
Efficient Parallel I/O Scheduling in the Presence of Data

Duplication

Pangfeng Liu
Department of Computer Science

National Taiwan University
Taipei, Taiwan, R.O.C.

pangfeng@csie.ntu.edu.tw

Da-Wei Wang Jan-Jan Wu
Institute of Information Science

Academia Sinica
Nankang, Taipei, R.O.C.
wdw@iis.sinica.edu.tw

Abstract

This paper investigates the problem of schedul-
ing parallel I/O operations on systems that
provide data replication. The objective is to
direct each compute node to access data from
an I/O node where the data is duplicated, in
such a way that requests for data are evenly
distributed among I/O nodes. We identify a
necessary and sufficient condition on whether
the current data request pattern can be im-
proved, in terms of the maximum number of
data requests on any I/O node. We propose
an augmenting path algorithm that examines
this necessary and sufficient condition, and ad-
justs the current data request pattern accord-
ingly. Using network flow technique, we show
that the augmenting path algorithm finds an
optimal assignment in O(nm log n+n2 log

3
2 n)

time.

1 Introduction

Parallel processing has been an effective ve-
hicle for solving large scale, computationally
intensive problems. In the past decades, sig-
nificant research efforts have been devoted to
exploiting parallelism and effective mapping
of computation problems to parallel comput-
ing platforms so as to maximize performance
of the parallel programs. However, while the
speed, memory size, and disk capacity of par-

allel computers continue to grow rapidly, the
rate at which disk drives can read and write
data is improving much more slowly. As a re-
sult, the performance of carefully tuned paral-
lel programs can slow down dramatically when
they read or write files. As the gap between
improvement of processor speed and that of
disk drive becomes larger, the performance
bottleneck is likely to get worse.

Parallel input/output techniques can help
solve this problem by creating multiple data
paths between memory and disks, that is, ex-
ploiting parallelism in the I/O system. One
active research area in parallel I/O is paral-
lel file systems. PIOUS [12], VIP-FS [8], Gal-
ley [14], PPFS [9] and VIPIOS [2], to name
a few, are popular parallel file systems. How-
ever, each of these lacks one or more of the
features desired for parallel applications run-
ning on cluster parallel systems: collective
I/O, special consideration for slow message
passing, and minimized data transfer over the
network. Although more recent parallel file
systems (such as PVFS [3, 16]) and paral-
lel I/O libraries (such as Panda [17, 18] and
PASSION [19]) that are designed for network
of workstations/PCs have provided collective
I/O [19, 18], they have not addressed the per-
formance issue sufficiently.

The performance of a parallel I/O oper-
ation is dominated by how fast data trans-
fers between processing nodes and disks are
performed. Several optimizations for reduc-

1

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

ing data transfer time for parallel I/O have
been proposed in the past few years. The
two-phase I/O optimization [15] reduces disk
access time by breaking an I/O operation
into two phases: inter-processor data exchange
through the network, and bulk accesses to the
disks. The Panda I/O library exploits data
locality by choosing proper placement of I/O
servers [5]. Parallel prefetching and caching
strategies were proposed in [11, 20] to im-
prove I/O performance. Several algorithms
were proposed for scheduling parallel I/O op-
erations to minimize the completion time of a
batch of I/O operations [10]. In this paper, we
focus on the parallel I/O scheduling problems.

In prior works, the I/O scheduling problem
was modeled by a bipartite graph. Dubhashi,
et. al. [6] and Durand, et. al. [7] pro-
posed various bipartite graph edge-coloring al-
gorithms for solving the scheduling problems.
Jain, et. al. [10] proposed edge-coloring-based
approximation algorithms for scheduling I/O
transfers for systems that only allow at most
k transfers at a time. Narahari, et. al [13] in-
vestigated network contention in parallel I/O
transfers on mesh networks.

All prior works mentioned above do not
take data replication into consideration. Data
replication is commonly used in executing
data-intensive applications in cluster environ-
ments for two reasons. First, it is typical for
a data-intensive application to take a long pe-
riod of time to complete its execution. Fail-
ure of any disk will cause lost of data and
thus faults in program execution. Data repli-
cation is necessary to ensure fault tolerance.
Secondly, clusters usually lack dedicated I/O
servers. Instead, a subset of processing nodes
are chosen to do part-time I/O services (that
is, these nodes switch between computing and
I/O). Since cluster environments are usually
highly dynamic, some processing nodes (in-
cluding part-time I/O nodes) may leave dur-
ing execution of an application program due
to heavy load demands from other jobs. Data
replication is an effective way to ensure avail-

ability of data.

