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Abstract—In Location-Based Services (LBSs) mobile users
submit location-related queries to the untrusted LBS server
to get service. However, such queries increasingly induce pri-
vacy concerns from mobile users. To address this problem, we
propose FGcloak, a novel fine-grained spatial cloaking scheme
for privacy-aware mobile users in LBSs. Based on a novel use
of modified Hilbert Curve in a particular area, our scheme
effectively guarantees k-anonymity and at the same time provides
larger cloaking region. It also uses a parameter σ for users
to make fine-grained control on the system overhead based on
the resource constraints of mobile devices. Security analysis and
empirical evaluation results verify the effectiveness and efficiency
of our scheme.

I. INTRODUCTION

Location-Based Services (LBSs) have been popular in re-

cent years. The widely used modern mobile devices such

as smartphones and tablets provide mobile users with more

opportunities of communications and better awareness of their

surroundings. Through Apple Store or Google Play Store,

users can download and install location-based applications into

their smartphones, submit queries to LBS servers, and obtain

location-related service data about Point of Interests (POIs) in

vicinity. For example, users can look for the clinics or banks

nearby, and check the price information of the nearest Red

Lobster restaurant.

Normally, the LBS servers serve a user based on its submit-

ted LBS query (e.g., show me the clinic information within 1

mile), which typically includes a 〈location, query interest〉
pair and possibly some other information such as the user’s

ID, query radius, etc. However, these submitted information

may be abused by the untrusted LBS servers (and other parties

that compromise the servers). Hence the LBS servers may

know where the users are, what kind of queries they submit,

what they are doing, etc. They may track users or release their

personal information to third parties such as advertisers. We

thus need to pay more attention to protecting privacy.

To address the privacy issue, many approaches have been

proposed over recent years in the literature. The state-of-the-art

approaches can be roughly divided into two main categorizes

[1]: trusted anonymization server-based schemes [2], [3], [4],

[5], [6], [7] and mobile devices-based schemes [8], [9], [10],

[11], [12], [13], [14]. Most of them achieve k-anonymity

[15] using location perturbation and obfuscation, temporal

and spatial cloaking or dummies. Among these schemes, the

temporal and spatial cloaking [2], [8], [5], [9], [10], [7], [14]

technique is very popular and can be deployed to real smart-

phones easily. Such schemes either minimize the cloaking

region [8], [7] to reduce the system overhead, or maximize

the cloaking region [9], [14], [16] to provide better privacy.

In trusted anonymization server-based schemes, a query is

submitted to the LBS server via a trusted third-party server

(e.g., location anonymizer [4], [6]), which enlarges the queried

location into a bigger cloaking region covering k − 1 other

users to achieve k-anonymity. In this way, the untrusted LBS

server cannot identify the user’s real location. These schemes

rely on a trusted server, which becomes the weak point of

the system and also a single point of failure. Mobile device-

based approaches remove the trusted server by constructing the

cloaking region based on exchanged location information from

other encountered mobile users. However, both approaches

have limitations. First, existing solutions either provide users

with the minimum cloaking region or the maximum, but lack

a balanced consideration between user’s required privacy level

and the constrained resources of their mobile devices. Second,

sometimes it is difficult to find enough users in a reasonable

cloaking region.

To address the aforementioned problems, in this paper,

we propose a Fine-Grained Spatial Cloaking scheme, called

FGcloak, which achieves k-anonymity for users in LBSs and

provides fine-grained control on the system overhead. Differ-

ent from existing approaches, FGcloak uses a set of algorithms

to do fine-grained spatial cloaking. First, FGcloak uses a

Modified Hilbert Curve Constructing (MHCA) algorithm to

fully fill the considered map area based on users’ query

probability. Then, to provide k-anonymity and guarantee bigger

cloaking region, it uses a Privacy-Aware Dummy Selection

(PADS) algorithm to carefully separate the modified Hilbert

curve into k segments. Finally, it uses a Fine-Grained Local

Replacement (FGLR) algorithm to reduce the system overhead

according to users’ personalized requirements.

The major contributions of this paper are as follows.

• We construct a modified Hilbert Curve considering users’

query distribution, and design a spatial cloaking scheme based

on it to protect user’s location privacy in LBSs. This scheme

protects privacy through k-anonymity and large cloaking re-

gions. Due to the dimension reduction property of Hilbert

Curve, the system overhead can also be reduced.

