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Deformations of Coxeter hyperplane arrangements

and their characteristic polynomials

Christos A. Athanasiadis

Abstract.

Let A be a Coxeter hyperplane arrangement, that is the arrange-
ment of reflecting hyperplanes of an irreducible finite Coxeter group.
A deformation of A is an affine arrangement each of whose hyper-
planes is parallel to some hyperplane of A. We survey some of the
interesting combinatorics of classes of such arrangements, reflected
in their characteristic polynomials.

§1. Introduction

Much of the motivation for the study of arrangements of hyperplanes
comes from Coxeter arrangements. Because of their importance in alge-
bra, Coxeter arrangements have been studied a great deal in the context
of representation theory of semisimple Lie algebras (where they arose),
invariant theory of reflection groups, combinatorics of root systems and
Coxeter groups, combinatorics of convex polytopes and oriented ma-
troids and within the general theory of hyperplane arrangements [42].
From a geometric, combinatorial and algebraic point of view, they are
fairly well understood in terms of their classification, facial structure, in-
tersection posets, characteristic polynomials and freeness; see [17, §2.3]
and [42, Chapter 6].

A deformation of a Coxeter arrangement A is an affine arrangement
each of whose hyperplanes is parallel to some hyperplane of A. Inter-
esting examples of such arrangements first arose in the study of affine
Weyl groups by Shi [53, 54] and have appeared since then in various
mathematical contexts. Their combinatorics was first investigated sys-
tematically by Stanley [59] and relates to objects studied classically in
enumeration such as trees, set partitions and partially ordered sets. A
major role in this study has been played by the characteristic polyno-
mial.

1The present article was written while the author was a Hans Rademacher
Instructor at the University of Pennsylvania.
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In the present exposition we describe some of the lively work on
deformations of Coxeter arrangements that has been carried out in the
recent past. We emphasize the combinatorial and algebraic properties
related to their characteristic polynomials, a topic which we find rich
and interesting enough to stand on its own. We discuss some of the
relevant motivation and include a number of open questions which are
often suggested naturally by the results.

Acknowledgement. The author has benefited from the work of
Alexander Postnikov and Richard Stanley [44, Chapter 1][45, 59], some
of which was carried out in parallel with his own thesis work [3][4,
Part II], as well as from various discussions with Anders Björner, Vic-
tor Reiner, Gian-Carlo Rota, Bruce Sagan, Hiroaki Terao and Günter
Ziegler. He is indebted to Victor Reiner and Richard Stanley for their
valuable comments.

§2. Background

The characteristic polynomial. Let K be a field. A hyperplane
arrangement A in Kℓ is a finite collection of affine hyperplanes in Kℓ, i.e.
affine subspaces of K

ℓ of codimension one. We will mostly be interested
in arrangements over the reals, so that K = R. We call A central if
all hyperplanes in A are linear. The characteristic polynomial of A is
defined as

χ(A, q) =
∑

x∈LA

µ(0̂, x) qdim x,(1)

where LA = {∩F : F ⊆ A} (partially ordered by reverse inclusion) is

the intersection poset of A, 0̂ = Kℓ is the unique minimal element of
LA (which corresponds to F being empty) and µ stands for its Möbius
function [60, §3.7].

The characteristic polynomial χ(A, q) is a fundamental combinato-
rial and topological invariant of A and plays a significant role throughout
the theory of hyperplane arrangements [42]. If K = R then χ(A, q) gives
valuable enumerative information about the cell decomposition of the
space Rℓ, induced by A [17, §2.1]. The cells in this decomposition are
the faces of A. The faces of dimension ℓ are simply the connected com-
ponents of the space obtained from Rℓ by removing the hyperplanes of
A and are called the regions or chambers of A.

2.1. Theorem (Zaslavsky [69]). The number of regions into which
A dissects Rℓ is equal to (−1)ℓχ(A,−1).
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In particular, for any k, the number of faces of A of dimension k
depends only on LA and ℓ.

On the other hand, if K = C then χ(A, q) gives topological informa-
tion about the complement MA = Cℓ −

⋃
H∈A H. The following result

was proved by Orlik and Solomon in the context of their fundamental
work [41] on the cohomology algebra H∗(MA, Z) of MA.

2.2. Theorem (Orlik–Solomon [41]). If A is a central arrangement
in C

ℓ then
∑

i≥0

rank Hi(MA, Z) qi = (−q)ℓχ(A,−1/q).

For the cohomological significance of χ(A, q) when A is a subspace
arrangement we refer to Björner [15, §7] and Björner and Ekedahl [16].
The following corollary of Theorem 2.2 continues to hold when A is a
subspace arrangement, see [15, §8.3].

2.3. Corollary. If A is an arrangement in Rℓ then

∑

i≥0

rank Hi(MA, Z) =
∑

i≥0

rank Hi(MAC , Z),

where MA is the complement of A in Rℓ and MAC is the complement of
its complexification AC in Cℓ.

Freeness. Let A be central and S := K[x1, x2, . . . , xℓ] be the poly-
nomial ring over K in ℓ variables. Let Q be the product of the linear
forms in S defining the hyperplanes of A, so that Q is unique up to
multiplication by an element of K∗, and let Q S be the principal ideal
in S generated by Q. The module of derivations D(A) of A is the set
of all derivations θ : S → S such that θ(Q) ∈ Q S. D(A) is actually a
module over S. The arrangement A is called free [63] if D(A) is a free
S-module. One can associate to A a multiset of ℓ nonnegative integers,
called the exponents of A. They are the degrees of the elements in any
basis of the free S-module D(A).

