Induction of Oblique Decision Trees

David Heath and Simon Kasif and Steven Salzberg
Department of Computer Science
The Johns Hopkins University
Baltimore, MD 21218
(410) 516-8296

lastname@cs.jhu.edu

Abstract

This paper introduces a randomized tech-
nique for partitioning examples using oblique
hyperplanes. Standard decision tree tech-
niques, such as ID3 and its descendants, par-
tition a set of points with axis-parallel hyper-
planes. OQOur method, by contrast, attempts
to find hyperplanes at any orientation. The
purpose of this more general technique is to
find smaller but equally accurate decision trees
than those created by other methods. We have
tested our algorithm on both real and simulated
data, and found that in some cases it produces
surprisingly small trees without losing predic-
tive accuracy. Small trees allow us, in turn, to
obtain simple qualitative descriptions of each
problem domain.

1 Introduction

Decision trees have been used successfully for many dif-
ferent decision making and classification tasks. A num-
ber of standard techniques have been developed in the
machine learning community, most notably Quinlan’s
ID3 (1986) and Breiman et al.’s CART (1984). Since the
introduction of these algorithms, numerous variations
and improvements have been put forward, including new
pruning strategies (e.g., Quinlan, 1987) and incremental
versions of the algorithms (Utgoff, 1989). Many of these
refinements have been designed to produce better de-
cision trees; i.e., trees that were either more accurate
classifiers, or smaller trees, or both.

The main goal of our research to produce decision trees
that provide small, accurate models for a set of data.
Many applications, including the ones discussed in this
paper, could substantially benefit from reducing the size
of the tree. In particular, a small tree will provide ex-
perts with important qualitative descriptions that may
be used in real-world applications.

Most decision tree algorithms use axis—parallel hyper-
planes to partition a dataset. That is, if each example 1s
characterized as a vector of numbers (21, 2, ..., z4), the
internal nodes of the tree will contain tests of the form
z; > k. The task of the decision tree algorithm is to
choose good values for 7 and & at each node. These tests
are equivalent to axis—parallel hyperplanes. In order to

provide the best fit to a dataset, we have chosen a more
general representation: our algorithm uses oblique (non—
axis—parallel) hyperplanes to partition the examples. In
other words, each node of the tree contains a hyperplane
that can take any orientation in feature space. Because
finding these hyperplanes turns out to be computation-
ally expensive, we introduce a randomized technique for
selecting good hyperplanes. The goal of our work is to
find smaller decision trees that provide a better fit to the
data, and therefore are likely to be more accurate. Our
results show that our method finds strikingly small trees
for some datasets.

In the sections that follow, we present the following
results:

e A new randomized approach for computing decision
trees using non—axis—parallel hyperplanes. This use
of randomized algorithms is new in the context of
decision tree induction.

e A new NP-completeness result for the complexity
of finding oblique hyperplanes. This result also pro-
vides a complexity bound for many other learning
methods.

e Experiments demonstrating that our algorithm can
produce very small oblique decision trees with ac-
curacies comparable to those of large axis—parallel
trees.

Our new algorithm, which is based on simulated anneal-
ing, produces a different decision tree each time it is run
on a given dataset. This property, a direct consequence
of randomization, is a major advantage in light of the
fact that finding the best tree is NP—complete. In order
to find a good tree, we train the algorithm repeatedly
on a fixed set of data, and retain only the smallest tree.
As we will show in Section 5, the program frequently
finds very small and accurate trees. QOur experiments
compare our program, which we call SADT?, to other
decision tree algorithms (including ID3) on both simu-
lated and real data.

2 Complexity of finding good trees

Standard decision tree algorithms work recursively; i.e.,
given a set of examples, they generate a test which splits

!Simulated Annealing of Decision Trees

the examples into two subsets. They then recurse on the
subsets, continuing to generate tests until some stopping
criterion is satisfied.