The only work we have noticed that takes
data replication into consideration is by Chen
and Majumdar [4]. The authors proposed
the Lowest Destination Degree First (LDDF)
heuristic algorithm for scheduling a batch of
I/O operations. Their model only allows data
transfers with uniform costs, which we refer to
as UniIO model.

This paper investigates the problem of
scheduling parallel I/O operations on systems
that provide data replication. The objective
is to direct each compute node to access data
from an I/O nodes where the data is dupli-
cated, in such a way that requests for data
are evenly distributed among I/O nodes. We
identify a necessary and sufficient condition on
whether the current data request pattern can
be improved, in terms of the maximum num-
ber of data requests on an I/O node. We pro-
pose an augmenting path algorithm that ex-
amines this necessary and sufficient condition,
and adjusts the current data request pattern
accordingly. Using network flow technique,
we show that the augmenting path algorithm
finds an optimal assignment in O(nm log n +
n2 log

3
2 n) time.

The rest of the paper is organized as fol-
lows. Section 2 describes our model of parallel
I/O and the scheduling problem. Section 3
presents the algorithm that finds the optimal
solution. Section 4 gives some concluding re-
marks.

2 Communication Model

We consider I/O intensive applications in an
architecture where the processors are con-
nected by a complete network where every
compute node can communication with each
I/O node. Our model also assumes that a com-
putation node is allowed to simultaneously ac-
cess at most one data, and similarly an I/O
node can supply one data at a time. When
an I/O node has multiple data to send, it per-

2

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

forms these send operations one after another.
An I/O node can transfer data in any order,
and each transfer requires a specified compute
node and I/O node.

We define a duplicated data access pattern
graph G = (V,E) as follows: The vertex set V
consists of three subsets C, D, IO, where C
represents the set of compute nodes, the set D
is the set of data, and the set IO is the set of
I/O nodes. Compute nodes access data, which
are duplicated at various I/O nodes. The edge
set E consists of two subsets A and S. An edge
in A connects a compute node c to a data d,
which means that compute node c needs to
access data d. An edge in S connects a data
d to an I/O node io, which indicates that I/O
node io stores a copy of data d. Since the same
data can be duplicated in many I/O nodes, a
data d may be connected to more than one I/O
node via edges in S (Figure 1).

S

C D IO

A

Figure 1: A duplicated data access pattern
graph with 4 compute nodes, 4 data, and 3
I/O nodes.

We now formulate our parallel I/O schedul-
ing problem for accessing duplicated data. For
ease of discussion we will assume that each
data is requested by a single compute node.
The general case of compute nodes sharing
data will be discussed in Section 3.3. Since the
data are duplicated on different I/O nodes, we
must assign an I/O node for each data where it
can be found by its requesting compute node.
Formally we define this mapping as a function
m from D to IO so that m(d) = io indicates
that data d will be provided by I/O node io.
After this assignment is completed, the dupli-

cated data access pattern graph is reduced to
a bipartite graph G′(G,m) = (D ∪ IO,M),
where an edge (d, io) is in M if and only if
m(d) = io. The reduced graph of G from Fig-
ure 1 can be found in Figure 2.

DC D IO

A

IO

S M

Figure 2: A reduced duplicated data access
pattern graph with 4 compute nodes, 4 data,
and 3 I/O nodes, after the mapping function
m is chosen.

After the mapping function m is deter-
mined, the original duplicated data access pat-
tern graph is reduced to a bipartite graph.
Since in practice a communication between an
I/O node and a compute node very often re-
quires dedicated resources, an I/O node can-
not send different data to multiple compute
nodes simultaneously. We adopt the commu-
nication requirement that the communication
between I/O nodes and compute nodes must
be performed in stages. During each stage an
I/O node can only send data to a compute
node. It is well-known that the edges of a bi-
partite graph can be colored with at most d
colors where d is the maximum degree, so that
no edges of the same color are adjacent, there-
fore the communication can finish in d stages.
Our scheduling problem is therefore reduced
to finding a mapping function m from data
to I/O nodes so that the reduced data access
pattern graph minimizes the maximum degree
among all I/O nodes. Note that we do not
consider the maximum degree of nodes in C
since the mapping between C and D is fixed
a priori, and the only thing we can schedule
is to assign an I/O node responsible for each
data.

