
Induction of Oblique Decision TreesDavid Heath and Simon Kasif and Steven SalzbergDepartment of Computer ScienceThe Johns Hopkins UniversityBaltimore, MD 21218(410) 516-8296lastname@cs.jhu.eduAbstractThis paper introduces a randomized tech-nique for partitioning examples using obliquehyperplanes. Standard decision tree tech-niques, such as ID3 and its descendants, par-tition a set of points with axis-parallel hyper-planes. Our method, by contrast, attemptsto �nd hyperplanes at any orientation. Thepurpose of this more general technique is to�nd smaller but equally accurate decision treesthan those created by other methods. We havetested our algorithmon both real and simulateddata, and found that in some cases it producessurprisingly small trees without losing predic-tive accuracy. Small trees allow us, in turn, toobtain simple qualitative descriptions of eachproblem domain.1 IntroductionDecision trees have been used successfully for many dif-ferent decision making and classi�cation tasks. A num-ber of standard techniques have been developed in themachine learning community, most notably Quinlan'sID3 (1986) and Breiman et al.'s CART (1984). Since theintroduction of these algorithms, numerous variationsand improvements have been put forward, including newpruning strategies (e.g., Quinlan, 1987) and incrementalversions of the algorithms (Utgo�, 1989). Many of thesere�nements have been designed to produce better de-cision trees; i.e., trees that were either more accurateclassi�ers, or smaller trees, or both.The main goal of our research to produce decision treesthat provide small, accurate models for a set of data.Many applications, including the ones discussed in thispaper, could substantially bene�t from reducing the sizeof the tree. In particular, a small tree will provide ex-perts with important qualitative descriptions that maybe used in real{world applications.Most decision tree algorithms use axis{parallel hyper-planes to partition a dataset. That is, if each example ischaracterized as a vector of numbers (x1; x2; : : : ; xd), theinternal nodes of the tree will contain tests of the formxi > k. The task of the decision tree algorithm is tochoose good values for i and k at each node. These testsare equivalent to axis{parallel hyperplanes. In order to

provide the best �t to a dataset, we have chosen a moregeneral representation: our algorithm uses oblique (non{axis{parallel) hyperplanes to partition the examples. Inother words, each node of the tree contains a hyperplanethat can take any orientation in feature space. Because�nding these hyperplanes turns out to be computation-ally expensive, we introduce a randomized technique forselecting good hyperplanes. The goal of our work is to�nd smaller decision trees that provide a better �t to thedata, and therefore are likely to be more accurate. Ourresults show that our method �nds strikingly small treesfor some datasets.In the sections that follow, we present the followingresults:� A new randomized approach for computing decisiontrees using non{axis{parallel hyperplanes. This useof randomized algorithms is new in the context ofdecision tree induction.� A new NP{completeness result for the complexityof �nding oblique hyperplanes. This result also pro-vides a complexity bound for many other learningmethods.� Experiments demonstrating that our algorithm canproduce very small oblique decision trees with ac-curacies comparable to those of large axis{paralleltrees.Our new algorithm, which is based on simulated anneal-ing, produces a di�erent decision tree each time it is runon a given dataset. This property, a direct consequenceof randomization, is a major advantage in light of thefact that �nding the best tree is NP{complete. In orderto �nd a good tree, we train the algorithm repeatedlyon a �xed set of data, and retain only the smallest tree.As we will show in Section 5, the program frequently�nds very small and accurate trees. Our experimentscompare our program, which we call SADT1, to otherdecision tree algorithms (including ID3) on both simu-lated and real data.2 Complexity of �nding good treesStandard decision tree algorithms work recursively; i.e.,given a set of examples, they generate a test which splits1Simulated Annealing of Decision Trees



the examples into two subsets. They then recurse on thesubsets, continuing to generate tests until some stoppingcriterion is satis�ed.The main di�erence between our problem and the gen-eration of axis{parallel trees is that our tests can takethe more general form of an oblique hyperplane. Stan-dard decision tree algorithms use exhaustive search to�nd the \best" hyperplane (the criteria used to de�nethe best test is described below). Because there are onlya small number of distinct axis{parallel hyperplanes (i.e.,for n examples and d attributes, there are d(n�1) place-ments), this can be done quite e�ciently. However, thenumber of distinct partitionings of the same set of exam-ples that can be induced with a single oblique hyperplaneis O(nd), so that the straightforward approach of consid-ering all possible tests is too expensive for many reason-able values of n and d. For example, one of the datasetsused in Section 5 has n = 4164 and d = 14. This