, we denote the network struc-

tures developed to represent N1, N2 and TCC by NetN1
, NetN2

and

NetTCC , respectively. We assume the ground ambient conditions.

5.1 Training Data
In this work, we assume that the minimum fuel mass flow

rate that must be supplied to the combustion chamber for the en-

gine operation and in order to avoid the engine flame out is 45%

of the maximum fuel mass flow rate. The engine is assumed

fault-free at the training phase. As mentioned in the previous sec-

tion, three dynamic neural networks are developed and trained to

represent three engine outputs N1, N2 and TCC. We trained the

networks with different input profiles, and we observed that if a

step input with the amplitude equal to the 75% of the maximum

fuel mass flow rate is used for training each network, a smaller

steady state error between the network output and the engine out-

put can be achieved. Each network is trained with a set of 200

normalized data points. The data points are normalized to a zero

mean and standard deviation of one.

5.2 Network Parameters
The initial filter parameters are taken to be small (about

0.01). The initial weights for all the networks are considered

to be 0.25. The parameters of the networks have been selected

to generate an optimized output with minimal steady state error

TABLE 2. NETWORKS’ PARAMETERS.

NetN1
NetN2

NetTCC

D 3 2 3

L 3 3 3

N1 3 3 20

N2 6 4 6

ηw 0.14 0.05 0.11

ηa 0.15 0.12 0.21

TABLE 3. STEADY-STATE ERROR OF THE NETWORK OUT-

PUT AND THE ENGINE OUTPUT.

|ess|
when

wi =
0.50Wmax

|ess|
when

wi =
0.60Wmax

|ess|
when

wi =
0.75Wmax

|ess|
when

wi =
0.80Wmax

|ess|
when

wi =
0.90Wmax

|ess|
when

wi =
Wmax

NetN1
6.5

RPM

10.2

RPM

0.46

RPM

5.6

RPM

22.9

RPM

43.8

RPM

NetN2
10.8

RPM

15.2

RPM

0.26

RPM

11.2

RPM

33.8

RPM

60.9

RPM

NetTCC 0.57 K 1.1 K 0.13 K 1.2 K 3.7 K 6.9 K

between the network output and the engine output. The network

parameters are shown in Table 2. Here, ηw and ηa are the dif-

ferent learning rates used for updating the network weights and

filter parameters, respectively. The steady state error of each net-

work for different input values is shown in Table 3. In Table 3,

wi represents the input fuel mass flow rate and Wmax denotes the

maximum fuel mass flow rate.

5.3 Selection of Thresholds for Fault Detection
For the recall and the fault detection tasks, the inputs to the

networks are the system fuel mass flow rate and the one step

delayed of the network output. For each network, we tested the

network with different input fuel mass flow rates and calculated

a threshold. The threshold for fault detection for each network

is obtained by taking the maximum of the steady state error of

each network and multiplied it by a safety factor of 1.2. The

thresholds are calculated to be 52 RPM for the residual generated

by the network developed to model N1, 72 RPM for the residual

generated by the network developed to model N2, and 8.5K for

the residual generated by the network developed to represent TCC.

5.3.1 Fault Cases Studied
Many fault cases have been studied. The fault cases presented

here all correspond to the maximum fuel mass flow rate and 65%

maximum fuel mass flow rate.

Fault Case 1- High-pressure compressor efficiency drops
3 % at t=6 sec. when the input fuel mass flow rate is at 65%
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FIGURE 7. RESIDUAL SIGNAL GENERATED BY THE NET-

WORK REPRESENTING N1 FOR THE FAULT CASE 1.
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FIGURE 8. RESIDUAL SIGNAL GENERATED BY THE NET-

WORK REPRESENTING N2 FOR THE FAULT CASE 1.