3

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

3 Augmenting Path Method

This section describes our algorithm for as-
signing data to I/O nodes so that the loads
on I/O nodes are evenly distributed. Given
a duplicated data access pattern graph G =
(C ∪ D ∪ IO,A ∪ S) (refer to Figure 1 for
an illustration), we consider only the bipartite
graph G′ = (D ∪ IO, S) since the communica-
tion pattern between C and D is independent
of how we choose I/O nodes for data, and the
maximum degree of nodes in C is fixed a pri-
ori.

3.1 Augmenting Path

The algorithm starts with an arbitrary assign-
ment m, that is, for any data d we pick an
arbitrary I/O node where it is available. For-
mally, we pick an arbitrary edge for each node
d in D, and assign the other endpoint as the
function value of m(d). For ease of explana-
tion we assign a direction to each edge in S.
All edges chosen by m, e.g., (m(d), d) for all
d in D, will have the direction from I/O node
m(d) to data d. All the other edges in S will
have the direction from data in D to I/O nodes
in IO, as shown in Figure 3(a).

d1

io2

io1

IOD

d4

d3

d2

D IO

io1

io2

io3

d1

(b)(a)

SS

d4

d3

d2

io3

Figure 3: Adding direction for each edge in S
after a mapping function m is chosen. Those
edges selected by m (from IO to D) are indi-
cated by thicker edges.

Let deg(m) be the maximum number of
edges adjacent to an I/O node chosen by an

assignment m. All these edges will be “outgo-
ing” from an I/O node.

deg(m) = max
io∈IO

|{d|d ∈ D,m(d) = io}|

We consider two types of I/O nodes – those
that are adjacent to deg(m) edges chosen by
m (hence with outgoing degree deg(m)), and
those that are adjacent to less than deg(m)−1
edges chosen by m (hence with outgoing de-
gree less than deg(m)− 1). These two sets are
denoted by H and L respectively. Figure 3(a)
shows that io1 and io2 are in L and io3 is in
H.

After we pick an arbitrary mapping function
m and set direction for each edge in S, we de-
rive a new directed bipartite graph. Then we
try to find a path from an I/O node in H to
any I/O node in L. That is, we want to lo-
cate a directed path from an I/O node with
the maximum outgoing degree deg(m) to any
I/O node with outgoing degree deg(m) − 2 or
less. We will refer to such a path as an aug-
menting path. If we successfully locate such
a path (io1, d1, io2, d2, ...iok), where ioi is an
I/O node and di is a data, we make the fol-
lowing adjustment in m: We reverse the direc-
tion of all the edges along this path, that is,
we change m(d1) from io1 to io2, m(d2) from
io2 to io3, and so on. As a result, the out-
going degree of I/O node io1 will decrease by
one, the outgoing degree of I/O node iok will
increase by one, and the outgoing degrees of
those I/O nodes in between will remain the
same. For example in Figure 3(a) there ex-
ists a path (io3, d2, io2, d1, io1). After chang-
ing m(d2) from io3 to io2, and m(d1) from io2

to io1, the maximum degree reduces from 3 to
2 (Figure 3(b)).

By finding possible directed paths from H
to L, and augmenting them accordingly as de-
scribed above, we will stop at a bipartite graph
without any augmenting path. The following
theorem states that this bipartite graph indeed
has the minimum possible deg(m) for all pos-
sible m.

4

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

Theorem 1 Consider a bipartite graph G′ =
(D ∪ IO, S) induced from a duplicated data
access pattern graph. A mapping function m
gives the minimum deg(m) if and only if there
is no augmenting path.

Proof. The only part can be verified by the
“direction-reversing” process should an aug-
menting path is located. We only need to show
the “if” part.

