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Abstract

The quantification of phase synchrony between neuronal signals is of crucial importance for the study of large-scale interactions
in the brain. Two methods have been used to date in neuroscience, based on two distinct approaches which permit a direct
estimation of the instantaneous phase of a signal [Phys. Rev. Lett. 81 (1998) 3291; Human Brain Mapping 8 (1999) 194]. The
phase is either estimated by using the analytic concept of Hilbert transform or, alternatively, by convolution with a complex
wavelet. In both methods the stability of the instantaneous phase over a window of time requires quantification by means of
various statistical dependence parameters (standard deviation, Shannon entropy or mutual information). The purpose of this
paper is to conduct a direct comparison between these two methods on three signal sets: (1) neural models; (2) intracranial signals
from epileptic patients; and (3) scalp EEG recordings. Levels of synchrony that can be considered as reliable are estimated by
using the technique of surrogate data. Our results demonstrate that the differences between the methods are minor, and we
conclude that they are fundamentally equivalent for the study of neuroelectrical signals. This offers a common language and
framework that can be used for future research in the area of synchronization. © 2001 Published by Elsevier Science B.V.
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1. Introduction

1.1. A brief background on neural synchrony

Synchronization on various levels of organization of
brain tissue, from individual pairs of neurons to much
larger scales, within one area of the brain or between
different parts of the brain, is one of the most active
topics in current neuroscience. In particular normal
cognitive operations require the transient integration of
numerous functional areas widely distributed over the
brain and in constant interaction with each other
(Damasio, 1990; Varela, 1995; Friston, 1997; Tononi
and Edelman, 1998; Varela et al., 2001). Neural syn-
chrony is an important candidate for such large-scale

integration, mediated by neuronal groups that oscillate
in specific bands and enter into precise phase-locking
over a limited period of time. This has, in turn, moti-
vated the search for robust methods for directly mea-
suring such phase-synchrony in this frequency band
from experimentally recorded biological signals.

The role of synchronization of neuronal discharges,
although not a new idea, has been greatly highlighted
by results from microelectrodes in animals (see, e.g.
Singer and Gray, 1995; Roelfsema et al., 1997; Neuron,
1999). These single-unit recording studies in animals
have been complemented by studies at coarser levels of
resolution in humans and animals (Freeman, 1978).
These are not spikes, but local field potentials (LFP) of
various degrees of spatial resolution, including scalp
recording in EEG or MEG. In fact, gamma and beta
band responses can be recorded during visual discrimi-
nation protocols on the human scalp (Tallon-Baudry et
al., 1997) and in subdural electrocorticograms (Le Van
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Quyen et al., 1997; Lachaux et al., 1999). Also, there is
some recent evidence to suggest that not only emission,
but also long-range synchronization comparable to
those found in single-unit studies in animals can also be
detected between surface recordings (Rodriguez et al.,
1999). Furthermore, several neurological diseases such
as epilepsy (Mormann et al., 2000) and Parkinson’s
disease (Tass et al., 1998) manifest as a pathological
form of the synchronization process.

It is the quantification of phase synchrony between
meso- or macro-electrodes (EEG/MEG, intracranial
recordings) that requires methods which are entirely
different that the cross-correlograms between spike dis-
charges that suffice for microelectrode studies. In this
context, it is very important to distinguish very clearly
between synchrony as a proper estimate of phase rela-
tion, and the classical measures of spectral covariance
or coherence that have been extensively used in neuro-
science (see, e.g. Bullock and McClune, 1989; Bressler
et al., 1993; Menon et al., 1996). As practiced, coher-
ence has two important limitations for our purposes
here:
1. First, the classical tools for measuring coherence

(Carter, 1987) based on Fourier analysis are highly
dependent on the stationarity of the measured sig-
nal, which is far from being the case in the brain.
The use of time–frequency estimation which does
not assume stationarity can go some ways in im-
proving this limitation towards estimating a stable,
instantaneous coherence as well as synchrony be-
tween two concurrent brain signals.

2. A second and very different limitation is that classi-
cal coherence is a measure of spectral covariance,
and thus does not separate the effects of amplitude
and phase in the interrelations between two signals.
Since we are interested in exploring the explicit
hypothesis that phase-locking synchrony is the rele-
vant biological mechanism of brain integration, co-
herence provides only an indirect measure. A direct
study of phase relations in the brain requires tools
where the phase component can be obtained sepa-
rately from the amplitude component for a given
frequency or frequency range, which can be quite
unstable or even chaotic. In brief, coherence pro-
vides only a rough indication concerning phase
synchrony.

Beyond neuroscience, there has been a general surge
of interest in understanding bivariate data by studying
their phase synchronization over time (Rosenblum et
al., 1999). Thus, although our discussion here is fo-
cussed on neuroscience data, its applications can be
generalized to other fields.

