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Abstract—Blind modulation classification is of vital importance
in spectrum surveillance applications and future heterogeneous
wireless networks. In standardized wireless systems, modulation
classification can be performed through exhaustive search of
known signal features. Most commonly used classifiers are based
on the detection of cyclostationary features, which are second-
order moments of a signal, related to its carrier and symbol
rate. However, when the signal parameters are unknown, an
exhaustive search for cyclostationary features is energy inefficient
due to high computational complexity. In this paper, we present
a reconfigurable processor architecture that can blindly classify
any linearly modulated signal (M-QAM, M-PSK, M-ASK, and
GMSK) in addition to multi-carrier signals and spread spectrum
signals. The contributions of this work are twofold. First, we
analyze the complexity tradeoffs among different dependent
signal processing kernels in order to minimize the total processing
time and energy. Second, we optimize the processor architecture
by the co-design methodology to enhance block reusability and
reconfigurability. The proposed processor has been verified and
synthesized in a 40-nm CMOS technology with core area of 0.06
mm2 and power dissipation of 10 mW under 0.9 V supply voltage
at 500 MHz. Under a 500 MHz wide-band signal at 10 dB SNR,
a complete blind classification process consumes 10.37 µJ to meet
95% of classification accuracy.

I. INTRODUCTION

BLIND modulation classifiers have numerous applications
in current and future wireless networks. From an elec-

tronic surveillance point of view, military applications of blind
modulation classifier include tracking the spectrum activity
of specific users (often interferes or jammers) and learning
their modulation classes. Blind modulation classification is
therefore vital to electronic countermeasures in such hostile
environments.

Additionally, with the recent deployment of heterogeneous
networks (HetNet) such as Long Term Evolution (LTE), modu-
lation classification becomes part of interference management
[1], [2]. Multi-user detection is performed to support multiple
overlapping transmissions in time and (or) frequency. Knowl-
edge of the modulation type by means of modulation classifi-
cation [3] is necessary to demodulate the interfering signal [4].
However, this application assumes that the transmitted signals
are standard-compliant. In the future, as a result of spectrum
under-utilization, Cognitive Radios (CRs) [5] will adaptively
change their transmission parameters and modulation schemes
in order to opportunistically access the unused spectrum holes.
In such future wireless applications, demodulation of these
adaptively modulated signals would require blind modulation
classification. For these highly adaptive radios, information
about transmit parameters cannot be assumed. As a result,

blind modulation classification approaches are of significant
research interest.

A survey of commonly used modulation classifiers is given
in [6] and in the references within. The authors of [7] have pro-
posed a hierarchical modulation classifier based on cumulants
which are higher-order moments of the received information
symbols. This algorithm requires perfect timing synchroniza-
tion to extract information symbols, and is sensitive to the
imperfect knowledge of the Signal to Noise Ratio (SNR).
On the other hand, some modulation classification algorithms
operate on over-sampled signals. Among such classifiers are
cyclostationary-based modulation classifiers which classify
signals based on the cyclostationary features [8]. For linearly
modulated signals, these cyclostationary features are a function
of the signal’s symbol rate and carrier frequency. However,
the main challenge of blind modulation classification is the
absence of a priori information about the transmit parameters.
As a result, the search for the features used for modulation-
type classification1 becomes very computationally demanding.
One approach to efficiently solve blind classification is to
first estimate signal parameters and then use cyclostationary
based classifiers. In [9], a blind cyclostationary modulation
classifier is proposed where the cyclostationary features are
estimated using infinite number of samples. However, this
approach is energy inefficient and cannot be used for real-time
classification.

From the architectural point of view, although various non-
blind classification algorithms have been studied and even
implemented in Digital Signal Processing (DSP) [10] and
Software-Defined Radio (SDR) platforms [11], an efficient
silicon realization that classifies multi-carrier, spread spectrum,
and linearly modulated signals was never realized before.
In addition, these classifiers require prior knowledge of the
targeted signals, which make them unsuitable for real-time
blind classifiers. In order to achieve high energy efficiency,
realization of Application-Specific Integrated Circuits (ASICs)
is desirable. However, due to diversity of modulation classes
and algorithms for their classification, a heuristic ASIC design
equipped with multiple dedicated modules − one for each
signal class − would result in large area and suboptimal energy
consumption due to the difficulty of hardware sharing.

In this paper, we propose an implementation with high
functional diversity and energy/area efficiency. By jointly con-
sidering the algorithm and architecture layers, we first select

1We use the term modulation type to refer to the modulation scheme of
the signal (e.g. QAM, PSK), and the term modulation level to refer to its
modulation order (e.g. 4-QAM, 16-QAM).
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TABLE I
DESIGN SPECIFICATIONS OF THE PROPOSED MODULATION CLASSIFIER.

Variables Specifications

Modulation Types M-QAM, M-PSK, M-ASK,
GMSK, OFDM, DSSS

Probability of Correct Classification ≥ 0.95
Energy Budget 15 µJ
Proc. Time Budget 2 ms
Channel Bandwidth 500 MHz
Frequency Resolution 12.5 KHz
Signal Bandwidth ≤ 500 MHz
Minimum SNR 10 dB

computationally efficient parameter estimation and modulation
classification algorithms. We then exploit the functional simi-
larities between algorithms to build a processing architecture
that maximizes hardware utilization. In addition, we carefully
analyze the processing strategy of the processor in order to
minimize the overall consumed energy.

The design specifications of the proposed classifier are sum-
marized in Table I. We consider a minimum SNR of 10 dB,
which is reasonable for classification of interferers in multi-
user detection and blind signal demodulation applications.
We note that we do not estimate the received SNR in the
proposed processor. Instead, we guarantee that when the SNR
exceeds 10 dB, the proposed processor will correctly classify
the received signal with a minimum probability of 95%. The
frequency resolution is set to 12.5 KHz in order to allow a
fine spectral resolution to detect narrowband interferers. The
classifier should identify multi-carrier, spread spectrum and
linearly modulated signals correctly with a probability of 95%.
Within the linearly modulated signals, the classifier should
also distinguish the modulation types given in Table I. The
proposed processor needs to meet an energy constraint of 15
µJ and a processing time of 2 ms.

This paper is organized as follows. Section II presents the
overall receiver architecture and the design challenges in blind
classification. Section III describes the low-complexity signal
processing modules implemented in the processor. In Section
IV, we present the proposed energy optimization methodology,
in which we analyze the tradeoffs among dependent blocks of
the architecture. A reconfigurable architecture for the classi-
fication processor is proposed in Section V. Section VI dis-
cusses the hardware emulation for functionality demonstration
of the proposed architecture. Section VII concludes the paper.

