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This paper presents a novel method for addressing the problem of finding more good feature pairs
between images, which is one of the most fundamental tasks in computer vision and pattern recognition.
We first select matched features by Bi-matching as seed points, then organize these seed points by adopt-
ing the Delaunay triangulation algorithm. Finally, triangle constraint is used to explore good matches. The
experimental evaluation shows that our method is robust to most geometric and photometric transfor-
mations including rotation, scale change, blur, viewpoint change, JPEG compression and illumination
change, and significantly improves both the number of correct matches and the matching score. And
the application on estimating the fundamental matrix for a pair of images is also shown. Both the exper-
iments and the application demonstrate the robust performance of our method.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Finding correspondences between two images of the same scene
or object is a very important issue for quite varied applications in
computer vision and pattern recognition, such as symmetry detec-
tion (Lee and Liu, 2009), wide baseline matching (Schaffalitzky and
Zisserman, 2002; Tuytelaars and Van Gool, 2004), building panora-
mas (Brown and Lowe, 2003), image classification (Bosch et al.,
2008), image and video retrieval (Jegou et al., 2008), object recogni-
tion (Vedaldi and Soatto, 2006; Ferrari et al., 2006; Kannala and
Brandt, 2007; Cho et al., 2010), action recognition (Scovanner
et al., 2007), 3D reconstruction (Tola et al., 2008) and human detec-
tion (Dalal and Triggs, 2005; Wang et al., 2009).

To achieve the goal of finding correspondences, the existing
methods generally include three main parts, i.e. feature detection,
description and matching. First, feature detection is to capture dis-
criminative and stable features, which has now reached some
maturity in the literature. The existing feature detection schemes
can be grouped into two categories: (1) point-based, like Harris cor-
ner detector (Harris and Stephens, 1988), Hessian–Laplace detector
(Lowe, 2004; Mikolajczyk and Schmid, 2005) and Hessian-Matrix
based detector (Bay et al., 2006), and (2) region-based, e.g. EBR
(Tuytelaars and Van Gool, 1999), IBR (Tuytelaars and Van Gool,
2000), Harris-Affine region (Mikolajczyk and Schmid, 2001), Hes-
sian-Affine region (Mikolajczyk and Schmid, 2002), MSER (Matas
et al., 2004) and salient region (Kadir et al., 2004). As suggested
by Nielsen and Lillholm (2001), different types of image features
are appropriate to different tasks. Next, the neighborhood around
ll rights reserved.
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every interest point for point-based schemes or every interest re-
gion for region-based is represented by a feature descriptor based
on the concentrated information (for instance, gradient (Lowe,
2004) and Haar-Wavelet response (Bay et al., 2006)). The descriptor
has to be distinctive meanwhile robust to geometric and photomet-
ric deformations and noises. Finally, the similarity measurement of
features is employed to associate features, which is typically based
on a distance between feature descriptors, such as the Mahalanobis
or Euclidean distance.

Although the feature detection and description are well devel-
oped, the performance of finding correspondences between images
and current similarity measurement approaches are still limited.
The widely used similarity measurement (Lowe, 2004) adopts dot
product between descriptors and then compares the ratio between
the nearest and the next nearest neighbors against a predefined
threshold to decide whether they are matched or not (we call this
ratio test measurement the original matching method, OMM for
short). Even though this strategy reduces influences from many
geometric and photometric transformations, the drawback is that
it sacrifices a great many of feature pairs that should be on the list
of correct matches, which significantly affects the power of feature
based applications such as reconstruction and image searching.
One example is shown in Fig. 1(a). To solve the problem resulting
from low matching score (the ratio between the number of correct
matches and the number of total matches), a few improvements of
similarity measurement have been developed. Leordeanu and
Herbert (Leordeanu and Hebert, 2005) proposed a spectral tech-
nique for correspondence problem using pairwise constraints.
The approach builds the adjacency matrix of a graph whose nodes
represent the potential correspondences. The weights on the links
represent pairwise agreements between potential correspon-
dences. The authors then use the principal eigenvector of the
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Fig. 1. Matching result comparison between the OMM and our method TCM with the same matching threshold. To better illustrate, we only show 1/6 of correct matches in
each feature set (green ‘+’s) randomly. There are 39 hits (matching score 85.97%) in (a) and 216 hits (matching score 93.11%) in (b). (For interpretation of the references in
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Illustration of Bi-matching.
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adjacency matrix and impose the mapping constraints to find cor-
respondences between images. In (Brown and Lowe, 2003), RAN-
SAC is employed to estimate the homography between images
and filter out false matches according to the geometric constraint
provided by the estimated homography. The method called Circu-
lar Earth Mover’s Distance (CEMD) Rabin et al. (2008) effectively
measures descriptors, which relies on an adaptation of Earth
Mover’s Distance. Jiang and Yu (2009) introduced a linear formula-
tion that simultaneously finds feature point correspondences and
global geometrical transformation in a constrained solution space,
which can accurately match features. These measurements im-
prove the matching accuracy, but with the cost of a reduced num-
ber of correct matches. Therefore, to boost the performance of
finding correspondences, an effective technique for finding more
good correspondences between two sets of features is imperative.

