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Abstract. We report on the observation of a multiple-pattern
stability region in a photorefractive single-feedback system.
Whereas hexagonal patterns are predominant for feedback
with positive diffraction length we show that a variety of sta-
ble non-hexagonal patterns are generated for certain negative
diffraction lengths. For the same values of the control pa-
rameters square, rectangular, or squeezed hexagonal patterns
are found alternating in time. Besides these pure states, we
found a number of different mixed-pattern states. We review
the linear stability analysis for this system and show that the
special shape of the threshold curves in the investigated pa-
rameter region gives a first explanation for the occurrence of
a multiple-pattern region.

PACS: 42.65.Sf; 42.65.Hw; 47.54.+r

The spontaneous formation of periodic spatial patterns is well
known for a variety of nonlinear optical materials, for ex-
ample atomic vapours [1], liquid crystals (Kerr slices) [2, 3],
organic films [4], or photorefractives [5], where squares and
squeezed hexagons were first observed in experiment [6].
Photorefractive materials are well suited for pattern observa-
tion since their intrinsically slow dynamics offers the oppor-
tunity to perform real-time measurements and observations.
Moreover, low cw powers in the range of milliwatts are re-
quired and in the case of a diffusion-dominated crystal such
asKNbO3, no external voltage has to be supplied providing
an all-optical pattern formation system. In all these systems,
a single-feedback configuration creating two counterpropa-
gating beams in the nonlinear optical medium gives rise to
transverse modulational instabilities above a certain thresh-
old. These instabilities generally lead to the formation of hex-
agonal patterns, which were first reported for a photorefrac-
tive system by Honda [5]. Following this pioneering work,
various other publications offered improved insight into the
stages of pattern formation in these photorefractive materi-
als [7, 8]. A first approach to a nonlinear stability analysis [9]
and studies of pattern dynamics due to angular misalignment
and competition behaviour were published recently [10–12].

Our focus of interest is to investigate more complex pat-
terns that may arise in the same configuration for a certain
range of the diffraction length without changing the basic
interaction geometry. Although some of these patterns were
observed previously [6], the appropriate region of instabil-
ity has not yet been investigated. Besides pure pattern states,
such as squares, rectangles, or squeezed hexagons, we could
observe a large number of different mixed states where two or
more patterns coexisted. This variety of patterns leads to the
question of manipulation, stabilization and control of these
different pattern states which is currently of high interest [13–
16]. The aim is to get defined access to different patterns,
an essential condition to make use of spontaneous pattern
formation in the growing field of optical information process-
ing [17]. To make use of the different control schemes, it
is absolutely necessary to gain knowledge about the differ-
ent stability (and instability) regions of the present system.
Thus, our aim in this paper is to get improved insight into
the stages of pattern formation in this system and the param-
eter regions for different pattern types. A review of the linear
stability analysis is given together with new results from this
analysis. We combine these results with the occurrence of
multiple patterns, thus giving an explanation for our experi-
mental observations.

1 Linear stability analysis

The basic interaction geometry is depicted in Fig. 1. A plane
wave of complex amplitudeF is incident on a thick pho-
torefractive medium with lengthl . The backward beamB is
produced by reflection at a mirror at a certain positionL be-
hind the medium. Our analysis is not restricted to positive
diffraction lengths since the 4f −4 f configuration enables
us experimentally to produce negative diffraction lengths
which are essential for observing multiple-pattern stabil-
ity. The principle function of the diffraction lengthL is to
introduce a phase lag of the generated sidebands relative
to the central beam. A diffusion-dominated medium such
as KNbO3 offers beam-coupling properties which are es-
sential for pattern formation in this configuration. In this
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Fig. 1. Basic interaction geometry

case, a dynamic photorefractive grating with a grating vec-
tor of 2k0n0 is written, withk0 representing the wave number
of the incident wave andn0 the linear refractive index of
the crystal.