obser-vation led us to consider the computational complexityof �nding the best test when tests are represented byoblique hyperplanes. We found that for reasonable def-initions of \best," this problem is NP{complete; i.e., itprobably has no polynomial time algorithm. This resultimplies that exhaustive search is not feasible for manydatasets.Theorem 2.1: Let the energy e of a hyperplane be de-�ned by the sum{minority energy measure (de�ned be-low). Given two point sets K1 and K2 and a value k,the problem of determining if there is a hyperplane suchthat e � k is NP{complete.For a proof of this theorem, see [Heath, 1992]. Notethat this theorem says that �nding even one optimalhyperplane is hard; clearly, then, building a whole treeis even harder.It is worth noting that there do exist energy measuresfor which �nding the best hyperplane is possible in poly-nomial time. See [Duda and Hart, 1973] for a descriptionof di�erent techniques of generating hyperplanes in theabsence of linear separability.2.1 Finding approximate solutionsIt is clear that by abandoning the restriction to axis-parallel hyperplanes, we have made the problem of build-ing decision trees considerably harder. Even at one par-ticular node of the decision tree, we can not be sure of�nding the best split, even if we de�ne the goodness ofthe split in a simple, local way. What saves us from dis-aster is that the best tree may not use the best �rst splitanyway! This suggests that a randomized method, onethat tries a range of good (but not best) initial splits andproduces a set of alternative trees, might produce goodapproximate solutions. This is exactly the approach wehave taken.As with many NP{hard optimization problems, ourbest strategy is to look for approximations or goodheuristic solutions. There are several standard ap-proaches for computationally hard optimization prob-lems. Such possibilities include local search or gradientdescent on the cost function. Typically, such methodssu�er from the problem of getting stuck in local max-ima. Two standard solutions to this problem are ap-

plying multiple local searches and applying a stochasticoptimization approach such as simulated annealing. Per-ceptron trees, introduced in Utgo� and Brodley (1990)can be seen as an instance of applying multiple localsearches to the problem of �nding a good �rst split. Onceone good split is found, they recursively apply the pro-cedure (i.e., multiple local-search) to the resulting par-titions of the data. Breiman et al. (1984) use a singleapplication of a local improvement algorithm. They it-erate on dimensions, �nding the best perturbation in thedimension until no improvement can be made. Both al-gorithms are deterministic and output a single tree. Ouralgorithm produces a stream of di�erent trees for a giventraining set. We can generate any number of these treesduring training, and choose, for example, the smallestone for experimentation on the test-set.It is well{understood that �nding the best �rst splitwill not necessarily produce the smallest decision tree(i.e., the smallest tree may have a non-optimal rootnode). Allowing randomization in the procedure that�nds the best �rst split, and producing many alterna-tive trees, increases the probability of �nding good trees.We believe that randomization is an important techniquein the context of inductive learning procedures. Sincenone of the known deterministic learning procedures areguaranteed to generate good minimum-size representa-tions (trees), the introduction of randomization gives usa higher probability of �nding such representations.Thus one of the principal claims we wished to in-vestigate experimentally was whether, when an optimaltree cannot be found, randomized algorithms may pro-duce better decision trees than simple deterministic al-gorithms. Given that any algorithm to �nd oblique deci-sion trees cannot be guaranteed to �nd the best tree andstill run in reasonable time, we decided that we neededan algorithm that could produce many di�erent trees.Our SADT algorithm produces a di�erent tree each timeit runs. We sometimes run it hundreds of times on agiven dataset, choosing the minimum size tree as thebest one. Our argument is that picking the best of manysolutions produced by a randomized algorithm may bepreferable to using an algorithm, even a very clever one,that only produces one solution.3 The simulated annealing algorithmThe basic outline of our algorithm is the same as thatof most other decision tree algorithms. That is, we �nda hyperplane to partition the training set and recurseon the two partitions. Here we describe the search for agood hyperplane.In our implementation, d{dimensional hyperplanes arestored in the formH(x) = hd+1+Pdi=1 hixi, where H =fh1; h2; : : : ; hd+1g is the hyperplane, x = (x1; x2; : : : ; xd)is a point, and hd+1 represents the constant term. Forexample, in the plane the hyperplane is a line and isrepresented in the familiar ax + by + c = 0 form. Clas-si�cation is done recursively. To classify an example,compare it to the current hyperplane (initially this isthe root node). If an example p is at a non{leaf node la-beled H(x), then we follow the the left child ifH(p) � 0;otherwise we descend to the right child.