We aim to propose an effective similarity measurement ap-
proach, called Triangle Constraint Measurement, for exploring
good (discriminative and accurate) matches. In comparison to the
state-of-the-art, our method increases both the matching score
(the ratio between the number of correct matches and the number
of total matches) and the number of correct matches (see Fig. 1).

The rest of the paper is structured as follows. The flow of our
proposed method is presented in Section 2. Parameter selection
and performance evaluation are in Section 3. Section 4 shows the
application on fundamental matrix estimation. Finally, the paper
is concluded in Section 5.

2. Triangle Constraint Measurement

In this section, we detail our method, Triangle Constraint
Measurement (TCM), ordered according to the stages seed point
selection, seed point organization and match exploration. Before
those stages, feature extraction should be performed. While distinc-
tive and reliable features are expected to ensure the quality of the
final result, the particular method used to extract features does not
exert direct restraint on our proposed approach.

2.1. Seed point selection

We adopt the Bi-matching for selecting seed point pairs (stable
matches) for the rest of the tasks, which is based on the observa-
tion that true positive matches between the feature set A from
the reference image IA and B from the target image IB are more
likely to be Bi-matched (from A to B and vice versa). In other
words, if the relationship between one pair of features is unidirec-
tional, then it is more probable for the feature pair to be either
incorrect or unstable. Fig. 2 illustrates the Bi-matching procedure.
We denote the process shown in Fig. 2(a) as PA?B. As can be seen,
PA?B has obtained matches from A to B, possibly containing a sub-
set of unstable or even false positive matching pairs. According to
the nature of the Bi-matching method, the matches are bidirec-
tional. That is to say, the features that are unmatched by any of



Fig. 3. Example of the Triangle Constraint Measurement. The triangle M246 in (a) is zoomed in at (b) to illustrate the match exploration process.
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PA?B or PB?A (the second process as shown in Fig. 2(b)) will not be
the elements of the set of seed points. Therefore, prior to executing
PB?A, eliminating the unmatched features from B in PA?B signifi-
cantly reduces computational time compared to processing all
the features from B in PB?A, while introducing no negative effects
to the result of seed point selection. Note that all the features in A
participate in PB?A. The solid arrows from A to B represent the
matches from A to B and vice versa. The red1 dashed arrows stand
for the false or unstable matches. Similarly, the red dashed circles
and squares are features filtered out by either PA?B or PB?A. If there
are few stable matches, the corresponding images are very likely to
be irrelative or significantly distorted. The features finally matched
by the Bi-matching method are considered seed points, e.g. the yel-
low points shown in Fig. 3, which are more reliable to execute the
remaining processing steps.

2.2. Seed point organization

After selecting seed points, we need to organize the isolated
seed points so that we can further explore more good feature pairs
using geometric constraint. The geometric constraint here denotes
an affine transformation which approximately relates a matched
pair of local patches. The first reason to select an affine transforma-
tion rather than a perspective one is that the state of the art feature
descriptor is only tolerant to affine transformation. The reason why
we prefer affine rather than a more restricted similarity transfor-
mation is that it is closer to the real scenario. Since a 2D affine
1 For interpretation of color in Figs. 2 and 3, the reader is referred to the web
version of this article.
transformation has six degrees of freedom, three non-collinear
points are sufficient to embody the geometric constraint. So trian-
gle is preferred for such purpose. And, given the three vertices, the
triangle is established without extra ordering confirmation of the
vertices. To quickly organize the seed points obtained from the
seed point selection stage, we adopt the Delaunay triangulation
algorithm. The algorithm integrates the isolated points as triangles
and, more importantly, maximizes the minimum angle of all the
three angles of the triangles in the triangle mesh. In other words,
it tends to avoid skinny triangles. The skinny triangle might cause
degenerated expression of the affine transformation since the three
vertices of a skinny triangle tend to be collinear. From another per-
spective, the triangulation divides the image plane into small
pieces (triangles), which are more robust to real complex distor-
tions than big patches.