The linear stability analysis presented here is based on the
treatment by Honda and Banerjee given in [8]. It is derived
from the standard photorefractive two-wave-mixing equa-
tions (known as Kukhtarev’s equations [18]) and based on
the assumption that reflection gratings are dominant in this
configuration, which has been shown to be unstable against
periodic perturbations. The usual equations for contradirec-
tional two-beam coupling in a diffusion-dominated medium
can be written in steady state as [8]
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z is the direction of propagation,∇⊥ = ∂2
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∂y2 denotes
the transverse Laplacian, andγ = πn1

λ
exp(−iφ) is the com-

plex photorefractive coupling constant, representing a meas-
ure for amplitude and phase transfer in the photorefrac-
tive two-wave-mixing process [18]. Here,λ is the wave-
length of the incident waves,n1 is a dimensionless fac-
tor measuring the modulation depth of the refractive index
grating, andφ represents the relative phase shift of the re-
fractive index grating with respect to the interference grat-
ing written by the beams. For theKNbO3:Fe crystal we
used in our experiments, this shift is known to beφ =
π/2 [19] yielding a purely imaginary coupling constantγ
in the notation we use here. This in turn is known to cause
pure energy-coupling between the two beams, i.e. energy
is transferred from one beam to the other [19]. Performing
a linear stability analysis for the system of partial differ-
ential equations (1) by applying weak spatial perturbations
in the transverse plane and including the boundary condi-
tions (representing the phase lag by feedback), one can obtain
a threshold condition for modulational instability (see [8] for
details):
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the transverse wavevectork2
⊥ = k2
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y and thus the side-

band angleθ = k⊥/k0 in experiment.L is the (virtual) mirror
distance from the medium andl denotes the length of the

crystal. The threshold condition therefore reads in a more
simplified form as f(θ, γ, L) = 0, representing a purely real
threshold condition for all parameter values. Given a cer-
tain mirror position L, a threshold curvef(θ, γ) = 0 can
be derived, where the absolute minimum provides informa-
tion about the unstable sideband angleθ at a certain mirror
position (see Fig. 2). If the relative minima of this thresh-
old curve are numbered consecutively, the values of the
threshold coupling strength depending on the mirror pos-
ition for the first to fourth instability “balloon” can be plot-
ted leading to Fig. 3a. The characteristic shape of the curve
indicates that a certain coupling strength is necessary to
observe patterns in the region aroundn0L/l = −0.5. This
corresponds to previously reported results that for a lower
coupling strength, no pattern formation can be observed in
this parameter region [10, 11]. Note also the characteristic
dip at a value for the diffraction length ofn0L/l = −0.5
and the oscillations appearing for the higher order curves.
The corresponding values for the sideband angleθ in the
threshold condition lead to the curve displayed in Fig. 3b.
One can see clearly the abnormal behaviour of the side-
band angle-curve (Fig. 3b) in a region nearn0L/l = −0.5,
where a nearly vertical rise of the curve appears. This typ-
ical shape of the curve also appears in the higher order
curves and is therefore a special property of this nonlin-
ear feedback system. It may also be a generic feature of
negative diffraction lengths in cubic material, but this in-
vestigation is not in the scope of this paper. However, the
special shape of the curves in Fig. 3a,b may give rise to un-
expected patterns in this parameter region. Figure 3a,b ex-
tends previous results of the linear stability analysis [8, 9],
taking into account negative diffraction lengths and higher
order instability balloons. However, a nonlinear stability an-
alysis is still required for explaining the occurrence of dif-
ferent pattern types. The reason for the occurrence of these
patterns can only be found by a nonlinear analysis, since
a linear stability analysis only accounts for the occurrence
of a special transverse wavevector to become unstable when
excited beyond the instability threshold. The stability of
hexagons for small positive values ofL was shown re-
cently [9], an appropriate analysis for negative diffraction
lengths is still not available and not within the scope of
this paper. We will concentrate on experimental investiga-
tions in this parameter region of small negative diffraction
lengths.