1.2. Two methods for the study of phase synchrony

Classical synchronization of two oscillators is the

adjustment of their rhythmicity, or more precisely, that
they manifest phase-locking. More precisely, for signals
s1(t), s2(t), and their corresponding instantaneous phase
�1(t), �2(t), in its most general form the phase locking
means

n�1(t)−m�2(t)=const (1)

where n, m are integers indicating the ratios of possible
frequency locking. In what follows we assume n=m=
1 for simplicity, and assume that the constancy of phase
difference is valid within a limited window T, typically
of a few hundreds of milliseconds.

In the case of neural signals, detecting phase locking
between two distant brain recordings (such as EEG,
MEG, and intracranial) is not straightforward. This is
due to several factors especially when working beyond
the single cell level, with neuronal populations from
meso- or macroscopic electrodes. Because of volume
conduction effects in brain tissues, the activity of a
single neuronal population can be picked up by two
distant electrodes, which gives rise to spurious phase-
locking between their signals. Moreover, in non-inva-
sive signals the true synchronies are buried in a
considerable background noise. In this case in the
synchronous state the phase fluctuates around some
constant value and the question ‘synchronous or not
synchronous’ can only be treated in a statistical sense.
This requires new, adapted methods to extract the true
synchronies in noisy activities. In this case condition [1]
has to be changed to

�n�1(t)−m�2(t)��const (2)

and the degree of approximation estimated as peaks in
the distribution of the relative phases in the unit circle
over a window T. In brief, for studying phase syn-
chrony two steps are needed: (1) estimate instantaneous
phase of each signal; and (2) provide a statistical crite-
ria to quantify the degree of phase-locking.

Both these steps have been independently introduced
by two new methods for phase-locking applied to neu-
ronal signals. Tass et al. (1998) treated the original
signals by means of a Hilbert transform, and applied to
magnetoencephalographic motor signals in Parkinso-
nian patients (Tass et al., 1998), and to the synchroniza-
tion between cardiovascular and respiratory rhythms
(Schäfer et al., 1998). In contrast Lachaux et al. (1999)
treated the original signals by convolution with a com-
plex wavelet, and applied it to EEG and intracranial
data during cognitive tasks (Rodriguez et al., 1999;
Lachaux et al., 2000a).

Given that a reliable measure of phase-synchrony is
an important tool in current research, the purpose of
this paper was to conduct a direct comparison between
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these two methods on three signals sets: (1) neural
models; (2) intracranial signals from epileptic patients;
and (3) scalp EEG recordings.

2. Measuring phase synchrony in the brain: a brief
review

2.1. Wa�elet con�olution and (S)PLS

We have recently introduced two complementary
methods called phase-locking statistics (PLS) (Lachaux
et al., 1999) and single-trial phase-locking statistics
(S-PLS) (Lachaux et al., 2000b). Both methods share
the same basic procedure: exploiting a complex wavelet
to quantify the stability of the phase-difference between
two signals in a pre-defined frequency range. However,
S-PLS allows us to measure the significance of syn-
chronies in single trials, and does not depend on block
repetition of events.

The analysis is always done around a chosen fre-
quency value; the choice is based on a previous detailed
time–frequency analysis of the signals which we do not
cover here (Lachaux et al., 2000a). Thus a frequency
range is defined around this chosen value (e.g. �2 Hz),
and the subsequent analysis is done on the frequency
components of the signals in this frequency range. The
procedure is usually iterated in other frequency ranges
to cover the whole meaningful part of the spectrum
(typically 1–100 Hz).

The first step (common to both methods discussed
here) is to measure the instantaneous phase-difference
between signals around the frequency of interest. The
phase of the signals are extracted from the coefficients
of their wavelet transform at the target frequency.
These coefficients are the result of a convolution of the
original signal with a complex Gabor wavelet (Fig. 1
A). Specifically, let an electrode record a neural signal

x(u). Then these wavelet coefficients as a function of
time (�) and frequency ( f ) are defined as:

Wx(�, f)=
� +�

−�

x(u)·��·f* (u)du (3)

Where �*�, f(u) is the complex conjugate of the Mor-
let wavelet (or Gabor function) defined at frequency f
and time � by:

��, f(u)=�f ·exp(i2�f(u−�))exp
�

−
(u−�)2

2�2

�
(4)

where ��,f(u) is the product of a sinusoidal wave at
frequency f, with a Gaussian function centered at time
�, with a standard deviation � proportional to the
inverse of f. It depends solely on �, which sets the
number of cycles of the wavelet: nco=6f�. This value
nco determines the frequency resolution of the analysis
by setting the width of the frequency interval for which
phase are measured. This width is roughly equal to
4f/nco so that the frequency range under study corre-
sponds approximately to:�

f−
4f

nco
, f+

4f
nco

n
For instance at 40 Hz this corresponds to [20,60] Hz,

with nco=8. In most of our studies, we chose nco
between 3 and 8.