• Through the Fine-Grained Local Replacement (FGLR)

algorithm which combines dummy-based and encounter-based



approaches, we provide users with fine-grained controls on

system overhead.

• We provide thorough security analysis and extensive

evaluation results to show the effectiveness and efficiency of

FGcloak.

The rest of the paper is organized as follows. We discuss

related work in Section II. Section III presents some pre-

liminaries of this paper. We present our FGcloak scheme in

Section IV. The security analysis and the evaluation results

are shown in Section V and VI, respectively. We conclude

this paper in Section VII.

II. RELATED WORK

To protect user’s location privacy in LBSs, many research

solutions have been proposed over recent years [17], [18],

[1]. Most of them try to provide anonymity on users’ real

locations, such as k-anonymity [15], which tries to hide the

user’s real information into k − 1 other users. Entropy-based

metrics [19], [20], [21], [13] and other metrics [22], [23]

have also been widely adopted. Generally speaking, location

privacy can be preserved through location perturbation and

obfuscation, temporal and spatial cloaking or using dummies.

k-anonymity was introduced into location privacy by Gruteser

et al. [2], which hides user’s real location to protect location

privacy. Their cloaking algorithm constructs spatio-temporal

cloaking boxes which contain at least k users and these boxes

are sent to the LBS server as locations. CliqueCloak [5] is a

personalized k-anonymity model which allows users to adjust

their levels of anonymity. However, most of these work use a

location anonymizer to generate the cloaking region, rendering

the anonymizer a central point of failure and the performance

bottleneck. To avoid the anonymizer, Kido et al. [3] proposed

using dummy locations to achieve anonymity. However, they

focus on reducing the communication overhead. Also, they

use a random walk model to generate dummy locations which

cannot ensure privacy when side information [24], [14], [16] is

available to the adversary. Niu et al. [14] proposed a privacy-

preserving cloaking scheme which can effectively achieve k-

anonymity while providing bigger cloaking region. However,

the scheme needs a warm-up phase and thus cannot provide

protection all the time. Similar problems also happen in many

encounter-based solutions such as SMILE [11] and EPS [21].

Besides the aforementioned approaches, cryptography-based

schemes [26], [27] and policy-based solutions [25] are also

proposed to protect user’s privacy.

Hilbert Curve has also been used in several other schemes

(e.g., MobiHide [28]), but most of them use the standard

Hilbert Curve which is different from our modified Hilbert

Curve. Our modified Hilbert Curve is similar to the Various-

grid-length Hilbert Curve (VHC) used in CAP [10], but there

are several key differences. First of all, VHC is constructed

from road density, but our curve is built upon query distribu-

tion. Second, VHC is used to perturb a single location, but

our curve is used to select dummy locations. Moreover, our

scheme provides fine-grained control on system overhead but

CAP does not.

III. PRELIMINARIES

In this section, we first present a basic concept and the

adversary model used in this paper, and then, we present the

motivation and the basic idea of our scheme.

A. Basic Concept

Background Information: the background information in

our work is limited to the user’s query probability information

in the local map. Specifically, suppose the local map is divided

into a set of cells (i.e., n×n cells). The query probability in a

particular cell can be represented as the probability that users

submit location-based queries from the cell.

B. Adversary Model

Based on the different abilities the adversary has, we con-

sider two types of adversaries in our work, passive adversary

and active adversary.

Passive adversary: any entity can be a passive adversary if

he can eavesdrop the wireless channels or compromise users

to obtain the sensitive information of other users.

Active adversary: any entity can be an active adversary

if he can compromise the LBS server and obtain all the

information known to the server to perform attacks such as

inference attack. In this paper, the LBS server is considered as

the active adversary. As the result, he can obtain each user’s

information and monitor the queries sent from users. Also,

the historic data of a particular user as well as the current

situation can be captured. In addition, he has knowledge about

the location privacy protection algorithm of the system.