2.4. Theorem (Terao [65][41, Theorem 4.137]). If A is free with
exponents e1, e2, . . . , eℓ then

χ(A, q) =
ℓ∏

i=1

(q − ei).
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Theorem 2.4 is one of a number of results which explain factorization
phenomena for χ(A, q). Other approaches include supersolvability [58]
and its generalizations [14, 19], inductive freeness [63], recursive freeness
[75], factorization of rooted complexes [18], factorization [26, 67] and in-
ductive factorization [34]. For background we refer to these sources, [42,
Chapter 4] and the survey article [50]. A purely algebraic–combinatorial
proof of Theorem 2.4 was given in Solomon and Terao [56]; see also [42,
Chapter 4].

Coxeter arrangements. Let Φ be an irreducible root system in
Rℓ [33, §1.2], equipped with the standard inner product. We rely on [33]
for basic background and terminology on root systems. The Coxeter
arrangement AΦ corresponding to Φ is the arrangement of the linear
hyperplanes

(α, x) = 0

orthogonal to the roots α ∈ Φ, i.e. the reflecting hyperplanes of the
associated finite Coxeter group W . See [42, Chapter 6] and [17, §2.3]
for expositions of Coxeter arrangements from algebraic-topological and
geometric-combinatorial points of view, respectively. The following re-
sult will be of interest here.

2.5. Theorem (Arnol’d [1, 2], Saito [51, 52]). The Coxeter ar-
rangement AΦ is free with exponents the exponents of the root system
Φ.

In fact, explicit bases for the modules of derivations were constructed
in terms of the basic invariants [33, §3.5] of the algebra of W -invariant
polynomials by Saito [51] and Terao [64]. The analogue of Theorem
2.5 for complex reflection groups and a generalization to all reflection
arrangements appear in Terao [64, 66].

2.6. Corollary. If e1, e2, . . . , eℓ are the exponents of Φ then

χ(AΦ, q) =
ℓ∏

i=1

(q − ei).

§3. Deformations of Coxeter arrangements

We now assume that Φ is crystallographic [33, §2.9], so that W is
a Weyl group. We let Φ+ be a choice of positive roots. When we give
equations for the hyperplanes of deformations of AΦ we will choose Φ and
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Φ+ as in [33, §2.10] and denote the dimension of the ambient space by
n. The braid arrangement An, for instance, consists of the hyperplanes
in Rn of the form xi − xj = 0. In this notation we prefer to consider
An as an arrangement in Rn (so that its characteristic polynomial has
q as a factor), even though it corresponds to the Coxeter arrangement
AΦ for Φ = An−1, which is an arrangement in Rn−1 (so that ℓ = n− 1).
We extend this convention to deformations of An as well.

We begin with three motivating classes of examples to which we will
come back in the next section.

Fig 1. The Catalan arrangement for A2.

The Catalan arrangement. The Catalan arrangement CatΦ con-
sists of the hyperplanes

(α, x) = −1,
(α, x) = 0,
(α, x) = 1,

α ∈ Φ+

in Rℓ. It is invariant under the action of the Weyl group W and is shown
in Figure 1 for Φ = A2. For Φ = An−1 the hyperplanes are

xi − xj = −1, 0, 1 for 1 ≤ i < j ≤ n.

We denote this arrangement in Rn by Catn. The terminology “Catalan
arrangement” comes from the fact that the number of regions of Catn,
divided by n!, is equal to the nth Catalan number. It was observed by
Stanley [59, §2] that the regions of Catn within the fundamental Weyl
chamber of An are in bijection with unit interval orders with n elements,
i.e. partial orders which come from unit intervals I1, I2, . . . , In on the
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real line by letting Ii < Ij if Ii lies entirely to the left of Ij . To see this,
it suffices to let the ith interval be [xi, xi+1], where x1 < x2 < · · · < xn,
and observe that the partial order defined by these n intervals depends
only on the region of Catn in which the point (x1, x2, . . . , xn) lies. For
a treatment of the theory of interval orders see [27].

In another direction, it was observed by Postnikov (see Remark 2 in
[47, §6] and [7]) that the regions of CatΦ within the fundamental Weyl
chamber of AΦ are in bijection with nonnesting partitions on Φ, i.e.
antichains in the root order of Φ, defined on Φ+ by α ≤ β if β − α is a
linear combination of positive roots with nonnegative coefficients. The
following theorem is a special case of Theorem 4.6 for the classical root
systems and has also been verified for Φ = G2, F4 and E6 (see [24, §3]).

3.1. Theorem ([3, 4]). Let Φ be of type A, B, C or D. We have
χ(CatΦ, q) = χ(AΦ, q − h), where h is the Coxeter number of Φ. In
particular, the number of regions of CatΦ is equal to

ℓ∏

i=1

(ei + h + 1)

and the number of nonnesting partitions on Φ is equal to

ℓ∏

i=1

ei + h + 1

ei + 1
,

where e1, e2, . . . , eℓ are the exponents of Φ.

The Shi arrangement. The Shi arrangement SΦ consists of the
hyperplanes

(α, x) = 0,
(α, x) = 1,

α ∈ Φ+

in Rℓ. This is shown in Figure 2 for Φ = A2. For Φ = An−1 the
hyperplanes are

xi − xj = 0 for 1 ≤ i < j ≤ n,
xi − xj = 1 for 1 ≤ i < j ≤ n.

We denote this arrangement in R
n by Sn. The arrangement SΦ was first

considered by Shi in his investigation of the affine Weyl group Ãn−1 of
type An−1 [53, §7]. The regions of Sn correspond to certain equivalence

classes of elements of Ãn−1, called “admissible sign types”, which were
shown by Shi to play a significant role in the Kazhdan–Lusztig theory
of cells [36] for this group.
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Fig 2. The Shi arrangement for A2.