The �rst step in our algorithm is to generate an ini-tial hyperplane. The initial hyperplane we generate isalways the same and is not tailored to the training set.We simply wanted to choose some hyperplane that wasnot parallel to any of the axes, so we used the hyper-plane passing through the points where xi = 1 and allother xj = 0, for each dimension i. In particular, theinitial hyperplane may be written in the above form ashi = 1 for 1 � i � d and hd+1 = �1 since H(x) = 0for each of these points. Thus in 3-D, we choose thehyperplane which passes through (1; 0; 0), (0; 1; 0), and(0; 0; 1). Many other choices for the initial hyperplanewould be equally good. Once the annealing begins, thehyperplane is immediately moved to a new position, sothe location of the initial split is not important.Next, the hyperplane is repeatedly perturbed.If we denote the current hyperplane by H =fh1; h2; : : : ; hd+1g, then the algorithm picks one of thehi's randomly and adds to it a uniformly chosen randomvariable in the range [�0:5; 0:5). Using our goodnessmeasure (described below), we compute the energy ofthe new hyperplane and the change in energy �E.If �E is negative, then the energy has decreased andthe new hyperplane becomes the current split. Other-wise, the energy has increased (or stayed the same) andthe new hyperplane becomes the current split with prob-ability e��E=T where T is the temperature of the system.The system starts out with a high temperature that isreduced slightly with each move. Note that when thechange in energy is small relative to the temperature,the probability of accepting the new hyperplane is closeto 1, but that as the temperature becomes small, theprobability of moving to a worse state approaches 0.In order to decide when to stop perturbing the split,we keep track of the split that generated the lowest en-ergy seen so far at the current node. If this minimumenergy does not change for a large number of iterations(we used numbers between 3000 and 30000 iterations inour experiments), then we stop making perturbationsand use the split that generated the lowest energy. Therecursive splitting continues until each node is pure; i.e.,each leaf node contains only points of one category.3.1 Goodness criteriaOur SADT algorithm can work with any goodness crite-rion, and we have experimented with several criteria. Fordetailed discussions of these measures, see Heath [1992].In these earlier studies, the sum{minority goodness mea-sure generated smaller, more accurate trees than the oth-ers we tested. As a result, we chose the sum{minoritygoodness measure for the experiments described here.This measure is de�ned as follows.Consider a set of examples X, belonging to 2 classes,u and v. A hyperplane divides the set into two subsetsX1 and X2. For each subset, we �nd the class that ap-pears least often. We say that these are the minoritycategories. If X1 has few examples in its minority cate-gory C1, then it is relatively pure. We prefer splits thatare pure; i.e., splits that generate small minorities. Letthe number of examples in class u (class v) in X1 be u1(v1) and the number of examples in class u (class v) in

X2 be u2 (v2). To force SADT to generate a relativelypure split, we de�ne the sum{minority error measure tobe min(u1; v1) + min(u2; v2). For a description of thisand other error measures, see [Heath, 1992].3.2 Taking advantage of randomizationWe believe randomization in learning algorithms can eas-ily be used to advantage. Because SADT constructs dif-ferent trees every time, it is possible to run it multipletimes and pick a tree or set of trees that has some ad-vantage over a more \average" tree. For example, tominimize tree size, one can run SADT several times andchoose the smallest tree it creates.Another way we can bene�t from randomization is totake a set of SADT trees, and combine their classi�ca-tions by taking the plurality. In bi-classi�cation prob-lems, this reduces to taking the majority. For example,if we have 5 trees, and 3 classify