We prove the theorem by contradiction.
Suppose the algorithm proceeds and stops at
a mapping function m which does not min-
imize the maximum degree, there must ex-
ist another mapping function m′ such that
deg(m′) < deg(m). We will show that we can
find an augmenting path by considering the
edges in m and m′ – a contradiction to the as-
sumption that there is no augmenting path for
m. First we define an undirected edge set for
each of these two functions respectively. Let
S(m) be the set of edges from S chosen by m,
that is, S(m) = {(d,m(d))| ∀d ∈ D}. Simi-
larly we define S(m′) = {(d,m′(d))| ∀d ∈ D}.
Now we define the difference of S(m′) and
S(m) to be those edges appearing either in
S(m′) or S(m), but not both. Also depend-
ing on whether the edge appears in S(m′) or
S(m), we assign a direction to this edge. For-
mally we have the following definition:

S(m) − S(m′) =
{(m(d), d)|(d,m(d)) ∈ S(m) − S(m′)}
∪{(d,m(d))|(d,m(d)) ∈ S(m′) − S(m)}

Note that the edges in S(m) − S(m′) are
directed – those in S(m) only are from I/O
nodes to data, and those in S(m′) only are
from data to I/O nodes. Now we consider the
directed graph P = (D ∪ IO, S(m) − S(m′)).
Consider a node io1 in IO that has outgoing
degree deg(m) in m. Since deg(m) is at least
deg(m′) + 1, there exists at least one edge in
S(m) − S(m′) that goes from io1 to a data d1

in D (see Figure 4 for an illustration). Now

d2

d1

io3

io1 io1

io3

D

S(m)−S(m’)

io1

io2

io3

m

D IO

io2

IO

S(m)

D IO

io2

S(m’)

d1

d2

d1

d2

Figure 4: An illustration of S(m), S(m′), and
S(m) − S(m′).

we consider the data d1. We know that m(d1)
is io1, and since (io1, d1) is in S(m) − S(m′),
m′(d1) could not possibly be io1, therefore
m′(d1) is another I/O node io2.

Now we consider two cases: If io2 has out-
going degree deg(m)−2 or less in m, we found
an augmenting path, which is contrary to the
fact that the algorithm could not find such a
path. As a result we conclude that io2 must be
adjacent to at least deg(m) − 1 edges chosen
by m.

Now we consider the I/O node io2. The
number of edges in S chosen by m that are
adjacent to io2 is at least deg(m) − 1, and we
know that this number does not include the
edge (d1, io2). On the other hand, the num-
ber edges in S chosen by m′ that are adjacent
to io2 is at most deg(m) − 1, and it includes
the edge (d1, io2) since m′(d1) = io2. Conse-
quently, there exists an edge going from io2 to
some other node in D, that is, we can find an
edge in S(m) − S(m′) that leads us to a new
data in D. By repeating this process, eventu-
ally we either ended up at an I/O node with
degree at most deg(m)−2 in m, in which case
we are done, or comes back to an I/O node
that has a outgoing degree at least deg(m)−1
in m.

Since the incoming degrees induced by m′ is
at most deg(m)−1 for I/O nodes, we conclude
that whenever this tracing goes into an I/O
node with outgoing degree at least deg(m)− 1
via an edge from S(m′), it will be able to get
out by an edge from S(m). In addition, when-

5

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

ever a data node is visited it will not be vis-
ited again since it could be adjacent to at most
two I/O nodes (from m and m′ respectively).
The tracing eventually ends at an I/O node
with degree at most deg(m) − 2 in m because
if there is no such I/O node, there could not
be a mapping function m′ that could map at
most deg(m′) = deg(m)− 1 data to every I/O
node, considering the fact that there exists an
I/O node io1 that has degree deg(m).

3.2 Time Complexity

We now analyze the time complexity of our
augmenting path algorithm. A simple imple-
mentation involves a breadth-first-search from
all I/O nodes with the maximum degree D (de-
noted by set H), and the search ends when it
finds any node with degree D − 2 or less (de-
noted as set L). Assuming that the bipartite
graph has m edges and n vertices. For each
I/O node v we consider the quantity d(v)−d∗,
where d(v) is the outgoing degree of v, and
d∗ is the maximum degree of I/O nodes in an
optimal solution. The sum of all d(v) − d∗ is
at most m since the summation of all d(v) is
at most m. However, the sum of all d(v) − d∗

decreases by at least 1 after each breadth-first-
search, and the number of rounds is at most m,
therefore the total execution time of the aug-
menting path algorithm is bounded by O(m2).