II. DESIGN CONSIDERATIONS

This section describes the overall receiver architecture and
shows how the proposed modulation classification processor
fits as part of a wideband receiver chain. We then describe
the challenges in blind modulation classification and give
an intuitive explanation behind the tradeoffs among different
blocks of the proposed processor.

A. System Model

We illustrate in Fig. 1 the top-level block diagram of the
blind signal classifier. At the beginning, the RF front-end (not

shown) filters and downconverts a 500 MHz spectrum to base-
band. The signal is then sampled and digitized for baseband
processing. The digital baseband part starts with a sensing
engine, referred to as the band segmentation, that detects the
presence of one or more signals in the wideband channel in
the presence of Additive White Gaussian Noise (AWGN) [12].
The detection is based on energy detection which estimates
the spectrum of the received signal. The sensing time and
threshold for detection are adjusted to meet the desired proba-
bility of detection and false alarm. The supported signals that
can be classified could be of any modulation type given in
Table I with bandwidth greater than 12.5 KHz, and could be
located at any carrier frequency. Since this paper deals with the
design of signal classification processor, we assume that the
signal has already been detected. Identifying the presence of
a signal during band segmentation inherently results in coarse
estimates of the signal’s carrier frequency and symbol rate.
Using the coarse transmit parameters, the detected signal is
down-converted and filtered using a reconfigurable Cascade-
Integrator-Comb (CIC) filter [13]. The output of the CIC filter
is fed to the modulation classifier to identify the modulation
type of the signal. In the event of detecting multiple signals
in the wideband channel, each signal is downconverted and
processed by the CIC filter sequentially.

This work focuses on the design of an energy-efficient
modulation classifier, which detects the types of signals using
the optimized tree-based approach shown in Fig. 2. The
proposed modulation type classifier is based on second-order
cyclostationary properties of the received signal and therefore
does not distinguish among different levels of a given modu-
lation type. In particular, M-PSK (M>2) and M-QAM signals
exhibit the same cyclostationary features [8]. Therefore, the
modulation-type classifier can distinguish among three differ-
ent classes of single-carrier modulation types: Class 1 = {M-
PSK (M > 2), M-QAM}, Class 2 = {M-ASK}, and Class
3 = {GMSK}. However, once the modulation type is found,
the signal can then be fed to a modulation-level classifier. In
our earlier work, we developed a low-complexity modulation-
level classifier [14] based on the distribution distance test that
chooses the modulation level whose cumulative distribution
function (CDF) is closest the received symbols CDFs. The
performance of the proposed modulation-level classifier has
been compared in hardware experiments [15] against the well-
known cumulants classifier [7]. Although the modulation-
level classifier can be implemented as part of the proposed
processor, it is not considered in this work due to its very
low computational complexity and consumed energy. The
estimated energy consumed by the modulation-level classifier
is around 15 nJ at a SNR of 10 dB, which is a negligible
fraction of the 15 µJ energy budget.

B. Design Challenges

The objective of the proposed classifier is to minimize its
consumed energy while achieving the required probability of
correct classification. The energy minimization is achieved
by 1) selecting and developing computationally efficient al-
gorithms, and 2) by minimizing the total classification time
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Fig. 1. Energy-time breakdown of the processing kernels of the proposed processor.

Unidentified Signal

Narrow-band Wide-band

OFDM DSSSM-ASK GMSKM-QAM M-PSK

Modulation Level

Fig. 2. Signal classification tree showing the possible modulation classes
recognized by the proposed processor.

while meeting the classification accuracy of 95%. Although
existing maximum-likelihood-based algorithms [16], [17] can
meet the classification requirement, their computational com-
plexity results in power and/or delay requirements that cannot
be tolerated in real-time operating radios. In addition, blind
modulation classifiers require the estimation of the signal’s
transmit parameters, adding to the overall complexity of the
receiver. Therefore, our objectives in meeting the specifications
are twofold: 1) developing low-complexity algorithms that
meet the classification probability, 2) minimize the processing
times of all the blocks in order to satisfy the energy budget.

As a result of the 12.5 KHz resolution of the band seg-
mentation, the coarse estimates of the symbol rate and carrier
frequency obtained from the band segmentation have estima-
tion errors on the orders of thousands of parts per million. For
instance, as a result of the transmit filter roll-off, the coarse
symbol rate estimate of a 3 MHz signal can vary between 3
and 3.5 MHz, yielding an estimation error of 1.6× 105 ppms.
As was shown in [18], [19], the features used for modulation-
type classification degrade under large estimation errors of the
cyclic frequencies. As a result, classification probability cannot
be met under such large offsets. Therefore, coarse estimates
cannot be used directly for detection of cyclic features, and

hence fine estimates of the transmit parameters are needed.
To address this issue, our architecture includes symbol rate
and carrier frequency estimation blocks referred to as the pre-
processors. We show that there exists an inherent tradeoff
between estimation accuracies of the transmit parameters and
the classification accuracy that can be achieved, which will be
analyzed in Section IV.

From the architectural point of view, the design of an
energy-efficient hardware to detect a variety of signal classes
is not an easy task. Directly implementing a set of low-
complexity algorithms as aformentioned is infeasible if those
algorithms possess too little functional similarity. The lack of
commonality forces the hardware to have many non-reusable
modules, creating the so-called dark silicon with dominat-
ing leakage energy in deep-submicron CMOS technology.
Consequently, the energy efficiency and flexibility cannot be
achieved by merely mapping algorithms, but by algorithm-
architecture co-design.

III. LOW-COMPLEXITY BLIND CLASSIFICATION
ALGORITHMS

In this section, we present the proposed algorithmic hier-
archical classification tree. The design hierarchy is based on
both the level of a priori information that a block requires
and its computational complexity. In particular, the blocks that
do not require a priori information about the signal being
classified are processed first. For instance, the multi-carrier
classifier employs a totally blind low-complexity algorithm,
and therefore can be performed first. This design methodology
dictates the order in which the classification algorithms are
performed as shown in Fig. 1. In the remainder of this section,
we describe each of the blocks of our processor, and specify
what design variables need to be optimized in order to meet
the given accuracy and energy requirements.
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A. Multi-Carrier Classification

This block differentiates between Multi-Carrier (MC)
OFDM (Orthogonal Frequency Division Multiplexing) and
Single Carrier (SC) signals. The MC classifier is based on
the fourth-order cumulant C42 [20] which is a form of a
Gaussianity test. The property of C42 is that, it tends to zero if
the input samples are approaching Gaussian distribution. The
C42 statistic of an OFDM signal, as a result, is close to zero
since the OFDM is a mixture of a large number of sub-carrier
waveforms. For other narrowband SC signals, the test statistic
converges to a non-zero value, thereby making it possible to
separate MC from SC signals without any information about
the signal’s carrier frequency and symbol rate. The fourth-
order cumulant is computed as follows:

C42 =
1

Nm

Nm∑
n=1

|x[n]|4 − |C20|2 − 2C2
21, (1)

where Nm are the number of samples used for distinguishing
MC and SC signals, x[·] is the vector of samples obtained
from the CIC filter, C20 = 1

Nm

∑Nm

n=1 x[n]
2 and C21 =

1
Nm

∑Nm

n=1 |x[n]|2. The MC detection is a threshold-based test
derived by comparing C42 to a threshold γm. Both Nm and
γm are set based on the minimum SNR requirement of 10
dB, resulting in Nm = 90 samples and γm = −0.63 which
guarantee a correct classification probability of ∼ 96% for MC
signals and a misclassification probability of ∼ 3%.