Fig. 2. Example of a threshold curve forn0L/l = 0.6
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Fig. 3a,b. Results from the linear stability analysis.a Minimal coupling
strength for different normalized mirror positionsn0L/l. b Theoretical
values for the minima of the threshold curves for varying values ofL

2 Multiple-pattern stability

The experimental setup is depicted in Fig. 4. Light obtained
from a frequency-doubled cwNd:YAG laser operating at
λ = 532 nmwith a coherence length of some metres is fo-
cused by lens L1 of focal lengthf = 600 mmonto the exit
face of an iron-dopedKNbO3 crystal (l = 5 mm), producing
a spot with a Gaussian diameter of320µm. The crystal was
slightly inclined (about4◦) in order to avoid undesired back-
reflections from the crystal surfaces. By means of a 4f −
2L−4 f -system with f = 100 mm, the incoming beam is
back reflected, thus providing the counterpropagating beam.
Considering ABCD-matrix formalism, this configuration can
be shown to be completely equivalent to a simple single-
mirror feedback configuration. Thus, a virtual mirror with
a distance ofL from the photorefractive medium is obtained.
The basic advantage of this system is that negative diffraction

Fig. 4. Experimental setup. M= mirror, v.m.= virtual mirror, L =
diffraction length

lengths can be achieved, which allow one to access a broader
range of stationary patterns, including squares and rectangles.
The laser beam is linearly polarized along the crystala-axis
to exploit the larger13 component of the electrooptic tensor
in this direction, resulting in a minimum input power for pat-
tern observation of just0.5 mW. A beam splitter between the
focusing lens and the photorefractive medium enables one to
observe the far field, and by means of a lens and a microscope
system, the near field, respectively. The direction of the crys-
tal c-axis is arranged to give rise to depletion of the incoming
and amplification of the backward reflected beam, a config-
uration that is necessary for the observation of transverse
structures in this material. The reflectivity of the feedback
system including all elements was measured to beR= 83%.

For positive diffraction lengths stable hexagonal patterns
are always seen, as depicted in Fig. 5a. Higher order har-
monics of the hexagonal pattern are clearly apparent in ex-
periment. They saturate the explosive instability of the first-
order hexagon and are essential for the stability of a hex-
agonal pattern [9]. This hexagonal structure is well known
to be dominant for many different nonlinear optical materials
and is reported for a number of other non-optical pattern-
forming systems. However, when the virtual mirror is shifted
into the crystal, i.e. when negative diffraction lengths are
achieved, a remarkable pattern transition occurs: in a small
parameter region of the diffraction length aroundn0L/l =
−0.5, different non-hexagonal structures may appear. Square
patterns, squeezed hexagonal, rectangular, or parallelogram-
shaped structures (see Fig. 5b–e) can be realized as stable
pure solutions. The patterns were stable for a long period
of time (t � 1000τ), whereτ denotes the time constant for
this system, in this case defined as the mean build-up time of
a pattern which was in the range of0.5–1 sin the experiments
reported here, depending on the input intensity. Temporal
alternation of different patterns due to disturbances in the sys-
tem was also possible on much larger timescales (t ≥ 20 s)
than the usual build-up time of a pattern. Besides these pure
stable states, also mixed states can be observed, where differ-
ent patterns coexist on the same or different transverse scales.
Even here, this coexistence could be realized to be stable
in space for times much longer than the characteristic time
constant of the system. Selected mixed-pattern states are dis-
played in Fig. 6a–d. One can see the rich variety of possible
patterns regarding their transversek-vectors and orientation
in space. The condition for the occurrence of a special pure-
or mixed-pattern type in the multiple-pattern region is still un-
clear. For this reason, we call this parameter regionmultiple-
pattern regionsince a clear parameter-dependent behaviour

Fig. 5a–e.Experimentally obtained pure pattern states.a Predominant hex-
agonal structure.b–e Other pattern geometries for the multiple-pattern
regionn0 ≈−0.5. The intensity incident on the crystal wasI = 2.4 W/cm2
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Fig. 6a–d.Examples for the occurrence of mixed states: two square patterns
with different scales and orientation (a), two rectangles with same scale and
different orientation (b), two rectangles and square pattern (c), square pat-
tern and rectangle (d). All pictures taken for an intensity ofI = 2.4 W/cm2

and mirror positions in the multiple-pattern region

of the different pattern types was not obtained. A rich variety
of patterns was accessible, as well as a large set of transverse
k-vectors as shown in Figs. 5 and 6, even for the same diffrac-
tion length. Outside this multiple-pattern region, no patterns
other than hexagonal ones can be observed experimentally.