C. Motivation and Basic Idea

Mobile users in existing LBSs applications need to submit

queries to the LBS server to obtain service data. A typical

query includes user’s identifier, exact location, the query

interest as well as the query range, etc. However, these data

may release user’s sensitive information to either adversaries

or the public. To protect user’s privacy, k-anonymity is a widely

used technique but with several drawbacks. Our work is thus

motivated by these drawbacks of existing k-anonymity-based

solutions. First, the most important problem is caused by

the third party server employed in existing approaches (e.g.,

location anonymizer in [4], [6]). Obviously, it becomes the

bottleneck of both system performance and privacy concern.

Second, few existing solutions provide fine-grained control for

mobile users to tune the tradeoff between system overhead and

privacy based on the restricted resources of their smartphones.

Last but not least, the size of cloaking region cannot always

be guaranteed, especially when the system is at the warming

up phase in [14] or a small number of users are encountered

in [11], [20], [21]. Hence, our work is to design a fine-grained

cloaking algorithm for privacy-aware mobile users without

relying on any third part servers.

To achieve fine-grained cloaking for privacy-aware users,

our main idea is to employ a modification of Hilbert Curve to

provide effective k-anonymity protection. Our approach works

in several steps, which is illustrated in Fig. 1 and Fig. 2.



First, we modify the standard Hilbert Curve according to the

query distribution. Specifically, Fig. 1(a) shows the standard

Hilbert Curve which covers the whole local map. Since the

distribution of all the queries from users in the local map

may not be an uniform distribution, we modify the standard

Hilbert Curve considering the query probability. Normally,

higher query probability leads to finer grains. We perform

the standard Hilbert Curve with finer grains in the region

with higher query distribution. Based on the modified Hilbert

Curve, we can obtain a set of points shown in Fig. 1(b). The

corresponding Hilbert Value of the standard Hilbert Curve and

our modified Hilbert Curve can be found in Fig. 2(a) and Fig.

2(b), respectively.

Second, due to a well-known property of Hilbert curve that

two adjacent points in the projected space are likely to be

close in the original space [10], given a particular point, we

can easily find out the adjacent points around. This property is

a normal use of the Hilbert Curve in constructing the cloaking

region in LBSs. While in our work, we prefer to construct a

bigger cloaking region as some existing research approaches

[14] do. Therefore, the adjacent points in the Hilbert Curve

should be avoided. To achieve this goal, we separate the

modified Hilbert Value into k segments, where k is a user-

defined value (e.g., k = 4 in Fig. 2(c)). Note that the user’s real

location is in one segment. Then we choose k− 1 candidates

from the other k − 1 segments. Through this way, the chosen

candidates can cover an as big area of the local map as possible

under the limitation k. Now we have k−1 candidates in hand

to achieve k-anonymity while guaranteeing a desired cloaking

region.

Although we can generate dummy locations at each chosen

candidate easily, it is hard to guarantee the effectiveness for

k-anonymity since some locations are unlikely to be real (such

as lakes, swamps, and rugged mountains) and can be easily

filtered out by the adversary with background information. We

can collect some history locations from encountered users to

make a more realistic anonymous set; however, the cost may be

high in terms of communication, computation and storage. To

solve this problem, we combine dummy-based and encounter-

based solutions together through a Fine-Grained Local Re-

placement (FGLR) algorithm. Specifically, in our scheme, each

user shares some history locations with encountered users.

When the LBSs are needed, the k − 1 candidates can be

determined by performing the aforementioned processes. For

each candidate in the chosen set, if there is a proper location

within comfortable offset in the buffer, our FGLR algorithm

makes replacement; otherwise, our FGLR algorithm uses a

carefully perturbed dummy location to achieve k-anonymity.

IV. OUR FINE-GRAINED CLOAKING SCHEME

In this section, we present the system architecture of our

proposed FGcloak, then, we introduce the three algorithms in

our scheme in details.

(a) Standard Hilbert Curve (b) Modified Hilbert Curve

Fig. 1. Our Modified Hilbert Curve based on query distribution

A. System Architecture

Our proposed FGcloak is a pure P2P-based scheme. Mobile

users of FGcloak communicate with each other within a

collaborative group through WiFi/Bluetooth/Ad Hoc network,

and connect to the LBS server through cellular networks,

such as 3G/4G. Each mobile user in our system keeps a

buffer to record and maintain the information exchanged from

encountered users. When a user Alice needs LBSs, she runs

the Modified Hilbert Curve Constructing (MHCC) algorithm,

the Privacy-Aware Dummy Selecting (PADS) algorithm, and

the Fine-Grained Local Replacement (FGLR) algorithm to

construct the cloaking region, and then sends the query as

well as the cloaking region to the LBS server. Fig. 3 shows

the data flow of our proposed FGcloak.