of its maximum - Figures 7, 8 and 9 show the residual signals

generated by NetN1
, NetN2

and NetTCC , respectively. As seen the

residuals generated by NetN1
and NetTCC are above the consid-

ered thresholds, however, the residual generated by NetN2
is not

above its threshold. This implies that NetN2
is generating a false

positive, however, the fault is detected if a voting mechanism is

used. The detection time for NetN1
is 0.51 sec. and for NetTCC is

0.1 sec.
Fault Case 2- High-pressure compressor efficiency drops

3 % at t=6 sec. when the input fuel mass flow rate is at its
maximum - Figures 10 and 11 show the residuals generated by

the networks NetN1
and NetTCC , respectively. The residual gener-

ated by NetN2
is not above its threshold and is not shown. Similar

to case 1, the fault can be detected. The detection time for NetN1

is 0.03 sec. and for NetTCC is 0.02 sec.
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FIGURE 9. RESIDUAL SIGNAL GENERATED BY THE NET-

WORK REPRESENTING TCC FOR THE FAULT CASE 1.
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FIGURE 10. RESIDUAL SIGNAL GENERATED BY THE NET-

WORK REPRESENTING N1 FOR THE FAULT CASE 2.

Fault Case 3- Low-pressure compressor efficiency drops
5% at t=6 sec. when the input fuel mass flow rate is at 65% of
its maximum - Figures 12 and 13 show the residuals generated

by the networks NetN2
and NetTCC , respectively. The residual

generated by NetN1
is not above its threshold and is not shown.

Similar to the previous two cases, the fault can be detected. The

detection time for NetN2
is 0.1 sec. and for NetTCC is 0.04 sec.

Fault Case 4- Low-pressure compressor efficiency drops
5% at t=6 sec. when the input fuel mass flow rate is at its
maximum - Figures 14 and 15 show the residuals generated by

the networks NetN2
and NetTCC , respectively. The residual gener-

ated by NetN1
is not above its threshold and is not shown. Similar

to the previous three cases, the fault can be detected using a vot-

ing mechanism. The detection time for NetN2
is 0.04 sec. and for

NetTCC is 0.02 sec.
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FIGURE 11. RESIDUAL SIGNAL GENERATED BY THE NET-

WORK REPRESENTING TCC FOR THE FAULT CASE 2.
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FIGURE 12. RESIDUAL SIGNAL GENERATED BY THE NET-

WORK REPRESENTING N2 FOR THE FAULT CASE 3.

Fault Case 5- Low-pressure turbine flow capacity drops
6% at t=6 sec. when the input fuel mass flow rate is at 65%
of its maximum - Figures 16 and 17 show the residuals gener-

ated by the networks NetN1
and NetTCC , respectively. The residual

generated by NetN2
is not above its threshold and is not shown.

The fault can be detected using a voting mechanism. The detec-

tion time for NetN1
is 0.47 sec. and for NetTCC is 0.22 sec.

Fault Case 6- Low-pressure turbine flow capacity drops
6% at t=6 sec. when the input fuel mass flow rate is at its
maximum - All the residual signals generated by the networks

are above their thresholds for this case. Figures 18 shows the

residual generated by the network NetN1
. The detection time for

NetN1
is 0.04 sec. For brevity, the residuals generated by NetN2

and NetTCC have not been shown.
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FIGURE 13. RESIDUAL SIGNAL GENERATED BY THE NET-

WORK REPRESENTING TCC FOR THE FAULT CASE 3.
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FIGURE 14. RESIDUAL SIGNAL GENERATED BY THE NET-

WORK REPRESENTING N2 FOR THE FAULT CASE 4.

5.4 Network Fault Detection Performance
We have injected the faults at different fuel mass flow rates

and tested the fault detection capability of the networks. Table 4

shows the minimum values of the faults that can be detected by

each network.