an example as \0,"and the other two classify it as \1," then we predict theexample belongs to class \0."The premise behind this idea is that any one tree maynot capture the target concept completely accurately,but will approximate it with some error. This error dif-fers from tree to tree. By using several trees and takingthe plurality, we hope to overcome this type of error.4 An example in the planeTo illustrate the possible advantages that SADT o�ers,we demonstrate its use on an arti�cial dataset containing200 examples in two classes, chosen uniformly from atwo-dimensional space. We labeled the points accordingto a partitioning with three non-axis-parallel lines. Thus,the optimal partitioning (and the optimal tree) requiredthree oblique \splits."Figure 1 shows the tree generated by ID3 and one ofthe trees generated by SADT. The tree generated by ID3did not �t the data very well, because the correct parti-tions were oblique lines. We ran one hundred trials witheach of our goodness measures, and kept the smallesttree as the best. This example shows that, at least forsimple problems, SADT can perform very well.5 Experiments5.1 Applying SADT to cancer diagnosisFor our �rst experiment, we ran SADT on a real datasetthat has been the subject of other machine learning stud-ies; in particular, it was the subject of experiments thatpartitioned the data using oblique hyperplanes (Man-gasarian et al., 1990). This dataset contains 470 exam-ples of patients with breast cancer, and the diagnostictask is to determine whether the cancer is benign or ma-lignant. Each example has 9 numeric attributes, henceour decision trees used hyperplanes in 9-D.Mangasarian's method uses linear programming to�nd pairs of hyperplanes that partition the data. The al-gorithm �nds one pair of parallel hyperplanes at a time,and each pair can be oriented at any angle with respectto all other pairs. The resulting model is a set of obliquehyperplanes, similar though not identical to an obliquedecision tree.



(A) (B)Figure 1: Tree generated by (A) ID3 and (B) SADTAlgorithm Accuracy on Number ofTest Data (%) HyperplanesSADT 97 1ID3 83 30Mangasarian et al. 97 16EACH 95Nearest Neighbor 94Table 1: Breast cancer resultsBecause Mangasarian et al. received the data as theywere collected in a clinical setting, their experimentaldesign was very simple. They trained their algorithmon the initial set of 369 examples. Of the 369 patients,201 (54.5%) had no malignancy and the remainder hadcon�rmed malignancies. On the next 70 patients to en-ter the clinic, they used their algorithm for diagnosis,and found that it correctly diagnosed 68 patients. Weused 68=70 = 0:97 as a rough estimate of the accuracy ofMangasarian et al.'s method. They then re-trained theiralgorithm using the 70 new patients, and reported thatit correctly classi�ed all of the next 31 patients to enterthe clinic. Mangasarian reported that his program's out-put was being used in an actual clinical setting. Usingthe same dataset with a more uniform experimental de-sign, Salzberg reported that the Each hyper-rectangleprogram produced 95% classi�cation accuracy, and 1-nearest-neighbor had 94% accuracy (Salzberg, 1991).We imitated Mangasarian et al.'s experiment by usingthe same 369 examples from their initial trial to producedecision trees, which we then tested on the �nal 101patients. It is not possible to show a nine-dimensionalpartitioning here, but our results and some comparisonsare summarized in Table 1.Mangasarian's model used 8 pairs of hyperplanes {16 hyperplanes { to model the data. With SADT wewere able to determine that the same accuracy can beattained with a single hyperplane. Our method usesa signi�cantly smaller number of oblique planes, and