Now, as a second step, the phase-difference between
the signals at frequency f and time � can be derived
from the angles of their wavelet-coefficients.

exp( j(�y( f,�)−�x( f,�)))=
Wx(�, f)Wy*(�, f)

�Wx(�, f)��Wy(�, f)� (5)

Both PLS and S-PLS evaluate the variability of this
phase-difference across successive measurements. How-
ever, PLS is designed to detect stability of phase across
the trials, while S-PLS detects stability within each trial.
We first developed PLS to estimate phase-locking in
experimental situations, common in neurocognitive
studies, where a subject is presented with a sequence of
similar stimuli. The stability of the phase-differences
across the trials, quantified by a phase-locking value
(PLV):

PLV( f,t)=
� 1
Ntrial

· �
Ntrial

trial=1

exp( j(�y,trial( f,�)−�x,trial( f,�)))
�

(6)

where Ntrial is the total number of trials. PLV is a
normalized index, with perfect phase synchrony corre-
sponding to a value of 1. Defined in this way, this index
is proportional to the standard deviation of an angular
distribution obtained by transforming the relative phase
angles onto the unit circle in the complex plane.

As a third and final step, the degree of statistical
significance of each phase-locking value is determined
by comparing it to values obtained between shifted-tri-

Fig. 1. Two definitions of instantaneous phase. The first way to define
the phase of an arbitrary signal is based on the wavelet transform.
This can be done via convolution of the signal with a Gabor wavelet
(A). Alternatively, the phase can also be obtained via the Hilbert
transform defined by convolution of the signal with the function 1/�t
(B).
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als. These surrogate values are computed from the same
signals x and y, using Eq. (5), but after permuting the
order of all trials for y, in such a way that the phase
differences are no longer computed between signals
recorded during the same trial, but during different
trials:

PLVsurrogate( f,t)

=
1
K

�
K

perm=1

� 1
Ntrial

· �
Ntrial

trial=1

exp( j(�y,perm(trial)( f,�)

−�x,trial( f,�)))
�

We typically create 200 surrogate functions PLV( f,t)
from K=200 different permutations and measure for
each of them their maximum. These 200 values are used
to estimate the significance of PLV between original
signals x and y. The proportion of surrogate values
greater than the original PLV (between x and y) for a
time t, is called phase locking statistics (PLS). In most
cases, we used a criterion of 5% (PLS�5%) to charac-
terize significant synchrony.

Recently, we introduced (Lachaux et al., 2000b) a
variant of PLS, S-PLS, in order to estimate phase-lock-
ing in single-trials, at a slight cost of temporal resolu-
tion. In this second method, the variability of
phase-difference is not measured across trials, but
across successive time-steps, around a target latency.
Specifically, a smoothed or single-trial phase locking
value (S-PLV) is defined for each individual trial as:

SPLV( f,t)=
�1
�

� t+�/2

t−�/2

exp( j(�y( f,�)−�x( f,�)))d�
�

(7)

As for PLV, S-PLV ranges from 0 to 1 with 1
indicating the strongest phase-locking. The significance
of each S-PLV is estimated via a comparison with a
distribution of S-PLV obtained between independent
Gaussian signals (200 pairs) with the same duration as
the original signals generated. For each of them, the
maximum S-PLV is measured to build a distribution of
200 values. The proportion of surrogate values higher
than the original S-PLV (between x and y) for a time t
is correspondingly called single-trial phase locking
statistics (S-PLS).

S-PLS depends then on two parameters: nco and the
size of the window of temporal integration, which can
be expressed in a number of cycles at a chosen fre-
quency f : ncy= f�. In this sense, ncy determines the
temporal resolution of the analysis where the synchrony
estimation remains stable. Small values of ncy provide
better temporal resolution, and ultimately, S-PLS can
match the resolution of PLS with a integration window
reduced to one point, but at the cost of statistical
resolution because compared to long-lasting episodes,
short-lasting episodes of phase-locking are more likely
to arise by chance alone. We usually chose ncy between
6 and 10.

2.2. Hilbert con�olution and alternati�e statistics for
phase-locking

The instantaneous phase of a signal can also be
obtained by means of the analytic signal concept origi-
nally introduced by Gabor (1946) and recently investi-
gated for model systems as well as for experimental
data (see Rosenblum et al., 1999 for review). For an
arbitrary signal s, the analytic signal � is a complex
function of time defined as:

�(t)=s(t)+ js̃(t)=A(t)e j�(t) (8)

where the function s̃(t) is the Hilbert transform of s(t):

s̃(t)=
1
�

P.V.·
� +�

−�

s(t)
t−�

d� (9)

P.V. indicates that the integral is taken in the sense of
Cauchy principal value. The instantaneous amplitude
A(t) and the instantaneous phase �(t) of the signal s(t)
are thus uniquely defined by Eq. (8). As can be seen
from Eq. (9), the Hilbert transform s̃(t) of s(t) can be
considered as the convolution of the function s(t) with
1/�t (Fig. 1 B). This means that the Hilbert transform
can be realized by an ideal filter whose amplitude
response is unity and phase response is a constant �/2
lag at all frequencies. An important advantage of the
analytic approach is that the phase can be easily ob-
tained for an arbitrary broad-band signal. Nevertheless,
instantaneous amplitude and phase have a clear physi-
cal meaning only if s(t) is a narrow-band signal. There-
fore, filtration is required in order to separate the
frequency band of interest from the background brain
activity.