B. Center Frequency and Symbol Rate Preprocessor

When the signal is classified as an SC signal, its transmit
parameters need to be estimated first. Both the pre-processors
and the modulation-type classifier for SC signals rely on
the Cyclic Auto-Correlation (CAC) function to detect their
cyclostationary features. Under a finite number of samples N ,
the conjugate and the non-conjugate CACs can be computed
respectively as follows:

R̃α
x∗(ν) =

1

N

N−1∑
n=0

x[n]x∗[n− ν]e−j2παnTs , (2)

R̃α
x (ν) =

1

N

N−1∑
n=0

x[n]x[n− ν]e−j2παnTs , (3)

where ν is the lag variable, Ts is the sampling period, and α
is the cyclic frequency to be detected. Note that the conjugate
CAC in (2) is used to detect cyclic frequencies close to
baseband, whereas the non-conjugate CAC in (3) is used to
detect the cyclostationary features at cyclic frequency α related
to the carrier frequency. Different modulation classes can be
differentiated via the cyclostationarity test because their CACs
possess cyclic peaks at different locations of cyclic frequencies
α, which is a function of the symbol rate (1/T ) and the carrier
frequency (fc). Table II summarizes the locations of spectral
peaks for the three targeted modulation classes in this work.

However, in blind classification scenarios, the estimated
cyclic frequencies might not be equal to true cyclic frequen-
cies. It was shown in [18], [19] that computing the CAC at
α̂ = (1+∆α)α, where α is the true cyclic frequency and ∆α

TABLE II
CYCLIC FEATURES FOR SOME MODULATION CLASSES THAT OCCUR FOR

CONJUGATE (·)∗ AND NON-CONJUGATE CAC.

Modulation Peaks at (α,ν)

Class 1 ( 1
T
, 0)∗

Class 2 ( 1
T
, 0)∗, (2fc,0), (2fc ± 1

T
,0)

Class 3 ( 1
T
, 0)∗, (2fc ± 1

2T
,0)

is the cyclic frequency offset (CFO), results in performance
degradation in terms of the classification accuracy. The relation
between the CAC at α̂ and that at α is given by

|R̃α̂
x (0)| = |R̃α

x (0)| ×
∣∣∣∣ sin(παNTs∆α)

N sin(παTs∆α)

∣∣∣∣ . (4)

Therefore, under a non-zero CFO ∆α, increasing the number
of samples (N ) does not improve the detection accuracy but
instead degrade the cycliclostationary feature. This in turn
motivates the need for accurate estimates of the transmit
parameters in order to minimize the CFO ∆α and improve
the performance of the modulation-type classification.

With respect to the symbol rate estimation, we note that all
SC modulation classes considered in this work exhibit a cy-
clostationary feature at cyclic frequency α = 1/T . Therefore,
detecting the presence of this cyclostationary feature would
inherently estimate the symbol rate of the signal. The coarse
estimate of the symbol rate from the band segmentation can
be used to set the search window WT , within which the cyclic
peak at the symbol rate will be located. The detection of the
cyclostationary feature at 1/T is therefore obtained by solving
the following optimization problem:

max
αi∈WT

∣∣∣∣∣
NT−1∑
n=0

|x[n]|2e−j2παinTs

∣∣∣∣∣ , (5)

where NT is the number of samples per CAC computation
used to estimate the signal’s symbol rate.

Given that not all classes have the cyclostationary feature
related to their carrier frequency, the CACs given in (2) and
(3) cannot be directly used to estimate the signal’s carrier
frequency. Estimation of the carrier frequency of the incoming
signal can be performed by detecting the cyclic feature at
α = 4fc after squaring the incoming samples [21], [22]. We
denote the search window by Wf within which the cyclic peak
at 4fc occurs. The estimation is therefore obtained by solving
the following optimization problem:

max
αi∈Wf

∣∣∣∣∣∣
Nf−1∑
n=0

x[n]4e−j2παinTs

∣∣∣∣∣∣ , (6)

where Nf is the total number of samples per CAC computation
used to estimate the signal’s carrier frequency. Note that
with increasing number of samples over which the CAC is
computed, the noise is suppressed and the features of interest
become prominent. As a result, both NT and Nf are a function
of the SNR of the received signal.

Solving the optimizations given in (5) and (6) requires
infinite computational complexity. As a result, the search space
for the maximum cyclic feature has to be discretized. We
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denote by ∆αT
and ∆αf

the resolutions for the symbol rate
and carrier frequency estimators. As a result, there are two
degrees of freedom in the design of each of the algorithms: 1)
the step size ∆αT

and ∆αf
within the window WT and Wf re-

spectively, and 2) the number of samples NT and Nf required
for the computation of every CAC at the cyclic frequency αi of
interest. The symbol rate and the carrier frequency estimation
algorithms cannot yield estimation accuracies smaller than
their respective step size ∆αT

and ∆αf
.

Also, the number of CAC computations required in (5) and
(6) are equal to the cardinality of the discretized search win-
dows ST = ⌈WT /∆αT ⌉ and Sf = ⌈Wf/∆αf

⌉ respectively.
Given that both estimators use the CAC signal processing
kernel, their consumed energy per sample is therefore the
same, with the exception of the energy consumed for squaring
the samples which is negligible compared to the CAC energy
consumption. As a result, the total consumed energy of the pre-
processors is proportional to (STNT + SfNf )Ts. The choice
of the design parameters (∆αT

, ∆αf
, NT , Nf ) and their

relationship to the required classification accuracy is explained
in Section IV.