Accuracy Std Tree StdAlgorithm (%) Dev Size DevSADT 94:9 3:47 4:58 2:0ID3 88:1 9:89 27:8 4:7Table 2: Cross-validated breast cancer resultsproduces comparable accuracy. The axis-parallel hyper-planes produced by ID3 made a much poorer classi�erfor this dataset | the tree was much larger and was lessaccurate than the SADT tree. As a side note, some ofthe larger trees generated by SADT scored 100% on thetest set. The smallest such \perfect" tree contained 6hyperplanes.In addition, we ran a ten-fold cross-validation trial onthe same set of data. In an x{fold cross-validation trial,we divide the dataset into x approximately equal sizedsubsets and perform x experiments. For each set s, wetrain the learning system on the union of the remainingx � 1 sets and test on set s. The results are averagedover these x runs. The results of these tests are shown inTable 2. For each of the ten training{ and test{set pairs,we performed thirty{six trials. That is, each value inTable 2 is the average of 360 values and should be moreindicative of the true accuracy on the problem. TheSADT trees are somewhat more accurate than the axis-parallel trees. The size of the trees generated by SADTis considerably less that that of the trees generated byID3. We note that there are di�erent ways in which thesize of trees can be measured. In this paper, we equatetree size with the number of hyperplanes, regardless ofthe description complexity of the hyperplanes.5.2 Identifying stars and galaxiesIn order to study the performance of SADT on largerdatasets, we ran several experiments using astronomicalimage data collected with the University of MinnesotaPlate Scanner. This dataset contains several thousandastronomical objects, all of which are classi�ed as either



Accuracy Std Tree StdAlgorithm Dataset (%) Dev Size DevSADT Bright 99:0 0:48 7:03 2:2ID3 99:0 0:63 37:7 2:7SADT Dim 94:0 1:2 27:6 13ID3 94:7 1:1 260 150Table 3: Star/Galaxy resultsstars or galaxies. Odewahn et al. [1992] used this datasetto train perceptrons and backpropagation networks.Although we did not have access to the exact train-ing and test set partitions used by Odewahn et al., weapproximated the data using the same �ltering of datafrom the same source. Although our results may notbe completely comparable to theirs, we include them toshow that both learning methods produce similar accu-racies. Our results were generated by averaging nineteen10{fold cross{validation trials.We experimented on two di�erent subsets of the astro-nomical data. One set is comprised of dim objects, theother of bright objects. Bright objects tend to be easierto classify. The bright dataset consists of 4164 exam-ples; there are 4652 examples in the dim dataset. Eachexample has fourteen real-valued attributes and a labelof either \star" or \galaxy." Approximately 35% of theexamples are galaxies.Classi�cation results are shown in Table 3. Odewahnet al. [1992] obtained accuracies of 99:7% using back-propagation on the bright dataset and 92:2% on thedim dataset. We obtained a cross-validated accuracyof 99:1% with a perceptron on the bright dataset. Notethat a perceptron can be considered a tree of size 1. Thisimplies that SADT trees, despite their small size, couldstill bene�t from pruning. The accuracy of the treesgenerated by SADT and those generated by ID3 was ap-proximately the same in both cases. However, SADTwas able to �nd much smaller trees than ID3.5.3 Classifying irisesFisher's [1936] iris data is a well known dataset, andmany common learning techniques have been applied toit. The data consists of 150 examples, 50 each of threedi�erent types of irises: setosa, versacolor, and virginica.Each example is described by numeric measurements ofwidth and length of the petals and sepals.We performed thirty-�ve 10-fold cross-validation tri-als using SADT. Averaged results are shown in Table 4,along with 10-fold cross-validation trials for ID3. Weissand Kapouleas [1989] obtained accuracies of 96:7%,96:0%, and 95:3% with backpropagation, nearest neigh-bor, and CART, respectively, using leave-one-out trials,i.e., 150{fold cross validation.Once again, we note that the accuracy of SADT iscomparable to that of other learning techniques. Thetrees generated by SADT tend to be somewhat smallerand more accurate on average than those of ID3.