Since Shi’s work, the arrangement SΦ has continued to appear as
related to affine Weyl groups in Headley [30, 31, 32], invariant theory
of finite Coxeter groups in Solomon and Terao [57], and representations
of affine Hecke algebras in Ram [46], as an object of independent in-
terest in enumerative combinatorics in the type A case [5, 10, 59, 61],
and as a particularly nice example where techniques from the theory of
hyperplane arrangements apply [3, 4, 6, 32, 44, 45]. Much of the in-
terest initially attracted by the Shi arrangement is due to the following
surprising result.

3.2. Theorem (Shi [54], [53, Corollary 7.3.10] for Φ = An−1). The
number of regions of SΦ is (h + 1)ℓ, where h is the Coxeter number of
Φ. In particular, the number of regions of Sn is (n + 1)n−1.

Shi gave a constructive proof of this fact for Sn [53] by considering
the elements of the affine Weyl group of type An−1 which correspond
to the regions and a uniform but lengthy proof in the general case [54]
using his notion of “sign type” for affine Weyl groups. More direct
combinatorial proofs in the type A case can be found in Headley [31],
Stanley [59] and Athanasiadis and Linusson [10, §2]. The proof in [59]
yields an interesting refinement of the enumeration of the regions by a
certain distance statistic; see Theorem 6.13.

The following stronger result, via Theorem 2.1, on the characteristic
polynomial of SΦ was proved by Headley, whose argument relied on
Theorem 3.2 and induction.
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3.3. Theorem (Headley [30, 31, 32]). We have χ(SΦ, q) = (q−h)ℓ,
where h is the Coxeter number of Φ. In particular, we have χ(Sn, q) =
q(q − n)n−1.

Fig 3. The Linial arrangements for A2 and B2.

The Linial arrangement. In the rest of the paper we allow Φ to
be the non-reduced system BCn, which is the union of Bn and Cn in
the standard choice of [33, §2.10].

The Linial arrangement LΦ consists of the hyperplanes

(α, x) = 1, α ∈ Φ+

in Rℓ. It is shown in Figure 3 for Φ = A2 and B2. For Φ = An−1 the
hyperplanes are

xi − xj = 1 for 1 ≤ i < j ≤ n.

We denote this arrangement in Rn by Ln. Interest in the arrangement
Ln came from a surprising conjecture of Linial, Ravid and Stanley (see
[59, §4]) stating that the number of regions of Ln is equal to the number
fn of alternating trees on n + 1 vertices, i.e. trees on the vertex set
{1, 2, . . . , n + 1} such that no i < j < k are consecutive vertices of a
path in the tree, in the order i, j, k. Alternating trees first appeared in
[28]. The explicit formula

fn =
1

2n

n∑

k=0

(
n

k

)
(k + 1)n−1(2)

was found by Postnikov [43, Theorem 1], who later proved the conjecture
about Ln as follows.
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3.4. Theorem (Postnikov [44, Theorem 1.4.5][45, Theorem 8.1]).
The number of regions of the Linial arrangement Ln is equal to fn.

There is no bijective proof of the Linial–Ravid–Stanley conjecture at
present. Postnikov’s theorem naturally suggests the problem of finding
directly an explicit formula for the characteristic polynomial of Ln. Such
a formula was first given in [3, 4]; see also [44, §1.5][45, §9] and [59,
Corollary 4.2]. The proof in [3, 4] was simplified in [9, §3]; see also
Section 4.

3.5. Theorem ([3, Theorem 4.2][4, Theorem 6.4.2]). The Linial
arrangement Ln has characteristic polynomial

χ(Ln, q) =
q

2n

n∑

k=0

(
n

k

)
(q − k)n−1.

This expression implies Theorem 3.4, via Theorem 2.1. For results
on the asymptotic behaviour of χ(Ln, q) for large n, see Postnikov [44,
§1.6.3]. The analogous problem to compute χ(LΦ, q) in general is also
suggested by a conjecture of Postnikov and Stanley [45, §9] which, in a
special case, states that all roots of χ(LΦ, q) have the same real part;
see Conjecture 3.6.

The affine Weyl arrangement. As is apparent from the previous
examples, interesting deformations of AΦ often occur as subarrange-

ments of the affine Weyl arrangement ÃΦ

(α, x) = k, α ∈ Φ+, k ∈ Z,

the arrangement of reflecting hyperplanes of the affine Coxeter group W̃ .

For integers a ≤ b we denote by A
[a,b]
Φ the subarrangement of hyperplanes

(α, x) = k, α ∈ Φ+, k = a, a + 1, . . . , b.

These include AΦ, CatΦ, SΦ and LΦ and, more generally, the extended

Catalan arrangements A
[−a,a]
Φ

(α, x) = −a,−a + 1, . . . , a, α ∈ Φ+,

the extended Shi arrangements A
[−a+1,a]
Φ

(α, x) = −a + 1,−a + 2, . . . , a, α ∈ Φ+

and the extended Linial arrangements A
[1,b]
Φ

(α, x) = 1, 2, . . ., b, α ∈ Φ+.
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These extended analogues have similar properties with those of CatΦ,
SΦ and LΦ, respectively; see Section 4. The connection between interval
orders and deformations of An, for instance, was extended in [59, §2] by
considering labeled marked intervals with arbitrary prescribed lengths.
As an example, suppose that the ith interval Ii = [xi, xi + λi − 1] has
integral length λi − 1 and is marked at all its points xi + k which are an
integral distance k from the endpoint xi. The number of inequivalent
orders for placing these marked intervals on a line such that no two
marks coincide is equal to the number of regions of the deformation of
An with hyperplanes

xi − xj = −λi + 1, . . . ,−1, 0, 1, . . . , λj − 1 for 1 ≤ i < j ≤ n,(3)

since comparing the marks xi + k and xj + l amounts to choosing
one of the halfspaces determined by the hyperplane xi + k = xj + l.
These placements correspond to nonnesting set partitions [7] whose
blocks are labeled and have sizes λ1, λ2, . . . , λn (a set partition π of
[m] := {1, 2, . . . , m} is nonnesting if whenever a < b < c < d and a, d
are consecutive elements of a block B of π, then b, c are not both con-
tained in a block B′ of π). They have also appeared in a geometric
context related to monotone paths on polytopes [8]. The characteristic
polynomials of the arrangements (3), which include the extended Cata-
lan arrangements of type A, and those of root system analogues of (3)
have turned out to be useful for the enumeration of nonnesting partitions
by block size; see Proposition 4.7 and [7].