C. Modulation-Type Classifier

After estimating the signal parameters, the proposed
modulation-type classifier computes the CAC at cyclic fre-
quencies within the union of possible cyclostationary features
in Table II, resulting in a a six-dimensional feature vector [23]
given by

F =
[
|R̃1/T

x∗ (0)|, |R̃2fc−1/T
x (0)|, |R̃2fc−1/2T

x (0)|,

|R̃2fc
x (0)|, |R̃2fc+1/2T

x (0)|, |R̃2fc+1/T
x (0)|

]
. (7)

Because each element in the feature vector F is proportional
to the received signal power, we normalize the feature vector
to unit power, and compare this normalized feature vector F̄
to asymptotic normalized feature vectors V̄i, i ∈ [1, 2, 3], for
each of the classes considered. For instance, the normalized
asymptotic feature vector for signals belonging to Class 1 is
V̄1 = [1, 0, 0, 0, 0, 0] as only one cyclic feature is present at
the signal’s symbol rate.

The resulting normalized feature vector is compared to each
feature vector V̄i, and the classifier picks the modulation class
Ĉ whose feature vector is closest to one of the received signal
in the least square sense [23], namely

Ĉ = arg min
i∈[1,2,3]

||F̄− V̄i||2. (8)

In contrast to the pre-processors, the only degree of freedom
in the design of the modulation type classifier is the number
of samples Nc required to compute each of the six CACs that
form the feature vector. Given SNR of the received signal and
the estimation accuracies of the pre-processors, Nc is chosen
accordingly to meet the desired classification probability. As
a result of the six CACs required for classification, the
processing time for modulation-type estimation is equal to
6NcTs. The six CACs are computed sequentially to enable
high degree of hardware reuse without violating the processing
time budget and compromising the total energy consumption.

While the cyclic features that the considered modulation
types exhibit are known and can be used for parameter
estimation, an energy efficient method to estimate the symbol
rate and carrier frequency has not been proposed before.
Further, the authors are not aware of any work that ties
the required symbol rate and carrier frequency accuracies
to meet the modulation classification probability. As will be
shown in Section VI, the pre-processors consume most of the
processor’s energy, and therefore a careful selection of the
step sizes for WT and Wf is necessary to achieve an energy
efficient solution.

D. Spread Spectrum Classification

Within the SC class, we distinguish between BPSK and
direct sequence spread spectrum (DSSS) signals based on the
variance ρ(τ) of the signal’s autocorrelation at a given lag
τ [24]. The received signal is divided into non-overlapping
windows of Nd samples each. For each window, we compute
the estimate of the autocorrelation for the possible expected
lags. The fluctuations of the autocorrelation value for each τ
of interest is then measured over Md windows. It was shown
[24] that these fluctuations have peaks at a lag equal to the
code length. The algorithm has further been optimized to only
search for code lengths that are a power of two as these are
most commonly used. With this approach, the presence of a
DSSS signal as well as its code length can be determined in
a single step.

Mathematically, the autocorrelation function is approxi-
mated using Nd samples over all lags of interest τ ∈ 2[1,...,6]

for each frame m ∈ [1, ...,Md] of input samples xm[·],
resulting in

rx(m, τ) =
1

Nd

Nd∑
n=1

xm[n]xm[n− τ ]. (9)

The variance of the autocorrelation function is computed at
every lag given Md realizations of rx(m, τ)

ρ(τ) =
1

Md

Md∑
m=1

rx(m, τ)2 −

(
1

Md

Md∑
m=1

rx(m, τ)

)2

. (10)

Finally, in order to detect if the received signal is a spread
spectrum signal with code length τ , the statistic ρ(τ) is
compared to threshold γd. Using γd = 4.25 at SNR of 10 dB,
Nd = 32 samples per frame and Md = 4 averages are required
for each lag τ of interest to meet a correct classification
probability of DSSS signals of 98% and a misclassification
probability of 1%.

E. Example of Classification Flow

We consider the classification of a DSSS signal with an
underlying BPSK modulation scheme that is spread with a
code of length 8. The DSSS signal has a symbol rate of 5
MHz, and is centered at 125 MHz at SNR of 10 dB. After
detecting the presence of the signal in the band segmentation,
the CIC filter downconverts the signal to a center frequency of
16 MHz and decimates it resulting in 4 samples per symbol.
Fig. 3 shows the output of each of the algorithms discussed in
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Fig. 3. Classification example of a 5 MHz DSSS signal with underlying BPSK modulation scheme.

this section. In the first block of the classification tree, the C42

cumulant is computed and compared against a threshold. We
show that setting Nm = 90 samples is sufficient to separate
SC and MC classes with a probability of 95%. In this case, the
DSSS signal being a SC signal will be classified as SC, and its
transmit parameters will be computed next using (5) and (6).
Using NT = Nf = 400 samples, the pre-processors estimate
the symbol rate and carrier frequency of the DSSS signal.
Using these estimates, the modulation type classifier computes
the normalized feature vector F̄ which is compared to the
theoretical normalized feature vector of BPSK signals plotted
in solid lines in Step 4 of Fig. 3 for different realizations of
the feature vector 2. Finally, after being classified as a BPSK
signal, the variance of the auto-correlation function ρ(τ) given
in (10) is computed using Nd = 32 samples per frame and
Md = 4 averages, and is compared against the threshold γd.
Given the oversampling ratio of 4, the peak of ρ(τ) will occur
at lag τ = 8 × 4 = 32. Therefore, detecting the presence
of this peak inherently asserts the presence of the DSSS
signal and estimates the code length simultaneously. Note that
the design variables in this example are selected so that the
estimation accuracies of the pre-processors are on the order
of 100 ppm. However, such small estimation accuracies might
not be required to meet the desired classification accuracy. The
aim of the next section is to analyze the maximum tolerable

2We only require one realization of the feature vector to perform
modulation-type classification, but the average detection performance is
computed using multiple realizations of the feature vector

estimation accuracies in order to minimize the total consumed
energy and processing time.

IV. ENERGY MINIMIZATION METHODOLOGY

In this section, we proceed with the optimization of the
design parameters in order to minimize the total consumed
energy while meeting the desired classification probability.

In order to minimize the consumed energy, we split the
signal processing blocks into dependent blocks, whose design
variables are a function of the output of previous signal
processing stages, and independent blocks, whose design vari-
ables can be set independently of the output of other blocks.
For instance, the design variables of both the multi-carrier and
DSSS classifiers do not depend on the output of any other stage
in the classification, and are therefore labeled as independent
blocks. On the other hand, the modulation type classifier block
relies on the outputs of the pre-processors, and the choice of
the number of samples spent for modulation type classification
Nc is tightly related to the estimation accuracies of the transmit
parameters. These blocks are therefore labeled as dependent.
It is clear that the independent blocks consume a fixed amount
of energy regardless of the other blocks, and therefore are not
jointly optimized with the rest of the blocks. On the other
hand, a joint optimization of the total consumed energy of the
dependent blocks is possible. A summary of the dependent
and independent blocks and their respective design variables
are depicted in Fig. 4.
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Fig. 4. Proposed processor showing dependent blocks in gray and their design variables to be optimized.