Accuracy Std Tree StdAlgorithm (%) Dev Size DevSADT 94:7 5:99 4:24 1:5ID3 90:0 8:5 7:8 1:7Table 4: Iris resultsClassi�cation TreeDataset Technique Accuracy SizeCancer average 94:9 4:58malignancy smallest 95:1 1:90Star/galaxy average 99:0 7:03Bright smallest 99:1 3:80Star/galaxy average 94:0 27:6Dim smallest 94:2 15:2Iris average 94:7 4:24smallest 96:6 2:20Table 5: Prediction using smallest trees6 Pruning SADT treesThe problem of generating small decision trees throughchoice of a stopping criterion or energy measure has beenconsidered di�cult. See, for example, [Breiman, et al.,1984]. The approach commonly used for standard deci-sion trees is to �rst generate a tree that correctly classi-�es every training example, and use another procedure,pruning, to reduce the size of the tree. See [Mingers,1989] for an overview of several decision tree pruningmethods. The results we present in our paper are forunpruned trees. It turns out that some pruning methodswork well on our oblique trees. A comparison of pruningstrategies for SADT can be found in [Heath, 1992].7 Predicting using smallest treesOne advantage of randomization is that SADT can gen-erate many di�erent trees to model a dataset, and thenuse some additional criterion to decide which tree to usefor classi�cation. We believe that smaller trees providea qualitatively better description of a domain, and wetherefore used tree size as a criterion for picking trees.Table 5 shows a comparison of predictive accuracy andtree size for all four of our datasets using two crite-ria. Our default method, average, was to use SADTto generate approximately 200 di�erent trees, and theresults in the table give the average accuracy of all thesetrees. However, if we simply pick the smallest tree gen-erated by the algorithm, performance improves slightly,as shown in the table. The bene�t to this technique isthat we can obtain smaller trees with no loss (and per-haps even an increase) in accuracy. (Each line in thetable represents a 10{fold cross{validation study; there-fore, accuracy and tree size are averages over 10 runs.)8 Summary of ResultsWe have developed an algorithm for generating obliquedecision trees, in which decisions are linear threshold



functions of example attributes. We have shown thatfor reasonable goodness measures, �nding best splits isprobably not possible in polynomial time.This result di�ers from most previous NP{complete-ness results addressing learning complexity. Hya�land Rivest (1976) showed that �nding a decision treethat minimizes expected classi�cation time is NP{hard.Blum and Rivest (1988) show that learning is di�culteven when trying to train a neural network with only 3nodes. Several other published results have consideredthe complexity of exact learning, namely, �nding a cir-cuit, formula or neural network consistent with a dataset.(See, e.g., Baum and Haussler, 1989; Blum and Rivest,1988; Judd, 1988; and Lin and Vitter, 1991.) All of theseresults require at least a two level circuit or neural net-work, since the problem of learning with a single layercan be solved using linear programming. Unlike the pre-vious results, which apply to exact learning, our resultaddresses approximate learning. We show that the ap-proximate learning problem is NP-complete even for thesimplest model of a neural mechanism: the perceptron.This has forced us to examine methods of �nding good(as opposed to best) splits. Our experiments have shownthat simulated annealing works well as a method for gen-erating oblique decision trees, in that it generates treeswith fewer tests, while maintaining classi�cation accu-racy. We have compared our methods to others on bothreal and arti�cial data, in order to give a broad overviewof how well the methods work. We plan to explore