The family of arrangements in the following conjecture includes the
extended Shi and Linial arrangements.

3.6. Conjecture (Postnikov–Stanley [45, §9]). If a, b are non-
negative integers, not both zero, satisfying a ≤ b then all roots of the

polynomial χ(A
[−a+1,b]
Φ , q) have the same real part.

For a semi-generic deformation of An, see [59, §3][45, §6]. Other
deformations of Coxeter arrangements appear in [59, §2], [4, Chapters
6–7].

§4. The characteristic polynomial

The examples in the previous section make it clear that tools to
compute the characteristic polynomial explicitly are desirable. Such
tools have traditionally included the following.
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Definition: the defining equation (1) [32] or the equivalent expres-
sion, given in [42, Lemma 2.55],

χ(A, q) =
∑

F⊆A

(−1)#F qdimF ,(4)

where the sum is over all subarrangements F of A and dimF is the
dimension of the intersection of the hyperplanes in F ; see, e.g., [44, 45].

Deletion-Restriction: this powerful technique in the theory of
arrangements yields the formula ([42, Theorem 2.56])

χ(A, q) = χ(A′, q) − χ(A′′, q),

where A′ and A′′ are obtained from A by deleting or restricting on a
hyperplane H ∈ A [42, p. 14]; see, e.g., [23, 24, 6].

Chromatic Polynomials: the “signed chromatic polynomial” in-
terpretation of Zaslavsky [70] (if A consists of some of the reflecting
hyperplanes of Coxeter type B) and its generalization to “gain graph
coloring” [73, §4]; see, e.g., [70, 71, 20], [42, §2.4] and [29, 73, 74], re-
spectively.

Factorizations: the theory of supersolvable [58], inductively free
[63] or, more generally, free arrangements [63] [42, Chapter 4], when
χ(A, q) factors; see, e.g., [42, §4.3] and [23, 24, 6, 12, 35].

For a discussion from a matroid theoretic point of view we refer to
Kung [38, §5]; see also Zaslavsky [72]. Here we mention that Crapo’s
identity [21] [38, p. 49], which, in the language of arrangements, ex-
presses the characteristic polynomial of a subarrangement of A in terms
of those of its restrictions, has been of use in this context; see, e.g., [39].

Useful tools have resulted recently by interpreting the right hand
sides of (1) or (4) using Möbius inversion or inclusion-exclusion, respec-
tively. This is easily done when A is defined over a finite field Fq , since
then qdim x is the cardinality of x. The following theorem appeared, in
a dual formulation, as early as 1970 in the work of Crapo and Rota [22,
§16] (see the discussion in [3, §1]) and was stated in the language of ar-
rangements by Terao [66, Proposition 4.10]; see also [42, Theorem 2.69].
The proof is an easy application of Möbius inversion [49] [60, §3.7]. We
denote by VA the union of the hyperplanes of A.

4.1. Theorem (Crapo–Rota [22], Terao [66]). If A is an arrange-
ment in Fn

q then the cardinality of Fn
q − VA is equal to the value χ(A, q)

of the characteristic polynomial of A at q.
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Let A be an arrangement in Kn where K has characteristic zero, say
K = R for simplicity, and let Zq denote the abelian group of integers
modulo q. We call A a Z-arrangement if its hyperplanes are given by
equations with integer coefficients. Such equations define subsets of the
finite set Zn

q if we reduce their coefficients modulo q. We still denote by
VA the union of these subsets, supressing q in the notation. If q avoids
a finite set of prime factors, which depends on A, then the intersection
poset of the reduced arrangement in Zn

q is isomorphic to that of A and
Theorem 4.1 gives a combinatorial interpretation to the value χ(A, q).
This idea was first used for the purpose of computing the characteristic
polynomial in [3][4, Part II] and allows for a variety of techniques from
enumerative combinatorics to be employed.

The next theorem, stated as in [9, Theorem 2.1], generalizes easily
to subspace arrangements [3, Theorem 2.2][4, Theorem 5.2.1] [16]. It
was given independently by Björner and Ekedahl in their recent work
[16] on the cohomology of subspace arrangements over finite fields; see
Proposition 3.2 and Lemma 5.1 in [16].

4.2. Theorem (Athanasiadis [3, 4, 9], Björner–Ekedahl [16]). Let
A be a Z-arrangement in Rn. There exist positive integers m, k which
depend only on A, such that for all q relatively prime to m with q > k,

χ(A, q) = #
(
Z

n
q − VA

)
.

For subarrangements of the Coxeter arrangement of type B, Theo-
rem 4.2 specializes to Zaslavsky’s chromatic polynomial interpretation
[70] or its generalization to subspace arrangements by Blass and Sagan
[20, Theorem 2.1]. For a different generalization of Theorem 4.1 in the
context of the Tutte polynomial see Reiner [48]. Finally, an interesting
point of view and interpretation to (1) and (4) in terms of valuations
appears in Ehrenborg and Readdy [25], who give several applications to
classes of complex arrangements.

Theorem 4.2 has been quite useful for classes of deformations of
Coxeter arrangements [3, 4, 7, 8, 9] [68, §4]. In the remainder of this
section we give applications related to the examples in Section 3. For
an illustration, we give a proof of Theorem 3.3 in the case Φ = An−1,
taken from [3, 4].