The main difference between our problem and the gen-
eration of axis—parallel trees is that our tests can take
the more general form of an oblique hyperplane. Stan-
dard decision tree algorithms use exhaustive search to
find the “best” hyperplane (the criteria used to define
the best test is described below). Because there are only
a small number of distinct axis—parallel hyperplanes (i.e.,
for n examples and d attributes, there are d(n—1) place-
ments), this can be done quite efficiently. However, the
number of distinct partitionings of the same set of exam-
ples that can be induced with a single oblique hyperplane
is O(n?), so that the straightforward approach of consid-
ering all possible tests is too expensive for many reason-
able values of n and d. For example, one of the datasets
used in Section 5 has n = 4164 and d = 14. This obser-
vation led us to consider the computational complexity
of finding the best test when tests are represented by
oblique hyperplanes. We found that for reasonable def-
initions of “best,” this problem is NP—complete; 1.e., it
probably has no polynomial time algorithm. This result
implies that exhaustive search is not feasible for many
datasets.

Theorem 2.1: Let the energy e of a hyperplane be de-
fined by the sum—minority energy measure (defined be-
low). Given two point sets Ky and Ky and a value k,
the problem of determining if there is a hyperplane such
that e < k 1s NP—complete.

For a proof of this theorem, see [Heath, 1992]. Note
that this theorem says that finding even one optimal
hyperplane is hard; clearly, then, building a whole tree
is even harder.

It is worth noting that there do exist energy measures
for which finding the best hyperplane is possible in poly-
nomial time. See [Duda and Hart, 1973] for a description
of different techniques of generating hyperplanes in the
absence of linear separability.

2.1 Finding approximate solutions

It is clear that by abandoning the restriction to axis-
parallel hyperplanes, we have made the problem of build-
ing decision trees considerably harder. FEven at one par-
ticular node of the decision tree, we can not be sure of
finding the best split, even if we define the goodness of
the split in a simple, local way. What saves us from dis-
aster is that the best tree may not use the best first split
anyway! This suggests that a randomized method, one
that tries a range of good (but not best) initial splits and
produces a set of alternative trees, might produce good
approximate solutions. This 1s exactly the approach we
have taken.

As with many NP-hard optimization problems, our
best strategy is to look for approximations or good
heuristic solutions. There are several standard ap-
proaches for computationally hard optimization prob-
lems. Such possibilities include local search or gradient
descent on the cost function. Typically, such methods
suffer from the problem of getting stuck in local max-
ima. Two standard solutions to this problem are ap-

plying multiple local searches and applying a stochastic
optimization approach such as simulated annealing. Per-
ceptron trees, introduced in Utgoff and Brodley (1990)
can be seen as an instance of applying multiple local
searches to the problem of finding a good first split. Once
one good split is found, they recursively apply the pro-
cedure (i.e., multiple local-search) to the resulting par-
titions of the data. Breiman et al. (1984) use a single
application of a local improvement algorithm. They it-
erate on dimensions, finding the best perturbation in the
dimension until no improvement can be made. Both al-
gorithms are deterministic and output a single tree. Our
algorithm produces a stream of different trees for a given
training set. We can generate any number of these trees
during training, and choose, for example, the smallest
one for experimentation on the test-set.

It is well-understood that finding the best first split
will not necessarily produce the smallest decision tree
(i.e., the smallest tree may have a non-optimal root
node). Allowing randomization in the procedure that
finds the best first split, and producing many alterna-
tive trees, increases the probability of finding good trees.
We believe that randomization is an important technique
in the context of inductive learning procedures. Since
none of the known deterministic learning procedures are
guaranteed to generate good minimum-size representa-
tions (trees), the introduction of randomization gives us
a higher probability of finding such representations.

Thus one of the principal claims we wished to in-
vestigate experimentally was whether, when an optimal
tree cannot be found, randomized algorithms may pro-
duce better decision trees than simple deterministic al-
gorithms. Given that any algorithm to find oblique deci-
sion trees cannot be guaranteed to find the best tree and
still run in reasonable time, we decided that we needed
an algorithm that could produce many different trees.
Our SADT algorithm produces a different tree each time
it runs. We sometimes run i1t hundreds of times on a
given dataset, choosing the minimum size tree as the
best one. Our argument is that picking the best of many
solutions produced by a randomized algorithm may be
preferable to using an algorithm, even a very clever one,
that only produces one solution.