Following Tass et al. (1998), synchronization of noisy
systems is understood as the appearance of horizontal
plateaus in the phase difference in time. To characterize
statistically the strength of phase synchronization, the
deviation of the actual distribution of the phase differ-
ence between recording signals from a uniform one
must be quantified. For this purpose, a synchronization
index based on the Shannon entropy was used:

�= (Hmax−H)/Hmax (10)

with the entropy defined by:

H= �
N

k=1

pk lnpk

where N is the number of bins, and Hmax= ln(N) the
maximal entropy, and pk the relative frequency of find-
ing the phase differences within the k-th bin. The
optimal number of bins was estimated as N=
exp[0.626+0.4ln(M−1)] where M is the number of
samples (Tass et al., 1998). Normalized in this way, we
have 0���1, where �=0 corresponds to a uniform
distribution (no synchronization) and �=1 to perfect
synchronization.
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An alternative phase-locking statistic was introduced
in Palus (1997). Let p1(�1) and p2(�2) be the probability
distribution of the phases �1 and �2, and p1,2(�1,�2)
their joint distribution. The mutual information

I(�1,�2)=
� �

−�

� �

−�

p1,2(�1,�2)log
p1,2(�1,�2)

p1(�1)p2(�2)
d�1d�2

(11)

is another suitable statistic for testing the dependence
between the phases �1 and �2. The mutual information
can be easily rewritten from the entropy I=H(�1)+
H(�2)−H(�1,�2). Generally, the mutual information
of two processes can be seen as the excess amount of
information produced by erroneously assuming that the
two systems are independent (Shannon and Weaver,
1949). In the following, we use the normalized mutual
information 	=I/Imax where Imax= ln(N) and N the
number of bins. Normalized in this way, we have
0�	�1, where 	=0 corresponds to a uniform distri-
bution and 	=1 to perfect synchronization. An impor-
tant feature here is that, in contrast to phase difference
statistics, the mutual information provides a general
characterization of all possible n :m frequency locking.

As a final step, the degree of statistical significance of
the phase-locking values was determined in the above
studies by comparing them to values obtained from
surrogate data. The usual formulation of the null hy-
pothesis is to consider a Gaussian linear process with
the same mean, variance and histogram as the series
under study. These surrogates are constructed by
‘scrambling’ the original series. This randomization de-
stroys any temporal structure, if present in the original
series. More sophisticated methods imply also preserva-
tion of linear correlation between the original data
(Palus, 1997), but are not investigated here.

3. Comparative results

This section contains the core of this paper: the
comparison between the Hilbert and wavelet ap-
proaches using simulated and experimental data. The
analysis was performed in the following way: first the
signals of overlapping consecutive windows were
filtered with a bandpass corresponding to a particular
frequency component. Next, the instantaneous phase of
each filtered window is extracted by means of wavelet
and Hilbert transform. Finally, we characterized the
stability of the phase-locking by three measures (as
defined before): (1) the standard deviation of the phase
differences over the unit circle; (2) the Shannon entropy
of the phase differences; and (3) the mutual information
of the phases. These indices vary from 0 (no synchro-
nization) to 1 (full synchronization). In order to prevent
spurious detection of locking due to noise and band-
pass filtering, we derive a significance level by applying

our analysis to surrogate data (white noise filtered
exactly as the original signals). The 0.95 percentile of
the distribution of 200 surrogates, Ssur, serves as the
significance level. Only the relevant values of the syn-
chrony indices are taken into account by introducing
the synchronization index SI=max(S−Ssur,0), where
S is the synchrony measure of the original series. This
computation was iterated varying the frequency in 2-Hz
steps to cover the whole part of the spectrum from 0.1
to 100 Hz, thus constituting a time–frequency chart of
synchrony.

3.1. Phase synchrony in neuronal models

The phase synchronization of two coupled Rössler
has been studied (Rosenblum et al., 1996). Unfortu-
nately this chaotic oscillator has a single-peak domi-
nant frequency and thus is not a good model for
complex neuronal systems which exhibit a large band of
intrinsic rhythms. Instead, we consider here two cou-
pled Hindmarsh–Rose (HR) model neurons (Hind-
marsh and Rose, 1984):

x� 1=y1−ax1
3+bx1

2−z1+I−C(x1−x2),

y� 1=c−dx1
2−y1,

z� 1=r [S(x1+
1)−z1].

x� 2=y2−ax2
3+bx2

2−z2+I−C(x2−x1),

y� 2=c−dx2
2−y2,

z� 2=r [S(x2+
2)−z2].