Proof of Theorem 3.3 for Φ = An−1. Theorem 4.2 implies that, for large
primes q, χ(Sn, q) counts the number of n-tuples x = (x1, x2, . . . , xn) ∈
Fn

q which satisfy

xi − xj 6= 0, 1
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in Fq for all 1 ≤ i < j ≤ n. Since x satisfies these conditions if and only if
x+m := (x1+m, . . . , xn+m) does so, this number is the number of such
x with xn = 0, multiplied by q. These n-tuples x are in bijection with
linear orderings of the integers 1, 2, . . . , n and q − n indistinguishable
objects such that n is first in the ordering and no two integers i < j
occur consecutively in the order j, i. Indeed, let i be in position k + 1 if
xi = k mod q, to get such an ordering.

To construct these orderings, one can place the q−n objects along a
line, place n first from the left and then insert 1, . . . , n− 1 in (q−n)n−1

ways, so that between any two consecutive objects or to the right of the
rightmost one, the integers are ordered in increasing order. This shows
that χ(Sn, q) = q(q − n)n−1 for infinitely many values of q and proves
the result. 2

The next few results can be proved by variations of the argument in
the previous proof. The proofs of Theorems 4.3 and 4.6 are case by case.
The next result was also obtained by Postnikov and Stanley [44, p. 39]
[45, §9.2] for Φ = An−1 (see also [9, Proposition 5.3]) and generalizes
Theorem 3.3 for the classical root systems.

4.3. Theorem ([4, §7.1–7.2]). Let Φ be of type A, B, C, D or BC.

For the extended Shi arrangement A = A
[−a+1,a]
Φ we have

χ(A, q) = (q − ah)ℓ,

where for Φ = BCn the Coxeter number is defined as h = 2n + 1. In

particular, the number of regions of A
[−a+1,a]
Φ is (ah + 1)ℓ.

An application in the spirit of [23, 35] comes from considering ar-
rangements between the braid and Catalan arrangement An and Catn.
For G ⊆ En := {(i, j) ∈ [n] × [n] : i 6= j}, let An,G be the arrangement
of hyperplanes

xi − xj = 0 for 1 ≤ i < j ≤ n,
xi − xj = 1 for (j, i) ∈ G.

(5)

Note that if G is empty, G = {(j, i) ∈ En : i < j}, or G = En, then
An,G specializes to An, Sn, or Catn, respectively, to which the next
proposition applies. For a generalization and analogous results for other
root systems see [4, Theorem 6.2.10 and §6.3][3, §3].

4.4. Proposition ([3, Theorem 3.9][4, Theorem 6.2.7]). Suppose
that the set G ⊆ En has the following properties:

(i) If i, j < k, i 6= j and (i, j) ∈ G, then (i, k) ∈ G or (k, j) ∈ G.
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(ii) If i, j < k, i 6= j and (i, k) ∈ G, (k, j) ∈ G, then (i, j) ∈ G.

Then

χ(An,G, q) = q
∏

1<j≤n

(q − cj),

where cj = n + aj − j + 1 and aj is the number of (j, i) or (i, j) in G
with i < j.

The conditions in Proposition 4.4 become simpler if An,G contains
hyperplanes of the form xi − xj = 1 only for i < j, i.e. if it lies between
An and Sn. We state this special case for later reference.

4.5. Corollary ([3, Theorem 3.4][4, Theorem 6.2.2]). Suppose that
the set G ⊆ {(j, i) ∈ En : i < j} has the following property: if 1 ≤ i <
j < k ≤ n and (j, i) ∈ G then (k, i) ∈ G. Then

χ(An,G, q) = q
∏

1<j≤n

(q − cj),

where cj = n − #{i < j : (j, i) /∈ G}.

Recall from Theorem 2.6 that the characteristic polynomial of AΦ

factors with roots the exponents of Φ. The following result was also
obtained in [44, Proposition 1.5.8][45, Theorem 9.8] for Φ = An−1; see
also [3, Theorem 5.5] and [9, Proposition 5.3].

4.6. Theorem ([4, Corollary 7.2.3 and Theorem 7.2.6]). Let Φ be
of type A, B, C, D or BC. For the extended Catalan arrangement A =

A
[−a,a]
Φ we have

χ(A, q) = χ(AΦ, q − ah),

if Φ has type A, B, C or D and

χ(A, q) =

{
χ(AΦ, q − (2n + 1)a), if a is even,

χ(AΦ, q − (2n + 1)a − 1), if a is odd,

if Φ has type BC.

The arrangement (3) reduces to the extended Catalan arrangement
of type A for λ1 = λ2 = · · · = λn = a + 1. Its characteristic polynomial
can be computed by an easy application of Theorem 4.2.
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4.7. Proposition ([8, §4]). If A is the arrangement (3) and m is
the sum of the positive integers λi for 1 ≤ i ≤ n, then

χ(A, q) = q
m−1∏

j=m−n+1

(q − j).

In particular, the number of nonnesting partitions of [m] with block sizes
λ1, λ2, . . . , λn is equal to

m!

rλ (m − n + 1)!
,

where rλ = r1!r2! · · · and rj is the number of indices i with λi = j.

Root system analogues of Proposition 4.7 for Φ = Bn and Cn appear
in [7].

The expression for χ(Ln, q) in Theorem 3.5 was obtained in [3, 4]
by a similar but less straightforward argument, based on Theorem 4.2.
It generalizes easily to the extended Linial arrangements. Let S be the
shift operator, acting on polynomials in y by

Sf(y) := f(y − 1).

We state the next result in the elegant form given in [44, 45]. For a
relatively short proof based on Theorem 4.2 see [9, §3].

4.8. Theorem ([3, §4][4, §6.4] [45, Theorem 9.7]). For Φ = An−1

and a ≥ 1, the extended Linial arrangement has characteristic polyno-
mial

χ(A
[1,a]
Φ , q) =

1

(a + 1)n
(1 + S + S2 + · · ·+ Sa)n qn−1.