3 The simulated annealing algorithm

The basic outline of our algorithm is the same as that
of most other decision tree algorithms. That is, we find
a hyperplane to partition the training set and recurse
on the two partitions. Here we describe the search for a
good hyperplane.

In our implementation, d—dimensional hyperplanes are
stored in the form H(z) = hgy1 —1—22421 h;x;, where H =
{h1,ha, ..., hgy1}is the hyperplane, x = (21, 22, ...,2q)
is a point, and hgy1 represents the constant term. For
example, in the plane the hyperplane is a line and 1s
represented in the familiar az + by + ¢ = 0 form. Clas-
sification is done recursively. To classify an example,
compare it to the current hyperplane (initially this is
the root node). If an example p is at a non-leaf node la-
beled H(x), then we follow the the left child if H(p) > 0;
otherwise we descend to the right child.

The first step in our algorithm 1s to generate an ini-
tial hyperplane. The initial hyperplane we generate is
always the same and is not tailored to the training set.
We simply wanted to choose some hyperplane that was
not parallel to any of the axes, so we used the hyper-
plane passing through the points where #; = 1 and all
other z; = 0, for each dimension ¢. In particular, the
initial hyperplane may be written in the above form as
hi = 1for 1 <i<dand hgy; = —1 since H(x) = 0
for each of these points. Thus in 3-D, we choose the
hyperplane which passes through (1,0,0), (0,1,0), and
(0,0,1). Many other choices for the initial hyperplane
would be equally good. Once the annealing begins, the
hyperplane is immediately moved to a new position, so
the location of the initial split 1s not important.

Next, the hyperplane 1is repeatedly perturbed.
If we denote the current hyperplane by H =
{hi,ha,... hay1}, then the algorithm picks one of the

h;’s randomly and adds to it a uniformly chosen random
variable in the range [—0.5,0.5). Using our goodness
measure (described below), we compute the energy of
the new hyperplane and the change in energy AFE.

If AE is negative, then the energy has decreased and
the new hyperplane becomes the current split. Other-
wise, the energy has increased (or stayed the same) and
the new hyperplane becomes the current split with prob-
ability e=2E/T where T is the temperature of the system.
The system starts out with a high temperature that is
reduced slightly with each move. Note that when the
change in energy is small relative to the temperature,
the probability of accepting the new hyperplane is close
to 1, but that as the temperature becomes small, the
probability of moving to a worse state approaches 0.

In order to decide when to stop perturbing the split,
we keep track of the split that generated the lowest en-
ergy seen so far at the current node. If this minimum
energy does not change for a large number of iterations
(we used numbers between 3000 and 30000 iterations in
our experiments), then we stop making perturbations
and use the split that generated the lowest energy. The
recursive splitting continues until each node is pure; i.e.,
each leaf node contains only points of one category.

3.1 Goodness criteria

Our SADT algorithm can work with any goodness crite-
rion, and we have experimented with several criteria. For
detailed discussions of these measures, see Heath [1992].
In these earlier studies, the sum-minority goodness mea-
sure generated smaller, more accurate trees than the oth-
ers we tested. As a result, we chose the sum-minority
goodness measure for the experiments described here.
This measure is defined as follows.

Consider a set of examples X, belonging to 2 classes,
u and v. A hyperplane divides the set into two subsets
X1 and X5. For each subset, we find the class that ap-
pears least often. We say that these are the minority
categories. If X; has few examples in its minority cate-
gory (1, then 1t is relatively pure. We prefer splits that
are pure; 1.e., splits that generate small minorities. Let
the number of examples in class u (class v) in X, be u;
(v1) and the number of examples in class u (class v) in

X3 be uy (v2). To force SADT to generate a relatively
pure split, we define the sum—minority error measure to
be min(uy, v1) + min(us, v2). For a description of this
and other error measures, see [Heath, 1992].