Each neuron is characterized by three time-depen-
dent variables: the membrane potential x, the recovery
variable y, and a slow adaptation current z. The exter-
nal input is given by I. In the simulation, let a=1,
b=3, c=1, d=5, s=4, r=0.006, 
1=1.56, 
2=1.57
and I=3, in accordance to the parameters used in
Hindmarsh and Rose (1984). As seen in Fig. 2, the
dynamical behavior of this model is characterized by
bursts of action potentials on a slow depolarizing wave.
Numerical simulation shows that the model is chaotic
with maximum Lyapunov exponent of 0.01. Moreover,
the HR neuronal model has multiple time-scale dynam-
ics. A fast mechanism (principal frequency approx. 30
Hz in our example) is related to generation of spikes,
and a slow mechanism (frequency approx. 3 Hz in our
example) related to the bursting process. To examine
phase synchronization, we modulated the coupling
parameter C. Due to the slight differences in the
parameters of the two neurons, their trajectories cannot
be identical no matter what the coupling is.

Fig. 2 A shows the simulation results for three typical
values of the coupling (state I: C=0, state II: C=0.09,
state III: C=0.3). The lower panel (Fig. 2 B) shows the
chart of synchronization characterized by the Shannon
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Fig. 2. Phase synchrony between two chaotic neurons. (A) Time course of the two membrane potentials according to the model equations of
Hindmarsh and Rose (1984) during three typical values of the coupling (state I: C=0, state II: C=0.09, state III: C=0.3). (B) The corresponding
time–frequency charts of synchrony. A sliding window analysis was done with a window length of 1000 points. The distribution of the phase
difference was extracted here by wavelet convolution and characterized by the Shannon entropy.

entropy of the phases extracted by wavelets. Without
coupling (state I), there is no phase relationship be-
tween the neurons (Fig. 2 B). As the coupling strength
increase to state II, a transition to synchronous state
first appears in the low frequency range (3 Hz) indicat-
ing the phase-locking of the slow bursting process.
State III again shows synchronies in the low frequency
range, but also the occurrence of synchronies in the
high frequency range (30 Hz) indicating the phase-lock-
ing of the fast spiking process. Because the mean
frequency of the two neurons are slightly different, the
phase locking shows typical phase slips, i.e. intermittent
desynchronization.

In Fig. 3 we compare both approaches using the
same simulated data under similar conditions as de-
scribed before. We see that all different indices reveal
the presence of the synchronous states II and III and
the application of both extractions of phase leads to
practically the same results. Small differences can nev-

ertheless be detected. The synchronies appear sharper
at the low frequency range with the phases obtained by
means of wavelet transform. Comparing the phase-
locking statistics, the mutual information attains higher
synchrony values.

We next use a more realistic model to generate
network synchronization of gamma and beta rhythms
(Fig. 4). This model was first introduced by Ermentrout
and Kopell (1998) where it was shown how gamma
rhythms support robust synchronization between sites
for delays up to 8–10 ms. This long range synchrony
requires, as a necessary condition, the occurrence of
spike doublets in interneurons. With this model, Kopell
et al. (2000) demonstrated that the transition from
gamma to beta can be theoretically understood as a
consequence of the changes in recurrent excitatory
synapses and expressions of K-conductances. For our
comparison purpose, we use this minimal network com-
posed by two pyramidal cells (excitatory, or E-cells)
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Fig. 3. Comparative results between the two phase extraction techniques (wavelet convolution and Hilbert transform) and three statistics of phase-locking for simulated data (see Fig. 2).
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and two interneurons (inhibitory, or I-cells) (Fig. 4 A).
Each cell is reduced to a minimal number of currents
and modeled as single compartment cells with fast
spiking currents for the gamma rhythm; for the beta
rhythm, an extra after-hyperpolarization (AHP) current
(slow K conductance) is added to the E-cells (see legend
of Fig. 4). Increases in K-conductances, plus increases
in the strength of synapses between excitatory cells, can

transform the output of the network of E and I cells
from gamma to beta. This mechanism was confirmed
by more detailed biophysical models and experiments
(Traub et al., 1999).

Fig. 4 B,C shows the charts of synchrony between
the two E-cells for three typical values of excitatory
synapses and after-hyperpolarization current. During
state I, there is no phase relationship between the

Fig. 4. Phase synchrony in a simulated neuronal network. (A) Minimal network for investigating synchronization with conduction delays. Each
excitatory neuron receives input from the local inhibitory neuron and all of the other excitatory neurons; each inhibitory neuron receives input
from all of the excitatory neurons and also has self-inhibition. The excitatory neurons satisfy equations of the form: CV�= −0.1(V+67)−
100m3h(V−50)−80n4(V+100)−gAHPw(V+100)−Ie

syn+Ie
appl+� where � is a white Gaussian noise and the variables m, h, n and w satisfy:

m �=0.32(54+V)(1−m)/[1−exp(− (V+54)/4)]−0.28(V+27)m/[exp((V+27)/5)−1]; h �=0.128 exp(− (50+V)/18)(1−h)−4h/[1+exp(−
(V+27)/5)]; n �=0.032(V+52)(1−n)/[1−exp((V+52)/5)]–0.5n exp(− (57+V)/40); w �= (winf (V)−w)/�W(V) where winf (V)=1/[1+exp(−
(V+35)/10)] and �W(V)=400/[3.3 exp((V+35)/20)+exp(− (V+35)/20)]; the inhibitory neurons have identical equations, but there is no AHP
current. The capacitance is 1. Synaptic currents are Ie