Previously [10, 11], we reported a remarkable pattern col-
lapse for the region of negative diffraction length where we
now observe multiple-patterns. The pattern collapse, or ab-
sence of patterns, was explained as a result of the photore-
fractive coupling strength being too low for the observation of
transverse structures. In the experiments reported here a dif-
ferent crystal was used with about twice as large nonlinearity
(γl ≈ 4) which accentuates the necessity of sufficient nonlin-
earity for observing non-hexagonal patterns in the regime of
negative diffraction length. The value of the coupling strength
given here is a raw experimental value that was deduced from
measurements of small signal gain, and does not take into
account high modulation-depth effects that are present when
counterpropagating beams of comparable intensity write a re-
flection grating. This may account for the discrepancy be-
tween the measured nonlinearity and the theoretical threshold
values in Fig. 3 required for pattern formation in the multiple-
pattern region. This point is currently under investigation.

Though a nonlinear stability analysis has not been per-
formed for negative diffraction lengths, detailed investiga-
tions of the results of the linear stability analysis taking into
account higher order instability balloons may already give
useful information about the pattern type. Figure 7 shows the
measured values for the hexagon instability angleθ as a func-
tion of the normalized diffraction lengthn0L/l (virtual mirror

Fig. 7. Sideband angleθ as function of the normalized diffraction length
n0L/l for an incident intensity ofI = 2.4 W/cm2. The theoretical curve is
displayed together with experimental values for the transverse scale (circles
andsquares)

is inside the crystal for values−1≤ n0L/l ≤ 0) together with
the theoretical results of the linear stability analysis (first and
second instability balloon). The measured values agree well
with the theoretical curves. As predicted in [10], a coexis-
tence of two transversek-vectors appears for larger positive
or negative diffraction length as indicated in the figure. Here,
a second instability balloon (see Fig. 3 in [10]) takes the abso-
lute minimum of the instability curve thus leading to a degen-
eration of the transverse wave-vector. This leads to a coexis-
tence of two hexagons on two transverse scales tilted by30◦
relative to each other. The multiple-pattern region described
earlier is also indicated in the figure. A large number of var-
ious transversek-vectors occur for−0.7≤ n0L/l ≤ −0.3,
being too numerous to be displayed in Fig. 7. One can see
clearly that for parameter valuesn0L/l =−0.57 andn0L/l =
−0.43 the curve in Fig. 7 shows a nearly vertical rise indicat-
ing that a whole band of transversek-vectors will participate
in the stage of pattern formation, thus explaining the var-
iety of transversek-vectors. However, this explanation does
not hold forn0L/l = −0.5 (flat region of this curve) where
sideband angles up to2.7◦ could be observed for the case of
rectangular patterns. This problem is still under investigation.

3 Discussion and conclusion

We have analyzed a parameter region where a photorefrac-
tive feedback system produces a variety of different spa-
tial patterns. With our experimental configuration, we are
able to access a broader parameter region including negative
diffraction lengths, which allow the observation of squares,
squeezed hexagonal, or rectangular patterns. The occurrence
of non-hexagonal patterns is restricted to a small parameter
region where the virtual mirror is placed inside the crystal.
This multiple-pattern regioncoincides with an unusual shape
of the corresponding curves for pattern size vs. diffraction
length derived from a linear stability analysis. In the multiple-
pattern region, a temporal alternation of different patterns
is possible. This is, to the best of our knowledge, the first
observation of a multiple-pattern parameter region. This ob-
servation may not be restricted to photorefractives and could
be observed in other optical-pattern-forming systems.

We also discovered a coexistence of two hexagonal pat-
terns which can be explained by the existence of two insta-
bility balloons competing for the absolute minimum of the
threshold curve. We could clearly separate the parameter re-
gions for coexisting hexagons, pure hexagons, and multiple
stability.
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