3.2 Taking advantage of randomization

We believe randomization in learning algorithms can eas-
ily be used to advantage. Because SADT constructs dif-
ferent trees every time, it is possible to run it multiple
times and pick a tree or set of trees that has some ad-
vantage over a more “average” tree. For example, to
minimize tree size, one can run SADT several times and
choose the smallest tree it creates.

Another way we can benefit from randomization is to
take a set of SADT trees, and combine their classifica-
tions by taking the plurality. In bi-classification prob-
lems, this reduces to taking the majority. For example,
if we have b trees, and 3 classify an example as “0,”
and the other two classify it as “1,” then we predict the
example belongs to class “0.”

The premise behind this idea 1s that any one tree may
not capture the target concept completely accurately,
but will approximate it with some error. This error dif-
fers from tree to tree. By using several trees and taking
the plurality, we hope to overcome this type of error.

4 An example in the plane

To illustrate the possible advantages that SADT offers,
we demonstrate its use on an artificial dataset containing
200 examples in two classes, chosen uniformly from a
two-dimensional space. We labeled the points according
to a partitioning with three non-axis-parallel lines. Thus,
the optimal partitioning (and the optimal tree) required
three oblique “splits.”

Figure 1 shows the tree generated by ID3 and one of
the trees generated by SADT. The tree generated by ID3
did not fit the data very well, because the correct parti-
tions were oblique lines. We ran one hundred trials with
each of our goodness measures, and kept the smallest
tree as the best. This example shows that, at least for
simple problems, SADT can perform very well.

5 Experiments

5.1 Applying SADT to cancer diagnosis

For our first experiment, we ran SADT on a real dataset
that has been the subject of other machine learning stud-
les; in particular, it was the subject of experiments that
partitioned the data using oblique hyperplanes (Man-
gasarian et al., 1990). This dataset contains 470 exam-
ples of patients with breast cancer, and the diagnostic
task is to determine whether the cancer is benign or ma-
lignant. Fach example has 9 numeric attributes, hence
our decision trees used hyperplanes in 9-D.

Mangasarian’s method uses linear programming to
find pairs of hyperplanes that partition the data. The al-
gorithm finds one pair of parallel hyperplanes at a time,
and each pair can be oriented at any angle with respect
to all other pairs. The resulting model is a set of oblique
hyperplanes, similar though not identical to an oblique
decision tree.

o o oy %o o° .
o &P © ° : B
° o o

o oo ol ..

o 8o MK
8ol o € o
.
°
oo o 8o o . .
°
oo
. .. .
. ° O oo .
oo e®le| L b
.« o g .
.« c . 8 .
o -
OOOOOO
° .
. .
. .
: .

. .

. . 4
g e o . .
. ko e

. .
Ele b :
.
. b . .« %
. .
L S AT
.
. r 8 g <o :
.
<. o o
° . s
. .
g ..
ow . e
. w

Algorithm Accuracy on Number of
Test Data (%) | Hyperplanes
SADT 97 1
ID3 83 30
Mangasarian et al. 97 16
EACH 95
Nearest Neighbor 94

Table 1: Breast cancer results

Because Mangasarian et al. received the data as they
were collected in a clinical setting, their experimental
design was very simple. They trained their algorithm
on the initial set of 369 examples. Of the 369 patients,
201 (54.5%) had no malignancy and the remainder had
confirmed malignancies. On the next 70 patients to en-
ter the clinic, they used their algorithm for diagnosis,
and found that it correctly diagnosed 68 patients. We
used 68/70 = 0.97 as a rough estimate of the accuracy of
Mangasarian et al.’s method. They then re-trained their
algorithm using the 70 new patients, and reported that
it correctly classified all of the next 31 patients to enter
the clinic. Mangasarian reported that his program’s out-
put was being used in an actual clinical setting. Using
the same dataset with a more uniform experimental de-
sign, Salzberg reported that the EACH hyper-rectangle
program produced 95% classification accuracy, and 1-
nearest-neighbor had 94% accuracy (Salzberg, 1991).

We imitated Mangasarian et al.’s experiment by using
the same 369 examples from their initial trial to produce
decision trees, which we then tested on the final 101
patients. It 1s not possible to show a nine-dimensional
partitioning here, but our results and some comparisons
are summarized in Table 1.