thesetechniques further by using di�erent annealing methodsand di�erent goodness criteria. We are also develop-ing randomized geometric algorithms that will be moree�cient than annealing. In this paper, our goal was totest the thesis that smaller trees generate good decisions.This justi�es the e�ort to seek e�cient algorithms for�nding good oblique decision surfaces in a decision tree.If construction of a good classi�er is more importantthan producing a concise representation, then one mightuse SADT to generate a set of trees, and then use themajority vote for classi�cation. We have experimentedwith this and other ideas [Heath, 1992], but these resultsare not included in the interest of brevity.To summarize, SADT was able, for the datasets weused in our experiments, to generate quite small trees.We consider this to be its main advantage over otherdecision tree algorithms.AcknowledgementsThe authors wish to thank David Aha for providingcomments and relevant references. This research wassupported in part by the Air Force O�ce of Scienti�cResearch under Grant AFOSR-89-0151, and by the Na-tional Science Foundation under Grant IRI-9116843.References[Baum and Haussler, 1989] E. Baum and D. Haussler.What size net gives valid generalization? Neural Com-putation, 1:141{160, 1989.[Blum and Rivest, 1988] A. Blum and R. L. Rivest.Training a 3-node neural network is np-complete. In

Proceedings of the First ADM Workshop on the Com-putational Learning Theory, pages 9{18, Cambridge,MA, 1988.[Breiman et al., 1984] L. Breiman, J. Friedman, R. Ol-shen, and C. Stone. Classi�cation and RegressionTrees. 1984.[Duda and Hart, 1973] R. Duda and P. Hart. PatternClassi�cation and Scene Analysis. Wiley, 1973.[Heath, 1992] D. Heath. A geometric framework for ma-chine learning. PhD thesis, The Johns Hopkins Uni-versity, Baltimore, MD, 1992.[Hya�le and Rivest, 1976] L. Hya�le and R. Rivest.Constructing optimal binary decision trees is np-complete. Information Processing Letters, 5(1):15{17,1976.[Judd, 1988] J. S. Judd. On the complexity of load-ing shallow neural networks. Journal of Complexity,4:177{192, 1988.[Lin and Vitter, 1991] J. H. Lin and J. S. Vitter. Com-plexity results on learning by neural nets. MachineLearning, 6:211{230, 1991.[Mangasarian et al., 1990] O. Mangasarian, R. Setiono,and W. Wolberg. Pattern recognition via linear pro-gramming: Theory and application to medical diag-nosis. SIAM Workshop on Optimization, 1990.[Mingers, 1989] J. Mingers. An empirical comparison ofpruning methods for decision tree induction. MachineLearning, 4:227{243, 1989.[Odewahn et al., 1992] S. C. Odewahn, E. B. Stockwell,R. L. Pennington, R. M. Humphreys, and W. A. Zu-mach. Automated star/galaxy discrimination withneural networks. Astronomical Journal, 103(1):318{331, 1992.[Quinlan, ] J.R. Quinlan. Simplifying decisoin trees. In-ternational Journal of Man-Machine Studies, 27:221{234.[Quinlan, 1986] J.R. Quinlan. Induction of decisiontrees. Machine Learning, 1(1):81{106, 1986.[Salzberg, 1991] S. Salzberg. Distance metrics forinstance-based learning. In Methodologies for Intel-ligent Systems: 6th International Symposium, ISMIS'91, pages 399{408, New York, 1991. Springer-Verlag.[Utgo� and Brodley, ] P. Utgo� and C. Brodley. An in-cremental method for �nd multivariate splits for deci-sion trees. In Proceedings of the Seventh InternationalConference on Machine Learning, pages 56{65, LosAltos, CA. Morgan Kaufmann.[Utgo�, 1989] P. Utgo�. Incremental induction of deci-sion trees. Machine Learning, 4(2):161{186, 1989.[Wiess and Kapouleas, 1989] S. Wiess and I. Kapouleas.An empirical comparison of pattern recognition, neu-ral nets, and machine learning classi�cation methods.In Proceedings of the Eleventh IJCAI, Detroit, MI,1989. Morgan Kaufmann.