Theorem 4.8 implies the fact that all roots of χ(A
[1,a]
Φ , q) have the

same real part. Indeed, if the polynomial f has this property then so
does (S+ζ)f , if ζ ∈ C satisfies |ζ| = 1; see [44, Lemma 1.5.12][45, Lemma
9.12] for an elegant, short proof. Using this reasoning, Postnikov and
Stanley settled their Conjecture 3.6 in the type A case.

4.9. Theorem ([44, Theorem 1.5.11] [45, Theorem 9.11]). Con-
jecture 3.6 is true for Φ = An−1.

Explicit formulae for the characteristic polynomials of the arrange-
ments in Conjecture 3.6 were obtained in [9, §4–5] for the other classical
root systems. The proofs follow the ones for the type A case in [9, §3]
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but are more involved. We give the formulae for the extended Linial
arrangements.

4.10. Theorem ([9, §4]). For the extended Linial arrangement

A = A
[1,a]
Φ and for a even or odd, respectively, χ(A, q) is equal to

{
1

(a+1)n+1 (1 + S2 + S4 + · · ·+ S2a)n−1 (1 + S + S2 + · · ·+ Sa) qn,
4S

(a+1)n+1 (1 + S2 + S4 + · · ·+ S2a)n−1 (1 + S2 + S4 + · · ·+ Sa−1) qn

if Φ = Bn or Cn,
{

1
(a+1)n+1 (1 + S2 + S4 + · · ·+ S2a)n−2 (1 + S + S2 + · · ·+ Sa)4 qn,

8S
(a+1)n+1 (1 + S2) (1 + S2 + · · ·+ S2a)n−1 (1 + S2 + · · ·+ Sa−1)4 qn

if Φ = Dn and
{

1
(a+1)n+1 (1 + S2 + S4 + · · ·+ S2a)n (1 + S + S2 + · · ·+ Sa) qn,

2S
(a+1)n+1 (1 + S2 + S4 + · · ·+ S2a)n (1 + S2 + S4 + · · ·+ Sa−1) qn

if Φ = BCn.

The next result follows as in the type A case; see [9].

4.11. Theorem ([9, Theorem 1.2]). Conjecture 3.6 is true for all
root systems of type A, B, C, D or BC.

§5. Freeness

Recall from Theorem 2.4 that the characteristic polynomial of a free
arrangement factors completely over the nonnegative integers and from
Theorem 2.5 that the Coxeter arrangement AΦ is free with exponents
the exponents e1, e2, . . . , eℓ of Φ. In view of the numerous instances in
Sections 3 and 4 in which χ(A, q) factors, it is natural to ask whether
various deformations of AΦ are free, when homogenized to central ar-
rangements by the cone operation [42, Definition 1.15].

Freeness of the cones of the extended Catalan and Shi arrangements
was conjectured in [24] and remains unsettled, except for the type A
case [24, §3] [6, §3]. We continue to denote by h the Coxeter number of
Φ.

5.1. Conjecture (Edelman–Reiner [24, Conjecture 3.3]). The cone

of the extended Catalan arrangement A
[−a,a]
Φ is free with exponents 1, e1+

ah, e2 + ah, . . . , eℓ + ah.
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5.2. Conjecture (Edelman–Reiner [24, Conjecture 3.3]). The cone

of the extended Shi arrangement A
[−a+1,a]
Φ is free with exponents 1 with

multiplicity one, and ah with multiplicity ℓ.

Edelman and Reiner have stated these conjectures for an irreducible
crystallographic root system Φ. In view of Theorems 4.3 and 4.6, it is
natural to include the non-reduced system BCn. The conjectures are
not true in general in the non-crystallographic case; see the comments
after Conjecture 3.3 in [24].

Except for Theorems 4.3 and 4.6, evidence in support of the con-
jectures is provided by the fact that they have been verified in the case
of type A; see the proof of [24, Theorem 3.2] and [6, Corollary 3.4], re-
spectively. Moreover, in the case of Conjecture 5.2, additional evidence
is provided by work of Solomon and Terao [57] on the double Coxeter
arrangement, which we will briefly describe.

Suppose A is central in Kℓ and that αH is the linear form which
defines H ∈ A, so that H = ker(αH). Let S = K[x1, x2, . . . , xℓ] be the
polynomial ring, as in Section 2, and DerS be its module of derivations.
In his theory of free multiarrangements [76], Ziegler has defined the S-
module

E(A) = {θ ∈ DerS : θ(αH) ∈ S α2
H for H ∈ A},

which is a submodule of D(A). Note that the restriction of the cone of SΦ

to the hyperplane at infinity x0 = 0 is the double Coxeter arrangement,
i.e. AΦ with each hyperplane having multiplicity two. Thus by Ziegler’s
[76, Theorem 11], the a = 1 case of Conjecture 5.2 implies that the
double Coxeter arrangement is free, in the sense of the following theorem.

5.3. Theorem (Solomon–Terao [57]). Let Φ be any irreducible root
system. The module E(AΦ) is free with all degrees of the elements in a
basis equal to the Coxeter number h.

Moreover, Solomon and Terao [57, Theorem 1.4] construct an ex-
plicit basis of E(AΦ) in terms of the invariant theory of the Coxeter
group W . This raises naturally the following question.

5.4. Question. Is there a basis of the module of derivations of
the cone of SΦ which can be described explicitly in terms of the invariant
theory of the Weyl group W?