A. Energy Optimization of Dependent Blocks

In order to optimize the energy consumption of the proposed
pre-processor and classifier, we note that all three blocks make
use of the CAC statistic in (3). Thus, minimizing the total
number of samples spent for classification is equivalent to
minimizing the total consumed energy. Note that minimizing
the total number of samples is also equivalent to minimizing
the processing time given by (6Nc + STNT + SfNf )Ts,
where ST = ⌈WT /∆αT

⌉ and Sf = ⌈Wf/∆αf
⌉. The search

windows WT and Wf are obtained from the band segmenta-
tion and are SNR dependent, and are therefore not optimized.
Similarly, the number of samples per CAC computation NT

and Nf are also SNR dependent since they are the minimum
required number of samples to push the noise level below the
feature to be detected. At SNR of 10 dB, NT = Nf = 320
samples are required to correctly estimate the symbol rate and
carrier frequency. Therefore, the only variables to optimize
over are Nc, ST , and Sf , which in turn is equivalent to
optimizing over Nc,∆αT

, and ∆αf
.

The objective function that minimizes the total consumed
energy can therefore be formulated as follows

min
Nc,ST ,Sf

6Nc + STNT + SfNf

such that P(Ĉ = i | ∆αf
,∆αT

, Nc, C = i) ≥ 0.95

∀i ∈ [1, 2, 3]. (11)

It is important to note that the result of the optimization
problem (11) is a function of the coarse estimate windows
WT and Wf . In fact, the wider the windows are, the larger
the number of CAC computations ST and Sf are required for
a given step size ∆αT

and ∆αf
, respectively. Therefore, the

optimum choice of the design variables is inherently tied to
the coarse estimation accuracy from the band segmentation.
Next, we study the tradeoffs between the symbol rate and
carrier frequency estimation errors under a given probability of
classification constraint. We show that there exists a region of
pre-processor (∆αT

,∆αf
) pairs that satisfy the classification

probability requirement.

B. Tradeoffs Between Pre-Processor Accuracies

Given that signals belonging to Class 1 only exhibit a
cyclostationary feature at their symbol rates, the requirement
for the maximum tolerable ∆αT

is determined by signals
belonging to this class. The classification accuracy for Class
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Fig. 5. Probability of correct classification of M-QAM signals as a function
of number of samples for different cyclic frequency offsets at SNR of 10 dB.

1 signals is shown in Fig. 5 as a function of the number of
samples used for classification under different ∆αT values. It
can be seen that the classification accuracy of QAM signals is
below the desired probability of 0.95 under CFO ∆αT greater
than 1000 ppm at SNR of 10 dB even when the number
of samples is increased. We refer to the SNR-dependent
maximum tolerable cyclic frequency offset as ∆maxαT

. At
SNR of 10 dB, ∆maxαT =1000 ppm. Therefore, as long as the
symbol rate estimator guarantees an accuracy less than 1000
ppm, signals belonging to Class 1 can meet the required clas-
sification accuracy. Further, since the cyclostationary feature
at the symbol rate is the weakest among all cyclostationary
features [25], it requires the most number of samples to
be detected. Therefore, the number of samples spent during
classification Nc is determined by signals of Class 1 for every
∆αT

≤ ∆maxαT
.

The accuracy of the carrier frequency estimation error ∆αf

is determined by the modulations that exhibit a cyclostationary
feature at the carrier frequency, namely signals belonging to
Class 2 and 3. However, unlike the accuracy requirement
for the symbol-rate estimate which is governed by signals
belonging to Class 1, ∆αf

has to be jointly determined for
every ∆αT ≤ ∆maxαT . As a result, for every ∆αT ≤ ∆maxαT

that guarantees proper classification of Class 1 signals, there
exists a maximum estimation error ∆maxαf

that can be
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tolerated by Class 2 and 3 signals. Therefore, in order to
understand the tradeoffs between the accuracies of both pre-
processors, we obtain the feasible region in the (∆αT

,∆αf
)

coordinate system under which the classification accuracy for
all classes is met.

For every ∆αT
≤ ∆maxαT

and Nc that meet the classifica-
tion accuracy of Class 1 signals, the maximum tolerable CFO
∆maxαf

is the result of the following optimization:

(∆maxαf
| Nc,∆αT ) = max ∆αf

such that P(Ĉ = i | ∆αf
,∆αT

, Nc, C = i) ≥ 0.95, (12)

where C is the correct class to which the received signal be-
longs to, and i ∈ [2, 3]. Therefore, for every ∆αT

≤ ∆maxαT
,

there exists a maximum ∆maxαf
under which classification

requirement of 95% is met.
This tradeoff among different set of triplets is illustrated

in Fig. 6 for SNR of 10 dB. We note the tradeoff between
accuracies of the two pre-processors, and their respective
impact on Nc. It turns out that setting a stricter requirement
on the symbol-rate estimator relaxes the required accuracy
of the carrier frequency estimator. As expected, changing
∆αT results in different number of samples required for
classification as discussed earlier. It is important to note that
the tradeoff saturates after a certain point. In fact, spending
more energy in the symbol rate estimator to push ∆αT

below
700 ppm does not result in a relaxation of the carrier frequency
estimator requirement. As a result, the cyclostationary features
at a function of the carrier frequency cannot be detected
reliably with an offset larger than 5400 ppm at SNR of 10
dB. In addition, the maximum tolerable estimation accuracy
for the carrier frequency ∆αf

given the accuracy of the symbol
rate estimation ∆αT

is denoted in Fig. 6 by markers. From an
energy point of view, for a given ∆αT and the corresponding
Nc samples spent in the modulation classification, setting
∆αf

= ∆maxαf
minimizes the total consumed energy of

the pre-processor. Therefore, although there exists an infinite
number of (∆αT ,∆αf

, Nc) triplets that meet the required
classification probability, the most energy-efficient triplets lie
on the boundary of the feasible region shown in Fig. 6.

V. DESIGN METHODOLOGY AND HARDWARE
ARCHITECTURE

This section presents a reconfigurable architecture for the
blind classification flow. Unlike traditional ASICs that only
focus on a single algorithm, the proposed reconfigurable
hardware is co-optimized in both algorithmic and architec-
tural design spaces, making it able to perform a variety of
classification tasks yet still achieve high energy efficiency.