5.4.1 Fault Detection in the Presence of Measure-
ment Noise
We have also tested the performance of the networks for the case

that measurement noise is present in the engine. We have as-

sumed that the data used for training the networks was noise-

free. The measurement noise affects the residuals generated by

the networks in such a way that residual signals close to a thresh-

old may pass the threshold. Under this situation, a false alarm
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FIGURE 15. RESIDUAL SIGNAL GENERATED BY THE NET-

WORK REPRESENTING TCC FOR THE FAULT CASE 4.
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FIGURE 16. RESIDUAL SIGNAL GENERATED BY THE NET-

WORK REPRESENTING N1 FOR THE FAULT CASE 5.

or a false positive may be generated by the fault detection sys-

tem. As mentioned earlier in this section, we choose thresholds

with a safety factor. This may reduce the effect of noise on the

fault detection results. However, if the magnitude of noise is

large, the residual may become unreliable. This may increase

the minimum values of the faults that can be detected using each

network. Figure 19 shows the response of NetTCC for the case

that the low-pressure turbine flow capacity drops 6% at t=6 sec.

when the input fuel mass flow rate is at 65% of its maximum, and

a measurement noise with the magnitude equal to the 6% of the

maximum measured TCC is present. In the presence of the mea-

surement noise considered, the minimum low-pressure turbine

flow capacity drop that can be detected by NetTCC is 4%. Table 5

shows the minimum value of the faults that can be detected by

the networks in the presence of 6% measurement noise.
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FIGURE 17. RESIDUAL SIGNAL GENERATED BY THE NET-

WORK REPRESENTING TCC FOR THE FAULT CASE 5.
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FIGURE 18. RESIDUAL SIGNAL GENERATED BY THE NET-

WORK REPRESENTING N1 FOR THE FAULT CASE 6.

6 CONCLUSION
In this paper, we have investigated the fault detection of gas

turbine engines and presented a novel approach based on dy-

namic neural networks. Dynamic neural networks, in contrast

to the conventional neural networks, are composed of dynamic

neurons. In dynamic neurons, there is a digital filter after the

activation function that generates a dynamic mapping between

the input and output of the neuron. The dynamic neurons, when

used in a multilayer feedforward neural network structure, create

a strong tool for identification of nonlinear systems. The iden-

tification capabilities of dynamic neural networks is used in this

paper for fault detection in gas turbine engines. The structure of

the dynamic neural networks has been investigated and their up-

date laws have been reviewed. Three dynamic neural networks

have been developed for representing the engine output signals
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TABLE 4. MINIMUM VALUE OF THE FAULTS THAT CAN BE

DETECTED BY THE NETWORKS.

Component

Fault

Minimum fault

detected by using

NetN1

Minimum fault

detected by using

NetN2

Minimum fault

detected by using

NetTCC

feLC 7% 4% 2%

feHC 3% 9% 2%

fmLT 6% 8% 2%
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FIGURE 19. RESIDUAL SIGNAL GENERATED BY THE NET-

WORK REPRESENTING TCC FOR THE CASE THAT THE LOW-

PRESSURE TURBINE FLOW CAPACITY DROPS 6% AT t=6 sec.

WHEN THE INPUT FUEL MASS FLOW RATE IS AT 65% OF ITS

MAXIMUM AND 6% MEASUREMENT NOISE IS PRESENT.

TABLE 5. MINIMUM VALUE OF THE FAULTS THAT CAN BE

DETECTED BY THE NETWORKS IN THE PRESENCE OF 6%

MEASUREMENT NOISE.

Component

Fault

Minimum fault

detected by using

NetN1

Minimum fault

detected by using

NetN2

Minimum fault

detected by using

NetTCC

feLC 10% 7% 4%

feHC 5% 12% 4%

fmLT 9% 12% 4%

N1, N2 and TCC. The performance of the neural networks has

been investigated by some illustrative fault cases.

The development of dynamic neural networks for modeling

other engine variables is an ongoing task. The applicability of

the presented neural networks for fault isolation and in particular,

the integration of Radial Basis Functions (RBF) in our proposed

network structure for achieving a very competitive fault isolation

requirement is the subject of our future research.
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