Mangasarian’s model used 8 pairs of hyperplanes —
16 hyperplanes — to model the data. With SADT we
were able to determine that the same accuracy can be
attained with a single hyperplane. Our method uses
a significantly smaller number of oblique planes; and

(B)
Figure 1: Tree generated by (A) ID3 and (B) SADT

Accuracy | Std | Tree | Std
Algorithm (%) Dev | Size | Dev
SADT 94.9 347 | 458 | 2.0
ID3 88.1 9.89 | 27.8 | 4.7

Table 2: Cross-validated breast cancer results

produces comparable accuracy. The axis-parallel hyper-
planes produced by ID3 made a much poorer classifier
for this dataset — the tree was much larger and was less
accurate than the SADT tree. As a side note, some of
the larger trees generated by SADT scored 100% on the
test set. The smallest such “perfect” tree contained 6
hyperplanes.

In addition, we ran a ten-fold cross-validation trial on
the same set of data. In an a—fold cross-validation trial,
we divide the dataset into x approximately equal sized
subsets and perform z experiments. For each set s, we
train the learning system on the union of the remaining
z — 1 sets and test on set s. The results are averaged
over these & runs. The results of these tests are shown in
Table 2. For each of the ten training— and test—set pairs,
we performed thirty—six trials. That is, each value in
Table 2 is the average of 360 values and should be more
indicative of the true accuracy on the problem. The
SADT trees are somewhat more accurate than the axis-
parallel trees. The size of the trees generated by SADT
is considerably less that that of the trees generated by
ID3. We note that there are different ways in which the
size of trees can be measured. In this paper, we equate
tree size with the number of hyperplanes, regardless of
the description complexity of the hyperplanes.

5.2 Identifying stars and galaxies

In order to study the performance of SADT on larger
datasets, we ran several experiments using astronomical
image data collected with the University of Minnesota
Plate Scanner. This dataset contains several thousand
astronomical objects, all of which are classified as either

Accuracy | Std | Tree | Std

Algorithm | Dataset (%) Dev | Size | Dev
SADT Bright 99.0 048 | 7.03 | 2.2
1D3 99.0 0.63 | 37.7 | 2.7
SADT Dim 94.0 1.2 | 27.6 13
1D3 94.7 1.1 260 | 150

Table 3: Star/Galaxy results

stars or galaxies. Odewahn et al. [1992] used this dataset
to train perceptrons and backpropagation networks.

Although we did not have access to the exact train-
ing and test set partitions used by Odewahn et al., we
approximated the data using the same filtering of data
from the same source. Although our results may not
be completely comparable to theirs, we include them to
show that both learning methods produce similar accu-
racies. Our results were generated by averaging nineteen
10—fold cross—validation trials.

We experimented on two different subsets of the astro-
nomical data. One set is comprised of dim objects, the
other of bright objects. Bright objects tend to be easier
to classify. The bright dataset consists of 4164 exam-
ples; there are 4652 examples in the dim dataset. Each
example has fourteen real-valued attributes and a label
of either “star” or “galaxy.” Approximately 35% of the
examples are galaxies.

Classification results are shown in Table 3. Odewahn
et al. [1992] obtained accuracies of 99.7% using back-
propagation on the bright dataset and 92.2% on the
dim dataset. We obtained a cross-validated accuracy
of 99.1% with a perceptron on the bright dataset. Note
that a perceptron can be considered a tree of size 1. This
implies that SADT trees, despite their small size, could
still benefit from pruning. The accuracy of the trees
generated by SADT and those generated by 1D3 was ap-
proximately the same in both cases. However, SADT
was able to find much smaller trees than 1D3.

5.3 Classifying irises

Fisher’s [1936] iris data is a well known dataset, and
many common learning techniques have been applied to
it. The data consists of 150 examples, 50 each of three
different types of irises: setosa, versacolor, and virginica.
Each example is described by numeric measurements of
width and length of the petals and sepals.