Beginning with work of Stanley [58] on subarrangements of the braid
arrangement An, called graphical arrangements, classes of subarrange-
ments of Coxeter arrangements have been studied [35] and characterized
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[23, 13] from the point of view of freeness; see also [24], [11, §7][12]. It
was shown by Stanley [58] that the supersolvable – or free – graphical
arrangements correspond to chordal graphs and by Edelman and Reiner
[23] that the free arrangements between An and the Coxeter arrange-
ment of type Bn correspond to threshold graphs. For interesting classes
of free or non-free subarrangements, in particular for non-free graphical
arrangements whose characteristic polynomials factor completely over
the integers, see Kung [38].

Various deformations of An were studied in this sense in [6]. We
mention a complete characterization for the family of arrangements
An,G, defined in (5), which lie between An and Sn. The class of ar-
rangements in this family with free cones turns out to be, essentially,
the class which appears in Corollary 4.5. The condition in Corollary
4.5 has also appeared in the characterization of freeness in a different
family; see Bailey [11, Theorem 7.3][12].

5.5. Theorem ([6, Theorem 4.1]). Let G ⊆ En := {(j, i) ∈ [n] ×
[n] : i < j}. The following are equivalent:

(i) An,G is inductively free.
(ii) The cone of An,G is free.
(iii) There is a permutation w = w1w2 · · ·wn of [n] such that

w−1 · G = {(j, i) : (wj , wi) ∈ G}

is contained in En and satisfies the condition in Corollary 4.5.

A similar characterization for the family of arrangements between
Sn and Catn is given in [6, Theorem 4.3]. Specifically, if En ⊆ G ⊆ En

and G = {(j, i) : (i, j) ∈ En − G} ⊆ En, then An,G has free cone if
and only if so does An,G. In contrast with the situation in [23], most

of the free arrangements of Theorem 5.5 are not supersolvable; see [6,
Theorem 4.2]. For characterizations of supersolvability for deformations
of An, see Zaslavsky [74, §3].

§6. Remarks and open questions

In this section we include a number of questions other than Con-
jecture 3.6 (which is still open for the exceptional root systems), Con-
jectures 5.1 and 5.2 and Question 5.4. Our main objective is to point
out that from many perspectives, the classes of deformations of Coxeter
arrangements we have discussed are still not well understood.

All known proofs of Theorem 3.3 proceed with a case by case veri-
fication. A positive answer to Question 5.4 would give a uniform proof,
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via Terao’s factorization theorem. The fact that Theorem 3.3 is stated
in an elementary, uniform way suggests the following question.

6.1. Question. Is there an elementary, case-free proof of Theorem
3.3?

Similar questions can be asked about Theorems 4.3 and 4.6 and the
curious property of χ(A, q) in Conjecture 3.6, which Postnikov and Stan-
ley refer to as the “Riemann hypothesis” for A [44, 45]. In particular,
it is natural to ask whether Theorems 4.3, 4.6 and 4.11 extend to the
exceptional root systems.

6.2. Question. Are there case-free proofs of Theorems 4.3 and
4.6? In particular, are these theorems valid for the exceptional crystal-
lographic root systems?

6.3. Question. Is there a case-free, conceptual proof of Conjecture
3.6?

It would also be desirable to find simpler derivations of the formulae
in Theorem 4.10 than those of [9], which may not give the best insight
possible, especially in the case of the root system Dn. In particular, there
is no conceptual explanation to the fact that these formulae coincide for
the root systems Bn and Cn.

The Riemann hypothesis for A does not apply exclusively to the
arrangements of Conjecture 3.6, as the following example shows.

6.4. Example ([9, Proposition 6.1]). The arrangement with hy-
perplanes

2xi = 0, 1, 2, . . ., 2a for 1 ≤ i ≤ n,
xi − xj = 0, 1, . . . , a for 1 ≤ i < j ≤ n,
xi + xj = 0, 1, . . . , a for 1 ≤ i < j ≤ n

has characteristic polynomial

1

an+1
S2n+1 (1 + S2 + S4 + · · ·+ S2a−2)n+1 qn

and hence satisfies Conjecture 3.6.

By analogy with the numerous theories built to explain the phenom-
enon of complete factorization of χ(A, q) over the integers (see Section
2), we ask the following.

6.5. Question. Is there a natural algebraic condition on A which
implies the Riemann hypothesis of Conjecture 3.6 for χ(A, q)?
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In various characterizations of freeness, such as those in [23, 24, 6,
11], the families of arrangements under consideration are indexed by
undirected graphs on n vertices. Classes of arrangements which corre-
spond to pairs of graphs seem to be more challenging to analyze from
the point of view of freeness. It is not known, for instance, which the free
subarrangements of the Coxeter arrangement of type Bn are; see [23].
Proposition 4.4 suggests an explicit characterization of the arrangements
between An and Catn with free cones.

6.6. Conjecture. For G ⊆ En, the cone of An,G is free if and
only if G satisfies the two conditions in Proposition 4.4.

Motivated by the fact that Coxeter arrangements are K(π, 1) [42,
Chapter 6] we ask the following about the topology of the complexifica-
tions of SΦ and CatΦ.

6.7. Question. Is the Shi arrangement SΦ a K(π, 1) arrange-
ment? Is the Catalan arrangement CatΦ a K(π, 1) arrangement?

Finally, we collect some questions and facts about the combinatorics
of the face structure of the arrangements in Section 3.

Direct bijective proofs of Theorem 3.2 for the type A case can be
found in [61, §2] [10, §2]; see also [31] and Remark 1 in [10, §4] for
a proof by deletion-restriction. The bijections in [61, 10] generalize to
the extended Shi arrangements. The one in [10] generalizes also to the
family of arrangements between An and Sn [10, Theorem 1.2].

6.8. Question. Are there simple bijective proofs of Theorem 3.2
for cases other than that of type A?

For the braid arrangement An, it is well known that faces of a fixed
dimension k correspond to ordered partitions of the set [n] with k blocks.
In the case of type A, Shi’s formula for the number of regions of Sn was
generalized to k-dimensional faces in [3, Theorem 6.5][4, Corollary 8.2.2]
as follows.