Fig. 3. Data Flow in our Scheme

B. Modified Hilbert Curve Constructing Algorithm

Generally, the query probability in local map can be ob-

tained from some third parties easily, e.g., the Internet or some



(a) Standard Hilbert Value

(b) Modified Hilbert Value

(c) Separation and Candidates Chosen

Fig. 2. Our Solution

social network applications such as Yelp! and Foursquare.

With these information, the mobile user can construct a

modified Hilbert Curve, which covers the whole map with

different grains. Normally, bigger query probability leads to

denser Hilbert Curve. Let’s recall the aforementioned example

shown in Fig. 1. Specifically, Fig. 1(a) shows the standard

Hilbert Curve when the queries are uniformly distributed in

the area. In Fig. 1(b), suppose the query probability in the 1st

region is a benchmark, marked as 1. The 2nd region’s query

probability is similar to the 1st region, hence marked as 1 too.

The query probability in the 3rd region is much higher, say, 4

times of the benchmark. Thus, we divide the 3rd region into

finer grains (e.g., through quadrant technique), and mark them

as 3-1, 3-2, 3-3 and 3-4 respectively. Similarly, the 6th, 9th,

10th, 11th and 12th regions are also divided into finer grains.

In this way, the modified Hilbert Curve is constructed. We

can see that the modified Hilbert Curve covers the regions of

higher query probability with higher density. Note that, since

the query probability in an area usually does not change very

frequently, this algorithm can be accomplished offline.

C. Privacy-Aware Dummy Selecting Algorithm

Based on the standard Hilbert Value (shown in Fig. 2(a)) of

the standard Hilbert Curve, we can easily compute the mod-

ified Hilbert Value (shown in Fig. 2(b)) by region quadrants.

Next, we describe the PADS algorithm using the example in

Fig. 2. Specifically, we first count the total number (Ntotal)

of the cells irrespective of their sizes (see Fig. 2(b)), and

then evenly divide them into k segments (see Fig. 2(c)). The

average number (Naverage) of cells in each segment can be

computed by

Naverage = ⌈
Ntotal

k
⌉. (1)

According to the rank (say r) of the real user (creal) in her own

segment (e.g., r = 1 if she is the first element of the segment),

we choose the rth element of each of the remaining k − 1
segments, and use the chosen elements as the k−1 candidates.

For example, suppose we try to achieve 4-anonymity, in Step 2

of the example in Fig. 2, the total number of the cells Ntotal =
34. We can compute Naverage = ⌈Ntotal

k
⌉ = ⌈ 34

4
⌉ = ⌈8.5⌉ =

9. In Step 3 of the example in Fig. 2, we divide the modified

Hilbert Value into 4 segments as 1 ∼ 6-1, 6-2 ∼ 9-4, 10-1

∼ 12-1 and 12-2 ∼ 16. Then, based on the rank of the real

user creal in her segment which is 3, we choose the third cell

(6-4, 10-3 and 12-4, respectively) in each segment as the other

3 candidates. The formal description of our PADS algorithm

can be found in Alg. 1.

Algorithm 1: Privacy-Aware Dummy Selecting Algorithm

Input : standard Hilbert Value, current cell creal and k

Output: an anonymous set of candidates

1 constructs the modified Hilbert Value;

2 counts Ntotal;

3 computes Naverage = ⌈Ntotal

k
⌉;

4 divides the modified Hilbert Value;

5 chooses the other k-1 candidates from each segment;

6 outputs the anonymous set.



D. Fine-Grained Local Replacement Algorithm

We provide a fine-grained local replacement algorithm

by combining dummy-based and encounter-based solutions.

Generally speaking, dummy-based approach has low commu-

nication and computation cost but cannot guarantee the ef-

fectiveness of generated dummy locations since some dummy

locations may appear in unlikely places in reality and can be

easily filtered out by the adversary. Encounter-based solution

can guarantee that the obtained information (e.g., locations)

from encountered users are solid and effective to achieve k-

anonymity, but it has higher overhead in terms of communi-

cation, computation and storage. Our idea is to combine the

two and achieve a tradeoff between them.