We performed thirty-five 10-fold cross-validation tri-
als using SADT. Averaged results are shown in Table 4,
along with 10-fold cross-validation trials for ID3. Weiss
and Kapouleas [1989] obtained accuracies of 96.7%,
96.0%, and 95.3% with backpropagation, nearest neigh-
bor, and CART, respectively, using leave-one-out trials,
i.e., 150—fold cross validation.

Once again, we note that the accuracy of SADT is
comparable to that of other learning techniques. The
trees generated by SADT tend to be somewhat smaller
and more accurate on average than those of ID3.

Accuracy | Std | Tree | Std

Algorithm (%) Dev | Size | Dev
SADT 94.7 599 | 424 | 1.5
ID3 90.0 85 | 7.8 | 1.7

Table 4: Iris results

Classification | Tree

Dataset Technique Accuracy Size
Cancer average 94.9 4.58
malignancy smallest 95.1 1.90
Star/galaxy average 99.0 7.03
Bright smallest 99.1 3.80
Star/galaxy average 94.0 27.6
Dim smallest 94.2 15.2
Iris average 94.7 4.24
smallest 96.6 2.20

Table 5: Prediction using smallest trees

6 Pruning SADT trees

The problem of generating small decision trees through
choice of a stopping criterion or energy measure has been
considered difficult. See, for example, [Breiman, et al.,
1984]. The approach commonly used for standard deci-
sion trees is to first generate a tree that correctly classi-
fies every training example, and use another procedure,
pruning, to reduce the size of the tree. See [Mingers,
1989] for an overview of several decision tree pruning
methods. The results we present in our paper are for
unpruned trees. It turns out that some pruning methods
work well on our oblique trees. A comparison of pruning
strategies for SADT can be found in [Heath, 1992].

7 Predicting using smallest trees

One advantage of randomization is that SADT can gen-
erate many different trees to model a dataset, and then
use some additional criterion to decide which tree to use
for classification. We believe that smaller trees provide
a qualitatively better description of a domain, and we
therefore used tree size as a criterion for picking trees.
Table 5 shows a comparison of predictive accuracy and
tree size for all four of our datasets using two crite-
ria. QOur default method, average, was to use SADT
to generate approximately 200 different trees, and the
results in the table give the average accuracy of all these
trees. However, if we simply pick the smallest tree gen-
erated by the algorithm, performance improves slightly,
as shown in the table. The benefit to this technique is
that we can obtain smaller trees with no loss (and per-
haps even an increase) in accuracy. (Fach line in the
table represents a 10-fold cross—validation study; there-
fore, accuracy and tree size are averages over 10 runs.)

8 Summary of Results

We have developed an algorithm for generating oblique
decision trees, in which decisions are linear threshold

functions of example attributes. We have shown that
for reasonable goodness measures, finding best splits is
probably not possible in polynomial time.

This result differs from most previous NP—complete-
ness results addressing learning complexity. Hyafil
and Rivest (1976) showed that finding a decision tree
that minimizes expected classification time is NP—hard.
Blum and Rivest (1988) show that learning is difficult
even when trying to train a neural network with only 3
nodes. Several other published results have considered
the complexity of exact learning, namely, finding a cir-
cuit, formula or neural network consistent with a dataset.
(See, e.g., Baum and Haussler, 1989; Blum and Rivest,
1988; Judd, 1988; and Lin and Vitter, 1991.) All of these
results require at least a two level circuit or neural net-
work, since the problem of learning with a single layer
can be solved using linear programming. Unlike the pre-
vious results, which apply to exact learning, our result
addresses approximate learning. We show that the ap-
proximate learning problem is NP-complete even for the
simplest model of a neural mechanism: the perceptron.

This has forced us to examine methods of finding good
(as opposed to best) splits. Our experiments have shown
that simulated annealing works well as a method for gen-
erating oblique decision trees, in that it generates trees
with fewer tests, while maintaining classification accu-
racy. We have compared our methods to others on both
real and artificial data, in order to give a broad overview
of how well the methods work. We plan to explore these
techniques further by using different annealing methods
and different goodness criteria. We are also develop-
ing randomized geometric algorithms that will be more
efficient than annealing. In this paper, our goal was to
test the thesis that smaller trees generate good decisions.
This justifies the effort to seek efficient algorithms for
finding good oblique decision surfaces in a decision tree.