A. Algorithm-Architecture Co-design

The algorithm-architecture co-design methodology is ap-
plied to realize the proposed reconfigurable classifier, as
illustrated in Fig. 7. Table III depicts the list of algorithms
used by the proposed processor which were chosen for their
algorithmic robustness, good classification accuracy and ar-
chitectural similarity to enable high degree of hardware reuse.
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Fig. 6. Tradeoff between the symbol rate estimator and carrier frequency
estimator accuracies at SNR of 10 dB in order to meet a classification
probability of 0.95 for all classes with the corresponding number of samples.
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Fig. 7. Algorithm-architecture co-design framework delivers optimized
hardware as well as processing strategies.

These algorithms, although employed to perform distinct types
of tasks, are algorithmically similar. All input samples undergo
the complex multiplication-and-accumulation (MAC) followed
by a magnitude computation. However, the post-processing on
the computed magnitude is different among algorithms. For
instance, the CAC for the pre-processors simply performs the
argmax function which chooses the cyclic frequency which
maximizes the objective function, while the CAC for modu-
lation type classification needs Euclidean distance calculation
and argmin to detect the signal class whose theoretical feature
vector is closest to the computed feature vector.

The selection of algorithms directly affects the implementa-
tion strategy. From functionality points of view, the implemen-
tation can be partitioned into two parts. We call the first part
as the degree-of-freedom (DOF) operation, meaning that this
type of computation is required by all algorithms. The second
piece is the non-degree-of-freedom (NDOF) operation, whose
hardware cannot be efficiently shared by different algorithms.
In this sense, the MAC and the magnitude computation are
categorized as DOF, while the post-processing is viewed as
NDOF. Another aspect of algorithm-architecture trade-off is
described by the workload requirements. Considering the pro-
cessing time along an algorithm in Table III, we can see that
the MAC is active for >95% of the time, while the magnitude
computation and the post-processing only work for a few clock
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cycles, having very low utilization. On the other hand, if we
focus on the workload requirements across the algorithms,
we see that the parameter estimations and the modulation-
type classification take up a majority of the time and energy
(>99%). Since all these three algorithms are realized by
similar versions of CAC functions, the architecture for DOF
operations has to be optimized in favor of the CACs instead of
other functions (e.g. C42) to have strong connection to the en-
ergy minimization methodology proposed in Sec. IV. Distinct
hardware design constraints for each of these components are
therefore derived. The MAC has to support high-throughput
with minimized dynamic energy which can be accomplished
by applying parallelism and aggressive voltage scaling at the
circuit level. In addition, the magnitude computation and the
post-processing need to have minimized leakage when staying
idle due to their low utilization. Combined with the algorithm-
level energy minimization strategy in Section IV, the entire
co-design framework is able to deliver high energy efficiency
from both the algorithm and circuit perspectives.

B. Proposed Reconfigurable Classification Processor

The proposed reconfigurable classification engine, as shown
in Fig. 8, consists of a multi-mode MAC (MM-MAC), a
magnitude computation unit (MCU), a post-processing unit
(PPU), a 64×16b register bank, a 128×26b instruction and
signal database memory, and a system controller that decode
and deploy the control signals. The sizes of the register bank
and the memory are decided to properly fulfill the classi-
fication tasks. Unlike traditional processors that unify their
datapaths, the proposed classifier is a hybrid-datapath system,
doing complex-valued computation in MM-MAC and MCU,

but real-valued processing in PPU. Each processing block
is individually optimized with particular design constraints
derived from its workload requirements. The architectures
of complex multipliers in MM-MAC are carefully selected
based on their propagation delay and area cost. The scaling-
type coordinate digital computer (CORDIC) realizes the MCU
with better numerical accuracy than direct squaring followed
by square-root operations. Detailed implementation issues are
presented as follows.

1) MM-MAC: Figure 9 shows the architecture of the multi-
mode MAC unit, with its internal bit-width optimized by an
in-house analysis tool [26]. Consisting of a coefficient gener-
ator, several multipliers/squarers and well-designed datapath,
the MM-MAC unit is particularly dedicated to the critical
operations of selected classification algorithms. It catches the
complex-valued data (x[n]) directly from the chip interface
and pass them through a series of multiplier and/or squarer to
generate their second- or fourth-order products. The products
are then optionally passed through another complex multiplier
(in CAC mode) before reaching the final accumulation stage.
The formula C42 for multi-carrier classification is decomposed
into three parts ( 1

Nm

∑
|x [n]|4, C20 and C21), separately

computed by MM-MAC and stored in the register bank, and
finally combined by the post-processing unit. The two-mode
squarer is flexible to perform either the square or the absolute-
square of a complex number a+jb efficiently by the following
reformulation:

(a+ jb)
2
= (a+ b) (a− b) + j (2ab),

|a+ jb|2 = (a+ b) (a+ b)− (2ab).
(13)

Compared to the direct-mapping approach that requires three
8b multipliers and two 12b adders, the proposed method only
uses two 8b multipliers, two 8b and one 12b adders, saving
28% of area.

The CAC coefficient generator, as shown in Fig. 10, gen-
erates complex exponential terms for CAC functions. It starts
with a free-running angle accumulator whose step size equals
the product of cyclic frequency and sampling rate (αiTs).
Note that the accumulator doesn’t need to be reset before
each CAC computation because any of its initial phase offset
will be eventually eliminated through MCU. Following the
accumulator is the angle synthesizer. It is realized in an area-
efficient way by the piecewise-linear approximation method
[27], plus a re-mapping circuit to generate sine/cosine values
whose angles are out of the range between 0 and π/4. The area
efficiency from the piecewise-linear approximator comes with
the loss of accuracy. The synthesizer suffers a mean-square-
error (MSE) of −40 dB when it generates certain angles,
meaning that it won’t perform any better even in floating-
point systems. However, such error is below the noise floor at
10 dB SNR and therefore produces negligible effects on the
classification performance.

The two complex multipliers in MM-MAC are realized
using the traditional four real multiplications and two additions
(4×, 2+) rather than the method suggested in [28] that
uses (3×, 5+) due to several reasons. Conventionally, trading
one multiplier for three adders in the (3×, 5+) approach is
beneficial since the complexity of multipliers is usually much
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higher than that of adders for general-purpose processors.
However, since the wordlength of complex multiplication in
MM-MAC is small, the original form is simpler. To see the
tradeoff between (4×, 2+) and (3×, 5+) regarding their area
estimates, we use the array-multiplier approximation for first-
order comparison. Without loss of generality, the normalized
size of an array multiplier can be estimated by the product
of wordlengths of the multiplier and the multiplicand [29].
The area estimate of a (3×, 5+) complex multiplier is thus
generalized by the following equation

Area3×5+ = 3L2 + 10L, (14)

where L denotes the wordlength. On the other hand, the area
of a (4×, 2+) multiplier can be formulated as

Area4×2+ = 4L2 + 4L. (15)

Solving these two equations shows that (3×, 5+) can only be
noticeably better (by 20%, for example) when the wordlengths
of its operands are greater than 20 bits. In our case, these
two candidates for an 8b multiplier realization only differs
by 5.5%. The other concern to the argument is about the
propagation delay. It is obvious that the (3×, 5+) approach is
slower than (4×, 2+) due to the delay from an additional adder
stage. As a consequence, the (4×, 2+) complex multiplier can
use smaller logic gates to achieve the same delay as (3×, 5+),

or it can exploit the advantageous timing slack to allow more
voltage scaling, further minimizing its power consumption.