In our scheme, each mobile user uses encounter-based

algorithm to share and obtain information from encountered

users. Specifically, each user records the history locations

periodically (e.g., every 5 minutes), and shares part of col-

lected history data (i.e., a randomly chosen collected location)

when an encounter happens. To control the cost of information

exchange, we use a parameter exchange ratio (denoted by σ)

to adjust the amount of exchange. It measures the fraction of

time during which a user exchanges information with other

encountered users. Each user can set her own exchange ratio

based on the available resources of her mobile device. We use

a simple example shown in Fig. 4 to show the definition of

σ. Specifically, each user divides time into segments such as

(t0, t2), (t2, t4) and (t4, t6), etc. In the first segment (t0, t2),
the user turns off encounter-based exchange during (t0, t1) but

turns on encounter-based exchange during (t1, t2). Formally,

the exchange ratio σ can be computed as

σ =
t2 − t1

t2 − t0
, 0 < σ ≤ 1. (2)

Generally, bigger σ indicates more chances of communicating

with encountered users and higher communication cost as well.

After a user obtains k − 1 candidates by performing the

MHCC and PADS algorithms, she constructs the cloaking

region locally with both the obtained information from en-

countered users and carefully generated dummy users. Specif-

ically, for each candidate, the user searches the exchanged

information in the local buffer to find out the nearest location.

If the distance from this candidate to the nearest location in

the local buffer is close enough (i.e., within the same cell), the

original location of this candidate is replaced with the nearest

location in the buffer. Otherwise, the original location of the

candidate should be perturbed by a random comfortable offset

(e.g., 50 or 100 meters) set by the user. Normally, this offset

can guarantee that the perturbed location is still within a same

cell as the original candidate. In Alg. 2, we formally describe

our proposed FGLR algorithm.

V. SECURITY ANALYSIS

We provide security analysis in this section. Some attacks

such as eavesdropping attack on the wireless channel between

users and other entities can be easily avoided by cryptography

techniques. Thus, our analysis focuses on other attacks, such

Fig. 4. Exchange ratio in our Scheme

Algorithm 2: Fine-Grained Local Replacement Algorithm

Input : an anonymous set obtained from Alg. 1, current

cell creal and k

Output: the cloaking region

1 for (each candidate in the anonymous set except the

creal) do

2 searches the nearest location within the local buffer;

3 computes the distance;

4 if the distance is close enough then

5 replaces the candidate with the nearest location;

6 else

7 disturbs the candidate’s location with a randomly

chosen offset;

8 end

9 end

10 constructs the cloaking region with the proceeded

anonymous set;

11 outputs the cloaking region.

as colluding attacks and inference attacks, which may cause

serious privacy problems.

A. Resistance to Colluding Attacks

Adversaries are likely to collude with some users or the

LBS server to obtain other user’s private information.

Theorem 1. Our scheme is collusion resistant.

Proof: We consider the colluding behavior within a set

of users. We prove this theorem from two aspects. First, we

analyze the privacy issue when information exchange happens

in the encountering phase. In our scheme, each user is indepen-

dent with others. He maintains a buffer and randomly chooses

one location-related record from the buffer to share with the

encountered user each time. The chosen record may belong

to either the user himself or other users encountered before.

Since the buffer size (e.g., 100 or 200) is much bigger than k,

the successful guessing probability cannot be bigger than 1

k
.

Second, we analyze the privacy issue when generating dummy

locations. In our scheme, the FGLR algorithm guarantees that

all the processes are executing locally, not dependent on other

entities at all. That is to say, it is helpless for the adversaries to

compromise and collude with the nearby users; the adversaries

can only guess randomly.

The best case to this kind of adversaries is that he can get

the global information by compromising the LBS server and



all the users, but in this case he becomes an active adversary

as discussed below.

B. Resistance to Inference Attack

We directly consider the untrusted LBS server as the active

adversary to perform the inference attack. It can obtain knowl-

edge by monitoring all the users in the system, including their

interests, history queries as well as the current queries, etc.

Its aim is to match an observed location within the cloaking

region to the real user.

Theorem 2. Our scheme is inference attack resistant.