Suppose that we want to know if there is
a mapping with maximum degree less than or
equal to d∗. We can use a bipartite network
flow to find out if there exists a set of aug-
menting paths which will transform the cur-
rent mapping to a target mapping with maxi-
mum degree d∗. We add a source s and a sink
t into the directed bipartite graph. For every
vertex v with degree d, if d > d∗ then add an
edge from s to v with a capacity d − d∗; if
d < d∗ then add an edge from v to t with a
capacity d∗−d. Let f denote the sum of the ca-
pacity of out going edges of s. It can be shown
that the maximum flow of the network is f if
and only if there is a mapping with maximum

degree no greater than d∗. Perform a binary
search on d∗ we can find the optimal mapping.
Let TBMF (n,m) denote the time complexity
for computing the maximum flow of a bipar-
tite graph, where n, m denote the number of
vertices and edges respectively. Our algorithm
needs time O(TBMF (n,m) log n). Since the
maximum capacity of the above network is
bounded by n, by using the wave scaling tech-
nique [1] the maximum flow problem can be
solved in O(nm + n2 log

1
2 U), where U is the

maximum capacity in the network, therefore
time complexity of the proposed algorithm is
O(nm log n + n2 log

3
2 n).

3.3 Shared Data

In the previous section we made the assump-
tion that the compute nodes do not share data.
This section describes the general case where
a data could be shared by different compute
nodes, and how our augmenting path algo-
rithm can apply to these cases as well.

Due to the fact that we do not have any
information on how the data will be shared
by different compute nodes, we assume that
the order by which the data is accessed is ir-
relevant, and the computation can proceed as
long as the data is received by all requesting
compute nodes. Consequently, we assume that
we can “duplicate” the shared data, with each
copy earmarked for a particular compute node,
as shown in Figure 5.

Formally we duplicate each shared data d as
follows: For each shared d we make k copies
of it, where k is the number of compute nodes
sharing d. Then we add k edge from these
k compute nodes to these newly added data,
one edge for each pair of compute node and
data duplication. Then we duplicate edges
from the data copies to the I/O nodes where
they could reside. This results in a new dupli-
cated data access pattern graph without data
sharing among compute nodes, therefore the
augmenting path algorithm can compute the
minimum number of communication stages re-

6

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

C

A S

D IOC D IO

A S

d1

d2

d3

d4

d1

d2

d3

d3

d4

d4

Figure 5: By duplicating the shared data, the
augmenting path algorithm can also apply to
the general cases where different compute node
share data.

quired.

An important observation on this transfor-
mation is that although extra copies of data
are duplicated, an I/O node could still only
provide one data during any stage, hence the
transformation does not invalid the restriction
in the original communication model.

4 Conclusion

This paper investigates the problem of
scheduling parallel I/O operations on systems
that provide data replication. We identify
a necessary and sufficient condition whether
the current data access pattern can be im-
proved, in terms of the maximum number of
data requests on any I/O node, and propose
an augmenting path algorithm that examines
this necessary and sufficient condition, and ad-
justs the current data request pattern accord-
ingly. Using network flow technique we design
an algorithm runs in O(TBMF (n,m) log n),
where TBMF (n,m) is the time complexity
for solving maximum flow problem in a bi-
partite graph with n vertices and m edges.
Plug in the best time for TBMF we de-
rive an O(nm log n+n2 log

3
2 n) time algorithm

that produces an optimal data request pattern
which minimizes the maximum number of data

requests on I/O nodes.

Another future work would to be to mea-
sure the time to schedule the assignment, and
more importantly, the actual communication
time. From our preliminary scheduling exper-
iments we do not find that the augmenting
path algorithm requires much more time than
LDDF, since LDDF requires sorting procedure
among the degrees of all I/O nodes. Also the
augmenting path algorithm starts with a ran-
dom mapping, and it is not likely we will need
a tremendous number of rounds for the algo-
rithm to complete. On the other hand, we
would expect to see better I/O nodes utiliza-
tion since the number of rounds is optimized
in the augmenting path approach. The com-
bined timing results from both scheduling and
communication would be an interesting quan-
tity to measure and optimize.

Finally, it will be interesting to compare our
algorithm with LDDF in non-random graphs.
We may introduce “hot” spots and see if two
algorithms can distribute the workload evenly.
We will report and compare the scheduling
quality from these two algorithms.

References

[1] Ravindra K. Ahuja, James B. Orlin,
and Robert E. Tarjan. Improved time
bounds for the maximum flow problem.
SIAM Journal on Computing, 18:9039–
954, 1989.