syn=gieSi(t)(V+80)+ceeSe(t−�) and I i
syn= [gei (S1

e(t)+S2
e(t))+cei(S

1
e(t−�)+S2

e(t−
�))]V+giiSi(t)(V+80). In all of the simulations, gie=1, gei=0.15, gii=0.2, gee=0.15, and cei=0.15. The synapses satisfy first order equations
of the form: S �e=5[1+ tan h(V/4)](1−Se)−Se/2; S �i=2[1+ tan h(V/4)](1−Si)−Se/15. The current applied to the excitatory cells was 6 and 6.5
and acted as the source for the heterogeneity between local networks. The current applied to the inhibitory cells was 1.15. The delay between
E-cells is 7 ms cee (see Kopell et al., 2000 for details). (B) Voltage traces of the two E-cells for three typical values of the coupling and conductance.
State I: with cee=0 and gAHP=1, the E-cells miss beats and fires non-synchronously. In this case, the long-range E–E connections are not present
to stabilize a synchronous solution with AHP current. State II: with cee=0 and gAHP=0, the E-cells fire synchronously at a gamma rhythm. State
III: cee=0.05 and gAHP=1, the network quickly suppresses the gamma synchronous solution and transform the output of E from gamma to beta
synchronization. (C) Comparative results between the two phase extraction techniques (wavelet convolution and Hilbert transform). A sliding
window analysis was done with a window length of 100 ms. The distribution of the phase difference was characterized by the Shannon entropy.
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excitatory cells. In state II, we used parameters that
elicit gamma synchronies where AHP currents and E–E
connections are absent. The synchrony charts obtained
by wavelet convolution and by Hilbert transform show
clearly the occurrence of synchronies in the gamma
frequency range (40–60 Hz). During state III, a slower
K-conductance has been added to the model E-cells;
now the E-cells, slowed down by the K-conductance,
each fire on half of the gamma cycles in the beta
frequency range (20–30 Hz). The synchrony charts
show the gamma-to-beta transition during this state.
The existence of synchronies in the gamma frequency
range is due to the phase-locking of subthreshold mem-
brane oscillations.

3.2. Phase synchrony of intracranial recordings during
an epileptic seizure

In this section we present an analogous comparison
between the two approaches under study for the case of
real neuroelectric data: phase synchronization between
brain activities during an epileptic seizure. In a first
example, Fig. 5 shows the analysis of intracranial EEG
recordings taken from a patient presenting a medial
temporal lobe epilepsy (Adam et al., 1996). A depth
electrode was used to sample the medial structures of
the temporal lobe (amygdala and hippocampus) gener-
ating the seizure. The post-implantation location of the
electrodes was controlled by MRI and the recordings
were performed on a 32-channel BMSI system (Nicolet-
BMSI, Madison, Wisconsin, USA). The raw data were
digitized at 200 Hz and were passed to a 32-channel
amplifier system with band-pass filter settings of 0.5–99
Hz. For the study of synchronization, bipolar recording
was rejected in favor of monopolar recording with a
common reference shown to be quiet (Rappelsberger,
1989). This reference was external and over the ear
contralateral to the suspected epileptogenic zone. Here
our analysis was limited to the analysis of the channels
of the medial temporal lobe that first showed ictal
discharges, involving one contact in the amygdala and
one contact in the hippocampus body.

Fig. 5 A shows the seizure onset determined by the
appearance of low voltage activities at fast frequencies
(12–15 Hz) slowed down during the seizure develop-
ment to 2–3 Hz. The lower panel (Fig. 5 B) shows the
chart of synchrony characterized by the Shannon en-
tropy of the phases extracted by Hilbert transform.
Before the seizure, the phase relationship between the
neuronal activities mostly occur in the gamma range

(30–80 Hz). At seizure onset, a transition to syn-
chronous state appears in the 12–15-Hz and low fre-
quency range (3 Hz). During the seizure development,
there was a synchronous state at a low frequency range
(3 Hz) related with a strong desynchronization in the
high frequency range. After the seizure, the chart shows
again synchronies in the gamma range (�30 Hz).

Fig. 6 compares the results for both approaches.
Again all the indices follow the similar time course of
phase-locking and both extractions of the phase leads
to practically the same results, although small differ-
ences can be detected. Again, the synchronies appear
sharper at the low frequency range with the phases
obtained by means of wavelet transform. The mutual
information again reaches the higher synchrony values.