Proof: For the active adversary, beside some basic knowl-

edge, it knows the proposed scheme and the related algorithms

exactly. We first recall our PADS algorithm. Each candidate

is chosen from the cell with same rank in each segment. This

technique can confuse the powerful active adversary. Due to

the active adversary’s knowledge, it can perform our scheme

for k tests. The best result is that he cannot distinguish the real

user from others based on the testing results; i.e., all the test

results should be the same or totally different no matter what

the input is. In our scheme, for a submitted cloaking region

which covers k locations, the active adversary can choose

any one as the observed real user and perform our scheme.

Obviously, it can get the same set of locations for constructing

cloaking region. Therefore, it is hard for the adversary to

reverse the algorithm.

VI. PERFORMANCE EVALUATIONS

In this section, we present the simulation setup and our

evaluation results in turn.

A. Simulation Setup

To evaluate the performance of our proposed FGcloak,

10000 mobile users are deployed into a central part (8km ×
8km) of the Borlange Data Set1, which was collected from

1999 to 2001. This dataset is part of an experiment on traffic

congestion that happened in Borlange (see [29] for more

details). We implement the Levy walk model [30], which has

been proven to better describe the mobility patterns of human

being [31], to generate synthetic encounters between users.

Query distribution is also generated based on the mobility

model. Specifically, we separate the map into 32 × 32 cells

similar to the one shown in Fig. 1(a). In every minute, we

randomly choose 10% of users, and send a location-based

query from these users. After 4 hours simulation, we get

240,000 queries from different cells, and their distribution

constitutes the background information.

Several parameters are employed in our evaluation. k is

related to k-anonymity. t represents the simulation time. We

compare our proposed FGcloak scheme with some recently

proposed schemes. The enhanced-DLS represents the en-

hanced dummy location selection algorithm in [14], which

1The data set is available at http://icapeople.epfl.ch/freudiger/borlange.zip
in Jan. 2012

protects mobile user’s location privacy considering query

distribution and the size of cloaking region. SMILE [11] is a

privacy preserving algorithm trying to provide k-anonymity for

users in mobile P2P networks. The random scheme means the

solution which achieves k-anonymity by randomly choosing

dummy locations. The optimal scheme shows the optimal

results of k-anonymity in theory.

B. Evaluation Results

For fairness, we assume that all the aforementioned schemes

have no background information at the beginning. They need

to communicate with others to obtain these information gradu-

ally. Based on the limited information, we evaluate the system

performance of different schemes.

1) Cloaking region vs. k: We first evaluate the effect of

k on the cloaking region. The simulation time is 60 minutes.

Generally, the cloaking region increases with increasing k. The

cloaking regions of all the mentioned schemes are smaller

than the ideal value achieved in the optimal scheme. The

reason is that in those schemes the real user may be located

at any place of the map, which affects the size of cloaking

region significantly. In Fig. 5, the cloaking region stays at 64

km2 all the time in the optimal solution. The random scheme

outperforms the enhanced-DLS [14] and SMILE [11] schemes

in most cases, since both of the enhanced-DLS [14] scheme

and the SMILE [11] scheme need a warm-up phase to learn

the information of users far away. While in our FGcloak, the

modified Hilbert Curve can be constructed to guarantee the

full coverage on the map, and with the help of our PADS

algorithm, we can effectively avoid the dummies located very

close to each other. As the result, the cloaking region in our

scheme is much larger than other existing solutions and is

close to the ideal results in the optimal scheme when k goes

large.
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Fig. 5. Cloaking region vs. k

2) Cloaking region vs. t: Fig. 6 shows the evaluation results

of the cloaking region with varying simulation time t. Here

we set k = 10. We can see that the optimal results are fixed at

64 km2, and the results in the random scheme are around 35

km2, which indicates that the dummy selection phase has no

relationship with the simulation time. Comparing our FGcloak

with other schemes, the performance of our FGcloak is much

better than other schemes in all the cases. It stays at a higher



level 54 km2 on average. We can also see that the cloaking

region of the random scheme outperforms the schemes of

enhanced-DLS [14] and SMILE [11] when the simulation time

is short (e.g., t ≤ 70 and t ≤ 150 minutes, respectively). As

an example, when t = 30 minutes, the cloaking region of

enhanced-DLS and SMILE are 18.81 km2 and 17.37 km2.