2) MCU: The scaling-type CORDIC is used to compute the
magnitude of a complex number due to its robust numerical
stability. The core building block of a scaling CORDIC
consists of adders and shifters. The output precision depends
on the number of CORDIC iteration stages Ni. There are
three different types of architecture to implement CORDIC,
i.e. fully pipelined, fully folded, and a hybrid between these
two. Pipelined CORDIC achieves the highest throughput with
high area and leakage penalty. The folded architecture takes
Ni cycles to calculate the magnitude with around Ni-times
lower area and leakage cost. Since the magnitude computation
is highly underutilized and is only required at the end of
each MAC operation, the fully folded CORDIC architecture
is implemented.

3) PPU: The post-processing unit is a real-valued, one-
cycle-latency processor with specialized arithmetic logic units
(ALUs). The ALU consists of a comparator (for thresh-
old comparison, argmin and argmax functions), an 8-bit
right/left-shifter (for power-of-two normalization), a 16-bit
adder/subtractor and a 16-bit multiplier. For most of the time,
PPU executes the normalization and/or the threshold compar-
ison on the MCU outputs. The real-valued adder/subtractor
and multiplier are occasionally used to compute the Euclidean
distance required by the modulation-type classification. In-
stead of using a divider to normalize the computed CAC
feature vector, the multiplier is employed to de-normalize
the theoretical feature vector before substracting it by the
computed one. The same multiplier is then reused to perform
the squaring operation to complete the Euclidean distance
calculation. The ALU operations are executed sequentially,
one in each clock cycle, to realize the complex operations
in an area-efficient way. Although the average operational
latency from this approach is much longer than the one which
does all operations in parallel, the cycle-time overhead is still
negligible since the PPU is only active <1% of the total
processing time. The slowest yet simplest PPU architecture
minimizes the area and leakage.

4) Data Transfer and Control: The proposed processor em-
ploys a 64×16b one-write-two-read (1W2R) register bank for
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inter-block data transfer, a 128×26b memory for instruction
and signal database storage, and a central controller to decode
and deploy the control signals. Note that the contents in the
register bank can also be monitored from the chip outputs
at any time for functional verification. The instruction-set
architecture (ISA) supports regular register-type instructions
for the PPU and the register bank, and special instructions to
control the MM-MAC and the MCU. The ISA also implements
loop and jump instructions to efficiently use the memory space.
The program counter continues to accumulate when it exe-
cutes the regular one-cycle-latency instructions, but is halted
during the long-latency operations of MAC and MCU. All
of the processing blocks use the simple request-acknowledge
protocol to communicate with the central controller, telling the
controller when to let the register bank access their outputs.
For illustration, the programming of MM-MAC is depicted
in Fig. 11. The controller first sends the request signal REQ
and the initialization information INIT (i.e. the mode, frame
length and cyclic frequency, based on the contents of the
26b instruction) to activate the MM-MAC. The MM-MAC
then starts the computation and generates an acknowledgement
signal ACK along with the outputs when it finishs. Upon
catching the acknowledgement signal, the halted program
counter resumes to access the new instruction, allowing the
controller to store the MAC outputs into the register bank
for later use. The MM-MAC finally returns to the idle state,
preparing to accept another request whenever needed. Since
most of the processing time is spent on the internal datapath
of MM-MAC, the overhead from the data transfer is negligible,
having limited effects on the total processing time and energy
consumption. The instruction and memory overhead, however,
cannot be ignored since they are active every cycle to control
the processing blocks. The energy cost from the ISA and the
processing blocks, as a result, are jointly considered for more
accurate energy estimates, as will be seen in the next section.

Lastly, since the classification tasks are already determined
at the co-design stage, there is no need to use generic software
compilers (e.g. C++) to program the processor. An assembly
code, instead, is manually written and converted to machine
code by an in-house assembler for design verification. Imple-
mented using Excel, the assembler provides a series of drop-
down boxes that contain the user-friendly syntaxes (e.g. ADD,
SUB, etc.) to compose the instructions. The tool then parses
the syntaxes into binary machine codes using the VLOOKUP
and the CONCATENATE functions embedded in Excel.

VI. DESIGN VERIFICATION

This section discusses the Simulink-based functional ver-
ification of the proposed processor. We then use the power
estimates from synthesized RTL code to compute the total
consumed energy of the processor at a SNR of 10 dB.

A. Simulink Design Environment

We have developed a Simulink-level experiment to run
Monte-Carlo simulations in order to verify the functionality
of the proposed processor, the hierarchy of which is similar
to the one shown in Fig. 1. This processor is connected to the

emulated RF front-end and band segmentation, which digitizes
and senses the 500 MHz wide spectrum respectively. Each
of the signal processing kernels has been implemented using
Simulink embedded functions which effectively proves the low
algorithmic complexity of our implementation. The Simulink
design environment was used to test different signal types
under different scenarios. Further, the Simulink environment is
used to generate test vectors for testing the RTL code as well
as demonstrate the functionality of the different algorithms
that compose the processor.

B. Chip Implementation

An integrated chip design flow is adopted to incorporate
algorithm, architecture, and circuit implementation in a highly
automated environment. The graphical Simulink development
environment offers high-level floating-point and fixed-point
modeling for simulation. Specifically, the in-house analysis
tool [26] is employed to minimize the internal data bitwidth
subject to the classification accuracy of 95% at 10 dB SNR.
The Simulink description can also be used to automatically
generate the hardware description for gate-level synthesis.
Cycle-accurate power estimate is done by static-timing analy-
sis tool using true test vectors exported from Simulink model.
A script-based backend place-and-route flow is also developed
to shorten the design cycle and enhance the chip reliability.
Implemented in a 40-nm CMOS technology, the classifier
takes 0.06 mm2 (85k equivalent 2-input NAND including
the memory and the register bank) and consumes 10 mW at
500 MHz from a supply voltage of 0.9 V. Detailed energy
breakdown shows the MM-MAC consumes 20 pJ/cycle, and
the MCU and PPU take 10 pJ/cycle. Each of these average
energy costs include 1) the active energy from arithmetic
logic, and 2) the energy of the control circuits that configure
the block. In other words, it represents the energy consumed
whenever a block is used. Extra clock cycles due to inter-
block data transfer and latencies are also considered but are
found to be negligible because the processor spends most of
the time within the processing blocks. One thing to be noted
is that, since the MM-MAC is fully pipelined, it handles one
sample per clock cycle from a throughput perspective. As a
result, the average energy of 20 pJ/cycle from the MM-MAC
is equivalent to 20 pJ/sample. The MCU and PPU, on the other
hand, don’t have this property as they are either fully folded
or take multiple instruction cycles to process one sample.