Fig. 7 presents a complete analysis of multichannel
synchronization during the seizure of another patient.
The clinical investigation confirmed a seizure focus in
the orbitofrontal cortex (Pars orbitalis of F3). A sub-
dural grid was used here to sample the frontal cortex
generating the seizure and adjacent functional areas
(the subtemporal cortex and central sulcus, see Fig. 7
A). The lower panel (Fig. 7 B) shows the two time–fre-
quency charts of synchrony obtained by each phase
extraction and averaged over all possible combinations
of electrode pairs (32×32). We see that both ap-
proaches give comparable mean synchronies over the
grid: At seizure onset, an abrupt transition to a syn-
chronous state appears in the 8–10-Hz range. A few
seconds latter, strong synchronies can be observed at
multiple high frequencies (25–90 Hz). As the seizure
progresses, a trend of progressive decline in the syn-
chronization frequency occurs and finally ends at a low
frequency range (3 Hz) before seizure interruption.

Fig. 7 C compares the methods to analyze the spatial
distribution of synchronies over the grid, for two fre-
quency ranges (low band: 8–10 Hz, high band: 40–45
Hz) and for six consecutive time windows taken at
seizure onset. Very early in the development of the
seizure, both approaches show a progressive phase
locking in the low frequency range between the epileptic
focus (contact 27) and other electrode sites. This confi-
rms that the orbito-frontal region is the primary source
of ictal synchronization. A few seconds later, almost all
recording sites are driven to a common phase locking.
For the high frequency band, the process of locking
brain sites appears to start somewhat later, but leads to
a similar global synchronous state. Fig. 7 D compares
the number of significant synchronies for each time
window. We see that the Hilbert transform and the

Fig. 5. Phase synchrony of intracranial recordings during an epileptic seizure. (A) Intracranial EEG recordings of seizure discharges recorded from
a human epileptogenic amygdala and hippocampal body. (B) The corresponding time–frequency charts of synchrony. A sliding window analysis
was done with a window length of 5 s (1000 points). The distribution of the phase difference was derived from the Hilbert transform and
characterized by the Shannon entropy.
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Fig. 6. Comparative results between two phase extraction techniques (wavelet convolution and Hilbert transform) and three statistics of phase-locking for intracranial data (see Fig. 4).
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Fig. 7. Phase synchrony of intracranial recordings during an epileptic seizure. (A) A subdural grid with 32 electrodes was used to sample the frontal cortex, adjacent subtemporal cortex and central
sulcus (PRE: precentral gyrus, POST: postcentral gyrus) of a patient with an epileptic focus in the pars orbitalis of F3 (contact 27). Inter-electrode center-to-center spacing was typically 10 mm.
(B) The two charts of synchrony obtained with wavelet convolution and Hilbert transform and averaged over all possible combinations of electrode pairs. The analysis was done each second
with a window length of 5 s (1000 points). (C) Local distribution of synchronies over the grid in the 8–10 Hz and 40–45 Hz frequency ranges for six consecutive time windows at seizure onset
(from seconds 35 to 41, see white boxes in B). (D) Number of significant synchronies for the successive time windows.
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wavelet convolutions reveal the same number of syn-
chronies between electrode pairs.

3.3. Phase synchrony of surface EEG recordings during
a cogniti�e task

The last dataset used here for comparison is taken
from EEG recordings. Such data are a blurred version
of cortical activity and are much more prone to arti-
facts than intracortical recordings. On the other hand,
their non-invasive nature make them an ideal choice for
neuro-cognitive studies. Thus it is important to assess
which is the best approach for studying phase-locking
under these conditions.

In the case of cognitive study, we favor a good time
and frequency resolution. Moreover, integrative time
windows are adapted to each frequency using the num-
ber of cycles as constant. For example, a seven-cycle
window as used here will last 233 ms at 30 Hz, but 350
ms at 20 Hz. The resulting number of samples to assess
the stability of the phase difference is limited (117 at 30
Hz with a 500-Hz sampling frequency). Here the use of
Shannon entropy and the mutual information as syn-
chrony measures have a practical limitation because
there should be a minimal number of events falling
within each bin to give a reliable estimation. Using the
formula proposed by Tass et al. (1998) for Shannon
entropy computation, the ideal number of bins using
117 samples is 12. This leads to a rather bad phase
angle resolution of 30°, meaning that smaller phase
shift during the 233-ms window may be classified in the
same bin and thus would not be different from a perfect
phase locking. This limitation lead us to only use the
standard deviation (PLV) for synchrony estimation.

For our comparison purpose, we studied a represen-
tative sample from our study concerning the perception
of Mooney faces (see Rodriguez et al., 1999). Mooney
figures are made of two-tone asymmetrically lighted
photographs of human faces. Ten subjects were shown
upright and upside-down Mooney figures had to decide
as rapidly as possible whether they perceived a face or
not and respond by pressing a two-choice button. EEG
was recorded by 30 electrodes at the scalp surface using
a 500-Hz sampling frequency.

Fig. 8 compares the two procedures for computing
the phase of the signal after the same �2 Hz band
filtering process (from 20 to 34 Hz every 2 Hz). We
have restricted our analysis here to one pair of elec-

trodes (Oz–Fz) because it has been proven to be more
active in the perception condition in our previous study,
and because the distance between them weakens the
risk of false synchrony by pure diffusion. The results
are displayed as standard deviation from a reference
distribution computed on the pre-stimulus period. For
the global intersubject (Fig. 8 A) as well as for all the
subject by subject results (Fig. 8 B), the same pattern of
synchrony can be seen. Nevertheless, the contrast was
systematically better with the wavelet convolution
method. This suggests that the wavelet convolution is
computationally more efficient for short records.