However, when t = 120 minutes, these values are 39.15 km2

and 32.59 km2, while the cloaking region can achieve 54.00

km2 in our FGcloak.
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3) Entropy vs. k: In this experiment, we run all the simula-

tion for 240 minutes, and then evaluate the effect of k (number

of dummies) on entropy. Entropy denotes the uncertainty of

determining a user’s location from all the candidates [32]. Let

pi denote the probability of the ith possible location being

queried in the past. The sum of all probabilities pi is 1.

Then, the entropy H of identifying the real location is given

by H = −
∑k

i=1
pi · log2 pi. From Fig. 7, we can see the

entropy increases with k. The optimal scheme obviously has

the highest entropy in theory. The reason is that all the k

candidate locations have the same probability of being queried.

The random scheme has the lowest entropy, because it ignores

that background information may be exploited by adversaries.

The performance of the enhanced-DLS [14] scheme is close

to the optimal scheme, since it carefully chooses dummy

locations to achieve high entropy. The SMILE [11] scheme

performs much worse since the dummy locations are randomly

chosen from the user’s buffer. While in the FGcloak, the

entropy is at a higher level due to use of the FGLR algorithm,

which puts each candidate into a proper position with either

the encountered information or the dummy information.

4) The effect of exchange ratio σ: As to the fine-grained

control on system overhead, we evaluate the effect of the

exchange ratio σ, which is set by each user. In the fol-

lowing two experiments, we show the distribution of the

10000 users on different “number of encountered users”. In

Fig. 8, we change the exchange ratio from 0.1 to 1.0, and

evaluate the relationship between the number of users in our

scheme and the corresponding number of encountered users,

which is closely related with the exchanging times. Since

more exchanges with encountered users always lead to higher

resource consumption on mobile devices, we need to reduce

the number of encountered users for each mobile user for the

3 4 5 6 7 8 9 101112131415161718192021222324252627282930
0

0.4
0.8
1.2
1.6

2
2.4
2.8
3.2
3.6

4
4.4
4.8

k

E
n

tr
o

p
y

 

 
FGcloak

Enhanced−DLS

SMILE

Random

Optimal

Fig. 7. Entropy vs. k

overhead reason. We can see that about 93.15% of users in

our simulation have limited number of encounters (less than

10) when σ = 0.1. We recall the definition shown in Fig. 4. A

smaller σ can save more resources for user’s mobile device,

and it can be achieved in simple ways such as turning off

exchange periodically. When we set σ = 0.5, which means

that the exchanging time is a half of the total simulation time,

more than a half of users (5837) exchange with others for

20-30 times. Comparing these two set of results (σ = 0.1 and

σ = 0.5), we find that the total number of exchanges decreases

with the decreasing σ. Therefore, we need to turn down this

parameter on resources-restricted mobile devices to reduce the

system overhead.

Fig. 8. The effect of exchange ratio σ, t = 60 minutes

Similar results can be found in Fig. 9, which shows the

relationship between the number of users and the correspond-

ing number of encountered users under different simulation

time. Generally, the total number of the exchanges increases

significantly with the simulation time t. For example, when the

simulation runs for 10 minutes under condition of σ = 1.0,

more than 97% of users only exchange with a limited number

of encountered users (less than 10). When the simulation runs

for 120 minutes, this value decreases dramatically to 4, and

more seriously, about 86.07% of users exchange with others

for more than 60 times, which is a huge cost for mobile users

in terms of communication, computation and storage.



Fig. 9. The effect of the simulation time t, σ = 1.0

VII. CONCLUSIONS

In this paper, we proposed a novel and fine-grained spatial

cloaking algorithm, FGcloak, which guarantees k-anonymity

for users while providing fine-grained control on the sys-

tem overhead. With a set of algorithms including Modi-

fied Hilbert Curve Constructing (MHCA) algorithm, Privacy-

Aware Dummy Selection (PADS) algorithm and Fine-Grained

Local Replacement (FGLR) algorithm, FGcloak makes a novel

use of modified Hilbert Curve based on the query probability

to protect privacy. The fine-grained property is guaranteed

by the parameter exchange ratio σ. Security analysis and

evaluation results indicated that our scheme is effective and

efficient.
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