In the implementation, we only apply the Delaunay triangula-
tion algorithm to the seed points from IA. As a result, the triangles
are joint but not overlapped in IA. The seed points from IB are orga-
nized according to the same order with those from IA according to
the one-to-one relationship between the seed points from IA and IB.
An example of the Delaunay triangulation is shown in Fig. 3(a).
Note that the triangle mesh in IB might not be exactly the same
with that in IA due to the false positive matches survived from
the Bi-matching, e.g. the seed point pair 1 in Fig. 3(a). The match
exploration described later is suitable to solve this problem.

2.3. Match exploration

So far, we have obtained the triangles in IA with their correspon-
dences in IB. We take the case shown in Fig. 3(b) for example to
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explain how to explore matches using triangle constraint. For gen-
eralizing the case, we replace the vertices 2, 6 and 4 by a, b and c
(a0, b0 and c0) respectively for the left (right) triangle. The features
are limited by the triangles Mabc and Ma0b0c0 , i.e. the features out of
the triangles (the red ‘�’s in Fig. 3(b)) are not considered in current
case. In other words, only the sets of features inside the triangles
(the ‘M’s in Fig. 3(b)) denoted as PA for the reference triangle (left)
and PB for the target triangle (right) are involved.

2.3.1. Triangle constraint
For each feature Pi 2 PA (e.g. the feature marked by dashed red

circle) inside Mabc, the relationship between Pi and the vertices of
Mabc is

Pi ¼ aþ bðb� aÞ þ cðc� aÞ; ð1Þ

where b and c are the scale coefficients of the vector (b � a) and
(c � a) respectively. Fortunately, the three vertices (a = [xa,ya,1]T,
b = [xb,yb,1]T and c = [xc,yc,1]T) of Mabc are known and the parame-
ters K can be computed by
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where Pi = [xi,yi,1]T and a = 1 � b � c. We will shortly prove that if
Mabc and Ma0b0c0 are related by an affine transformation, then P0i cor-
responding to Pi and the vertices of Ma0b0c0 are also related by the
same K. Therefore, under translation, scale, rotation and affine
transformations, the estimated point Pe (the black point in
Fig. 3(b)) corresponding to Pi is computed via
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2.3.2. Applicability analysis
We assume that three vertices of Mabc, i.e. [xa,ya,1]T, [xb,yb,1]T

and [xc,yc,1]T, from the reference image are projected into
x0a; y

0
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; x0b; y

0
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0
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� �T in the target image by a trans-
formation matrix H. Alike, the point [xi,yi,1] inside Mabc transforms
through H[xi,yi,1]T as x0i; y

0
i;1

� �T accordingly. For isometries, simi-
larity transformations and affine transformations, the correspond-
ing parameters hence can be equally expressed like:
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It is easy to verify that KH = K, i.e. triangle constraint is invariant to
translation, rotation, scale and affine transformations, since the
third dimension of the points’ homogeneous coordinates keeps
being 1 without normalization. When the perspective transforma-
tion happens, triangle constraint would not hold true due to the
normalization difference for the homogeneous coordinates of
points. But the triangulation splitting the image plane into small
patches makes perspective transformation can be approximately
treated as affine. In other words, match exploration is tolerant to
perspective transformation.

To be more robust to noises and distortions, the area around the
Pe within R pixels (in our experiments, R = 3) is defined as candi-
date area, as shown by the red solid circle in Fig. 3(b). The features
Cj inside the candidate area are defined as candidate features (the
green ‘M’s in Fig. 3(b)). We denote C ¼ fCjg as the set of candidate
features. The similarity score between the Pi and the candidate fea-
ture Cj is measured by

si;j ¼ 1:5�ðdisti;j=RÞ2 � DT
i Dcj

; ðj ¼ 1;2; . . . ; jCjÞ; ð4Þ

where disti,j is the Euclidean distance between Pi and Cj, Di and Dcj

are the descriptors for Pi and Cj respectively, and j�j stands for the
cardinality of a set. The term 1:5�ðdisti;j=RÞ2 2 ð0;1� reflects the spatial
distance between the estimated location Pe and the location of Cj.
And the dot product DT

i Dcj
measures the similarity between the

descriptors. Since the descriptors (e.g. SIFT used in our experiments)
are normalized, the similarity can be measured by the cosine value
of the angle h between two descriptors, i.e. cos h ¼ DT

i Dcj
. If the max-

imum score of all the features in C is greater than a predefined
threshold s, the corresponding feature pair is considered as tempo-
rary match, and there is at most one match for every feature Pi. The
value of s is selected based on parameter selection (Section 3.2) for
the remaining tasks including performance evaluation (Section 3.3)
and application (Section 4).