If construction of a good classifier is more important
than producing a concise representation, then one might
use SADT to generate a set of trees, and then use the
majority vote for classification. We have experimented
with this and other ideas [Heath, 1992], but these results
are not included in the interest of brevity.

To summarize, SADT was able, for the datasets we
used 1n our experiments, to generate quite small trees.
We consider this to be its main advantage over other
decision tree algorithms.

Acknowledgements

The authors wish to thank David Aha for providing
comments and relevant references. This research was
supported in part by the Air Force Office of Scientific
Research under Grant AFOSR-89-0151, and by the Na-
tional Science Foundation under Grant TRI-9116843.

References

[Baum and Haussler, 1989] E. Baum and D. Haussler.
What size net gives valid generalization? Neural Com-
putation, 1:141-160, 1989.

[Blum and Rivest, 1988] A. Blum and R. L. Rivest.

Training a 3-node neural network is np-complete. In

Proceedings of the First ADM Workshop on the Com-
putational Learning Theory, pages 9-18, Cambridge,
MA, 1988.

[Breiman et al., 1984] L. Breiman, J. Friedman, R. Ol-
shen, and C. Stone. Classification and Regression
Trees. 1984.

[Duda and Hart, 1973] R. Duda and P. Hart. Pattern
Classification and Scene Analysis. Wiley, 1973.

[Heath, 1992] D. Heath. A geometric framework for ma-
chine learning. PhD thesis, The Johns Hopkins Uni-
versity, Baltimore, MD, 1992.

[Hyafile and Rivest, 1976] L. Hyafile and R. Rivest.
Constructing optimal binary decision trees is np-
complete. Information Processing Letters, 5(1):15-17,
1976.

[Judd, 1988] J. S. Judd. On the complexity of load-
ing shallow neural networks. Journal of Complezity,

4:177-192, 1988.
[Lin and Vitter, 1991] J. H. Lin and J. S. Vitter. Com-

plexity results on learning by neural nets. Machine

Learning, 6:211-230, 1991.

[Mangasarian et al., 1990] O. Mangasarian, R. Setiono,
and W. Wolberg. Pattern recognition via linear pro-
gramming: Theory and application to medical diag-
nosis. SIAM Workshop on Optimization, 1990.

[Mingers, 1989] J. Mingers. An empirical comparison of
pruning methods for decision tree induction. Machine

Learning, 4:227-243, 1989.

[Odewahn et al., 1992] S. C. Odewahn, E. B. Stockwell,
R. L. Pennington, R. M. Humphreys, and W. A. Zu-
mach. Automated star/galaxy discrimination with
neural networks. Astronomical Journal, 103(1):318-

331, 1992.

[Quinlan,] J.R. Quinlan. Simplifying decisoin trees. In-
ternational Journal of Man-Machine Studies, 27:221-
234.

[Quinlan, 1986] J.R. Quinlan. Induction of decision
trees. Machine Learning, 1(1):81-106, 1986.

[Salzberg, 1991] S. Salzberg. Distance metrics for
instance-based learning. In Methodologies for Intel-

ligent Systems: 6th International Symposium, ISMIS
’91, pages 399-408, New York, 1991. Springer-Verlag.

[Utgoff and Brodley,] P. Utgoff and C. Brodley. An in-
cremental method for find multivariate splits for deci-
sion trees. In Proceedings of the Seventh International
Conference on Machine Learning, pages b6-65, Los
Altos, CA. Morgan Kaufmann.

[Utgoff, 1989] P. Utgoff. Incremental induction of deci-
sion trees. Machine Learning, 4(2):161-186, 1989.

[Wiess and Kapouleas, 1989] S. Wiess and 1. Kapouleas.
An empirical comparison of pattern recognition, neu-
ral nets, and machine learning classification methods.
In Proceedings of the Eleventh IJCAI, Detroit, MI,
1989. Morgan Kaufmann.