4. Conclusion

4.1. A general framework for the study of neuronal
synchrony

This study has shown that a satisfactory measure of
phase synchrony as phase-locking can be obtained with
both methods discussed here. From a pragmatic point
of view, their differences are minor, and only manifest
for small windows of observation. As their computa-
tional cost is also comparable, one can safely conclude
that they are fundamentally equivalent for the study of
neuroelectrical signals. This equivalence might not hold
when studying other kinds of signals.

This equivalence can be understood by comparing
the common steps in both cases. First, in both cases we
are restricting ourselves to a narrow band. Second, in
both cases the signals are then convolved with a func-
tion with decaying flanks (Fig. 1):

ŝ(t)=s(t)�
1
�t

or

ŝ(t)=s(t)�exp
�

−
t2

2��2

�
exp{ j 2�ft}

The instantaneous phase �(t) defined by ŝ(t)=
A(t)exp( j�(t)) can then be extracted from this new
complex signal, thus detaching it from the amplitude
component A(t) as needed. Third, in both cases one
then applies some statistical measure of significance for
the fluctuations: variance, entropy, mutual information.
An accurate estimation of the entropy and the mutual
information requires a sufficient angular resolution. If it
is the case, any one of the measures can be applied as
illustrated for intracranial recordings during epileptic

Fig. 8. Phase synchrony of surface EEG recordings during a cognitive task. The Fz–Oz electrode pair synchrony has been computed across the
10 subjects. The signal was pre-filtered between 20 and 36 Hz every 2 Hz. Then, the phase of each signal was computed using the wavelet
convolution and the Hilbert transform method. Synchrony was computed using the vectorial summation (PLV). The synchrony chart have the
time in ordinate from –750 ms before the stimulus presentation (reference period) to 1000 ms after the stimulus presentation (the Mooney faces
were displayed between the two black bares). The values are given in standard deviation from the reference distribution. For the average result
across the individuals (A) as well as for two of them (B), the fluctuation of the synchrony from the reference distribution during the post stimulus
period are overlapping, but do not have the same contrast intensity, that seems higher with the wavelet convolution.
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seizure or model systems. For short records, numerical
problems become a decisive factor and the variance
(PLV) proved to be computationally more efficient, as
illustrated for EEG recordings during a cognitive task.

To summarize, we present direct evidence that the
different techniques for quantitative analysis of phase
synchronization from neuronal data give similar results.
Therefore, the techniques described in this study offer a
common framework that can be used for future re-
search in the area of synchronization at different spatial
scales, from the single cell level to the level of EEG
recordings.

4.2. Directions for future work

The present results indicate that the general frame-
work outlined above allows an examination of neuronal
synchronies. However, these techniques must be refined
in two directions:

First, despite the fact that the definition of phase
synchrony can be formally extended for an arbitrary
broad-band signal, a clear physical meaning is only
available for narrow-band signals, and filtration is re-
quired in order to separate the frequency band of
interest from the background brain activity. Neverthe-
less, it is well known that intracortical field potentials as
well as surface recording exhibit a typical 1/f spectral
distribution, and it is surely the case that there are
important interdependencies between the different
bands. Such interdependency is another way of stating
that brain interactions are highly non-linear (Schiff et
al., 1996). Recently, the concept of phase as well as
phase synchronization has been generalized for the
study of chaotic systems (Rosenblum et al., 1996).
Nevertheless, for systems with large variations of the
return times (i.e. chaotic attractors having more than
one dominant time scale), we do not have access to an
unambiguous characterization of the phase as angle
coordinate (Brown and Kocarev, 2000). Therefore, a
conceptually clear and applicable extension of the defi-
nition of phase synchrony to all types of non-linear
systems remains to be done.

Second, phase synchrony characterizes the adjust-
ment of intrinsic time scales whereas the amplitude may
remain uncorrelated. It is important to stress that
phase-locking synchrony is one specific type of synchro-
nization in a variety of other possible ways to under-
stand synchronization between two systems. In fact,
multiple definitions of synchrony can be provided de-
pending on the system under investigation and no
unified definitions have been established so far (a good
review of recent achievements may be found in Brown
and Kocarev, 2000). For instance, based on the alterna-
tive notion of dynamical interdependence, Schiff et al.
(1996) demonstrated that the states of small in vitro
neuronal ensembles can be in a functional relationship,

called generalized synchronization. This method was
recently extended to intracranial recordings of epileptic
patients (Le Van Quyen et al., 1999). An important
question here is if these new synchronization concepts
might prove useful beyond phase-locking synchrony for
the analysis of interactions in brain function.
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Vincent Navarro (Unité d’Epileptologie, Hôpital de la
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