6.9. Theorem ([3, 4]). For 0 ≤ k ≤ n, the number of faces of Sn

of dimension k is given by

fk(Sn) =

(
n

k

) n−k∑

i=0

(−1)i

(
n − k

i

)
(n − i + 1)n−1.



20 C.A. Athanasiadis

Equivalently,

fk(Sn) =

(
n

k

)
# {f : [n − 1] → [n + 1] | [n − k] ⊆ Imf},(6)

where Imf is the image of the map f.

6.10. Question. Is there a simple bijective proof of Theorem
6.9? Can the poset of faces of Sn, partially ordered by inclusion of their
closures, be described in terms of the maps in (6)?

It is plausible that such a bijection will specialize to the one between
regions of Sn and parking functions given in [10, §2] for k = n. Theorem
6.9 generalizes to the extended Shi arrangements [4, Theorem 8.2.1].

The “coincidence” of the formulae for the number fn of regions of the
Linial arrangement Ln and alternating trees on n + 1 vertices suggests
the following question.

6.11. Question. Is there a bijective proof of Theorem 3.4?

We refer to [59, §4] for a number of combinatorial interpretations
and expressions for fn. In particular, Postnikov [43, §4][44, Theorem
1.4.3] has given a bijection between alternating trees on n + 1 vertices
and local binary search trees on n vertices. Here we remark that fn is
also equal to the number of n-tuples x = (x1, x2, . . . , xn) ∈ Zn

n+1 which
satisfy xi − xj 6= 1 in Zn+1 for 1 ≤ i < j ≤ n and x1 = 0 or, in
other words, to the number of ways to distribute 1, 2, . . . , n in n + 1
boxes arranged cyclically, with repetitions allowed, such that no j is
immediately followed clockwise by an i < j. This follows from the proof
of Theorem 3.5 in [3, 4, 9] by letting q = n + 1.

The regions of Catn, Sn and Ln are in bijection with certain classes
of posets that can be characterized in terms of forbidden induced sub-
posets, see [44, §1.3.1][45, §7], [5] and [44, §1.4.6][45, §8.2], respectively.
It would be interesting to find other instances of this phenomenon.

The enumeration of regions by the “distance statistic” has been of
interest in the context of deformations of Coxeter arrangements. The
distance ρR0

(R) of a region R of A from a fixed base region R0 is the
number of hyperplanes of A which separate R from R0. The following
result for Coxeter arrangements is classical.
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6.12. Theorem (Solomon [55]). For any irreducible root system
Φ we have

∑

R

qρR0
(R) =

ℓ∏

i=1

(1 + q + q2 + · · ·+ qei),

where R runs through all regions of AΦ, R0 is any fixed region and
e1, e2, . . . , eℓ are the exponents of Φ.

For the Shi arrangement Sn the distance enumerator, for a suitably
chosen base region R0, turns out to be the inversion enumerator for
trees [40]. Indeed, let R0 be the region defined by the inequalities x1 >
x2 > · · · > xn and x1 − xn < 1. An inversion of a tree T on the vertex
set {0, 1, . . . , n} is a pair (i, j) with 1 ≤ i < j ≤ n such that vertex j
lies on the path in T from 0 to i. The bijection described in [59, §5]
and one due to Kreweras [37] yield the following result. A proof and
generalization to the extended Shi arrangements is given in [61].

6.13. Theorem (Pak–Stanley [59, Theorem 5.1][61]). For each
m = 0, 1, . . . ,

(
n
2

)
, the number of regions R of Sn with distance m from R0

is equal to the number of trees on {0, 1, . . . , n} with
(
n
2

)
−m inversions.

It would be interesting to find a simpler and more direct proof of
this theorem. See the notes in [61, §3] for related open questions.

6.14. Question (Stanley [62]). Are there analogues of Theorem
6.13 for root systems other than those of type A? Is there an analogue
for the Linial arrangement Ln?

It was observed by Stanley [62] that the distance enumerator for the
Catalan arrangement Catn is

∑

R

qρR0
(R) = Cn(q)

n−1∏

i=1

(1 + q + q2 + · · ·+ qi),

where R0 is as in the case of Sn and

Cn(q) =
∑

λ

q|λ|,

with λ = (λ1, λ2, . . . ) running over all partitions with λi ≤ n − i.
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pp. 359–375.

[62] , Personal communication, 1996–98.
[63] H. Terao, Arrangement of hyperplanes and their freeness I, II, J. Fac.

Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 293–320.
[64] , Free arrangement of hyperplanes and unitary reflection groups,

Proc. Japan. Acad. Ser. A 56 (1980), 389–392.
[65] , Generalized exponents of a free arrangement of hyperplanes and

the Shepherd-Todd-Brieskorn formula, Invent. Math. 63 (1981), 159–
179.

[66] , The Jacobians and the discriminants of finite reflection groups,
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[72] , The Möbius function and the characteristic polynomial, Chapter

7 in Combinatorial Geometries (N. White, ed.), Cambridge University
Press, Cambridge, 1987, pp. 114–138.

[73] , Biased graphs. III. Chromatic and dichromatic invariants, J.
Combin. Theory Ser. B 64 (1995), 17–88.

[74] , Supersolvable frame-matroid and graphic-lift lattices, Manu-
script, 1996.

[75] G.M. Ziegler, Algebraic combinatorics of hyperplane arrangements,
Ph.D. thesis, MIT, 1987.

[76] , Multiarrangements of hyperplanes and their freeness, in Singu-
larities, Contemp. Math. 90, Amer. Math. Soc., Providence, RI, 1989,
pp. 345–359.

Christos A. Athanasiadis
Department of Mathematics
University of Pennsylvania
Philadelphia, PA 19104-6395

E-mail address : athana@math.upenn.edu