[2] P. Brezany, T. A Mueck, and E. Schikuta.
A software architecture for massively par-
allel input-output. In Proc. 3rd In-
ternational Workshop PARA’96, LNCS
Springer Verlag, 1996.

[3] P. H. Carns, W. B. Ligon III, R. B. Ross,
and R. Thakur. Pvfs: A parallel file sys-
tem for linux clusters. In Proc. 4th Annual
Linux Showcase and COnference, pages
317–327, 2000.

7

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

[4] F. Chen and S. Majumdar. Performance
of parallel i/o scheduling strategies on a
network of workstations. In Proc. IEEE
International Conference on Parallel and
Distributed Systems, pages 157–164, 2001.

[5] Y. Cho, M. Winslett, M. Subramaniam,
Y. Chen, S. W. Kuo, and K. E. Seamons.
Exploiting local data in parallel array i/o
on a practical network of workstations.
In Proc. fifth Workshop on I/O in Par-
allel and Distributed Systems (IOPADS),
1997.

[6] D. Dubhashi, D. A. Grable, and A. Pan-
conesi. Near-optimal distributed edge col-
oring via the nibble method. In Proc.
of the 3rd European Symposium on Algo-
rithms, 1998.

[7] D. Durand, R. Jain, and D. Tseytlin.
Applying randomized edge coloring al-
gorithms to distributed communication:
An example study. In ACM Symposium
of Parallel Algorithms and Architectures,
1995.

[8] M. Harry, J. Rosario, and A. Choudhary.
Vipfs: A virtual parallel file system for
high performance parallel anddistributed
computing. In Proc. 9th International
Parallel Processing Symposium, 1995.

[9] J. Huber, C. L. Elford, D. A. Reed,
A. A. Chien, and D. S. Blumenthal.
Ppfs: A high performance portable par-
allel file system. In Proc. 9th ACM Inter-
national Conference on Supercomputing,
pages 485–394, 1995.

[10] R. Jain, K. Somalwar, J. Werth, and J. C.
Brown. Heuristics for scheduling i/o op-
erations. Proc. IEEE Trans. On Paral-
lel and Distributed Systems, 8(3):310–320,
March 1997.

[11] T. Kimbrel and A. R. Karlin. Near-
optimal parallel prefetching and caching.
In Proc. of the IEEE Symposium on
Foundations of Computer Science, 1996.

[12] S. Moyer and V. Sunderam. Pious:
A scalable parallel i/o system for dis-
tributed computing environments. Tech-
nical Report Computer Science Report
CSTR-940302, Department of Math and
Computer Science, Emory University,
1994.

[13] B. Narahari, S. Subramanya, S. Shende,
and R. Simba. Routing and scheduling i/o
transfers on wormhole-routed mesh net-
works. Journal of Parallel and Distributed
Computing, 57(1), April 1999.

[14] Nils Nieuwejaar. Galley: A New Parallel
File System for Scientific Workload. PhD
thesis, Dept. of Computer Science, Dart-
mouth College, 1996.

[15] J. M. Del Rosario, R. Bordawekar, and
A. Choudhary. Improved parallel i/o via
two-phase run-time access strategy. ACM
Computer Architecture News, 21(5):31–
38, 1993.

[16] R. B. Ross. Providing parallel i/o on linux
clusters. In Proc. Annual Linux Storage
Management Workshop, 2000.

[17] K. E. Seamons, Y. Chen, P. Jones,
J. Jozwiak, and M. Winslett. Server-
directed collective i/o in panda. In Proc.
of Supercomputing, 1995.

[18] K. E. Seamons, Y. Chen, P. Jones,
J. Jozwiak, and M. Winslett. Reading
in Disk Array and Parallel I/O, chapter
Server-directed collective I/O in Panda.
IEEE Computer Society Press, 2001.

[19] R. Thakur, A. Choudhary, R. Bor-
dawekar, S. More, and S. Kuditipudi.
Passion: Optimized I/O for parallel ap-
plications. IEEE Computer, 29(6):70–78,
1996.

[20] A. Tomkins, R. H. Patterson, and G. A.
Gibson. Informed multi-process prefetch-
ing. In Proc. of the ACM Interanational
Conference on Measurement and Model-
ing of Computer Systems, June 1997.

8

Proceedings of the 2003 International Conference on Parallel Processing (ICPP’03)
0190-3918/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