C. Total Processing Time and Consumed Energy

In order to solve the optimization (11) and obtain the
consumed energy of the pre-processor and modulation-type
classifier, we use values of WT and Wf that correspond to the
band segmentation processor [12]. We implemented the band
segmentation in [12] and obtained coarse estimate windows for
both the symbol rate and carrier frequency at SNR of 10 dB,
given by WT = 150 KHz, and Wf = 260 KHz respectively.
To illustrate the benefits of energy minimization across the
design space composed of the triplets (Nc,∆αT ,∆αf

), we
compute the total energy for some of the triplets in the feasible
region. Since most of the processing time is spent on the
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TABLE III
SUMMARY OF CLASSIFICATION BLOCKS, TASK PARTITIONS, PROCESSING TIMES AND CONSUMED ENERGIES.

Task
Task Partition of Processing Blocks Total Num. of Cycles Proc. Time Energy

MM-MAC & MCU PPU MM-MAC MCU & PPU @500 MHz Consump.
(20pJ/Cycle) (10pJ/Cycle) (ms) (µJ)

Mult. Car. C42 = 1
Nm

∑Nm
n=1 |x[n]|4 − |C20|2 − 2C2

21 C42 ≷ Threshold 300 (97.7∥0.05) 7 (2.3∥0.10) 0.001 0.006

Carrier Freq. Est. |Rx2 (αi)| =
∣∣∣1/Nf

∑Nf−1

n=0 x[n]4e−j2παinTs

∣∣∣ maxαi |Rx2 (αi)| 401k (98.8∥77.0) 5024 (1.2∥75.6) 0.800 8.000

Symbol Rate Est. |Rx∗ (αi)| =
∣∣∣1/NT

∑NT−1
n=0 |x[n]|2e−j2παinTs

∣∣∣ maxαi |Rx∗ (αi)| 116k (98.8∥22.3) 1456 (1.2∥21.9) 0.230 2.300

Mod. Type |Rx(αi)| =
∣∣∣1/Nc

∑Nc−1
n=0 x[n]2e−j2παinTs

∣∣∣ Euc. Dist. + argmin 3k (95.3∥0.60) 148 (4.7∥2.20) 0.006 0.060

DSSS rx(m, τ) = 1/Nd|
∑Nd

n=1 xm[n]xm[n− τ ]| maxτ ρ(τ) 230 (94.3∥0.05) 14 (5.7∥0.20) 0.001 0.005

Note: Numbers inside the parenthesis represent the workload (along∥across) the classification tasks (in %). Sum 1.037 10.37
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Fig. 12. Combined energy consumed by the pre-processor and modulation
type classifier at different (Nc,∆αT ,∆αf ) in the feasible region with a
consumed energy of 20 pJ per sample.

parameter estimation and the modulation-type classification
that use the MM-MAC block, the average consumed energy
of the entire system is dominated by these two tasks and can
be approximated as 20 pJ/sample. Substituting this number
into the proposed tradeoff analysis framework, the energy con-
sumed by the pre-processor and the modulation-type classifier
is computed as

ET (Nc,∆αT
,∆αf

) = 20(6Nc + STNT + SfNf ) pJ.

Based on the above equation, we compute the energy spent
by the pre-processor and the modulation-type classifier for a
range of (Nc,∆αT

,∆αf
) triplet. We show in Fig. 12 the com-

bined consumed energy of the pre-processor and modulation
type classifier at SNR of 10 dB. It can be seen that the triplets
that lie on the boundary of the feasible region consume the
minimum amount of energy of 10.3 µJ, as compared to 24.9
µJ and 59.5 µJ for example if more processing time is spent
on either of the two pre-processors. It is worth noting that the
reason why there doesn’t exist a unique optimum point for
the optimization is because the 6Nc term in (11) is negligible
compared to the other two terms, and therefore, there exists
a range of Nc values for which the objective function is
minimized.

After minimizing the energy consumed by the pre-processor
and the modulation-type classifier, we compute a breakdown

of the total energy and processing time, as shown in Table III.
As can be seen, at a clock rate of 500 MHz, the proposed
processor can meet the classification requirement of 95%
while consuming a total of 10.37 µJ, and a processing time
of around 1 ms, meeting both energy and processing time
requirements given in Table I. Further, it is worth noting that
the energy consumed by the pre-processor and modulation
type classifier constitute 99.33% of the total consumed energy
which validates our reasoning behind optimizing the dependent
blocks. Note that the proposed classifier can also perform non-
blind signal classification, if the transmit parameters are known
and stored in the signal database. In such an application, the
total consumed energy and processing times drop dramatically
to around 71 nJ and 8 µs, respectively. These numbers can be
obtained by adding the processing times and consumed energy
in Table III with the exception of both the carrier frequency
and symbol rate estimation blocks.

VII. CONCLUSION

A low-complexity blind modulation classification processor
that operates without the knowledge of any of the parameters
of the signal being processed is presented. The processor
is composed of low-complexity hierarchical signal process-
ing kernels that can classify single-carrier and multi-carrier
signals. With respect to single-carrier signals, increasing the
processing time during the modulation type classification
does not necessarily increase the classification probability
under large parameter estimation errors. As a part of the
design strategies, the tradeoffs between the pre-processor and
modulation type classifier are analyzed, and an optimization
framework is formulated to minimize the total consumed
energy and processing time. The reconfigurable hardware
consists of degree-of-freedom operations and dedicated oper-
ations. Degree-of-freedom operations are optimized for high-
throughput and energy efficiency, while the area of the non-
degree-of-freedom operations is optimized to minimize the
leakage spent during idle cycles. The proposed classifier
achieves power consumption of 10 mW at 500 MHz, 0.9 volt
nominal supply voltage. Its total energy consumption is further
optimized using algorithm-level tradeoff analysis, yielding a
total of 10.37µJ at a SNR of 10 dB to meet the classification
accuracy of 95%.
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