After processing all the features from PA, there is a set T con-
taining all the temporary matches between PA and PB. The tempo-
rary matches are accepted as final matches if they satisfy

jT j > k minfjPAj; jPBjg; ð5Þ

where k is the size coefficient, the selection of which is described in
Section 3.2. Otherwise, the triangle pair Mabc and Ma0b0c0 and the tem-
porary matches between them are discarded. This strategy is based
on the observation that if the pair of the triangles is true correspon-
dence, they will approximately satisfy the triangle constraint. On
the other hand, if all the relative triangles of a vertex are discarded,
the vertex is then removed from the seed points. This strategy is
able to reduce wrong matches in the triangle constraint step and fil-
ter out the false positive matches survived from the Bi-matching
step. Note that the removal of wrong matches would result in an
uncomplete triangle mesh. Therefore, after removing a vertex (ver-
tices), we repair the triangle mesh by detecting holes (broken parts)
from the broken triangle mesh and then repairing them using the
same triangulation algorithm meanwhile keeping the intact part.
To avoid missing good matches that lie inside the newborn trian-
gles, we also do the exploration in these triangles.

2.4. Complexity consideration

Suppose N and M are the numbers of features extracted from IA

and IB respectively. To obtain n matches, OMM costs OðNMÞ, where
n�min(N;M) typically. As for Bi-matching procedure, PA?B

spends actually the same with OMM. The complexity of PB?A is
also OðNMÞ in theory, which is however hard to reach since the
search space of features is significantly reduced by PA?B as de-
scribed in Section 2.1. To triangulate n matches (Section 2.2), the
Delaunay triangulation algorithm costs Oðn log nÞ. There are
N � n and M � n unmatched features for IA and IB after Bi-match-
ing. The worst case of match exploration (Section 2.3) takes
OððN � nÞðM � nÞÞ. This worst scenario, however, is unlikely to
happen in practice, mainly because match exploration executes
on corresponding triangle pairs separately, i.e. only the features in-
side the executing triangle pair are involved. Therefore, the worst
computational complexity of our method is the same with the tra-
ditional matching method OMM, i.e. OðNMÞ.
3. Experiments

The techniques proposed in this work are suitable to apply to all
the local image features. In our experiments, we use the popular
SIFT as the example. And three experiments including verification
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Fig. 4. Example images from eight categories of Oxford dataset.
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of triangle constraint, parameter selection and performance evalu-
ation, are presented in this section.

Dataset. The verification of triangle constraint is performed on
simulated data described in Section 3.1. The evaluation of both
the parameter effects and the performance of our method is carried
on real images with different geometric and photometric transfor-
mations and for different scene types. Fig. 4 shows the first image
(the original image) in every category of Oxford dataset2 (Leuven,
illumination change; UBC, JPEG compression; Bikes, blur, structured
scene; Trees, blur, textured scene; Boat, scale change, structured
scene; Bark, scale change, textured scene; Graffiti, viewpoint change,
structure scene; Wall, viewpoint change, textured scene). Along with
the images, the homographies are also provided.

Performance concern. The performance that we are concerned
here includes two aspects, i.e. the number of correct matches
(NCM) and the matching score (MS, the ratio between the number
of correct matches and the number of all matches). Since the
experiments are based on the same feature extraction scheme,
the numbers of correspondences for involved different similarity
measurements have no difference. Therefore, these two aspects
are sufficient to compare the performance difference with respect
to the traditional ratio test matching method OMM (Lowe, 2004).

3.1. Verification of triangle constraint

Triangle constraint is performed based on features extracted
from images. The photometric invariance is guaranteed by the
property of features, e.g. SIFT is robust to illumination change since
descriptors are normalized. In other words, the photometric trans-
formations do not change the triangulation result. Section 3.3 gives
the results (Fig. 7(a) and Fig. 8(a)) that demonstrate the robustness
to illumination change. The geometric transformations influence
the shape of the triangle mesh. We employ simulation to verify
that triangle constraint is tolerant to the geometric transforma-
tions including translation, scale change, rotation and affine trans-
formations. First, on one image plane, we randomly generate 30
points as original seed points and another 1000 points as original
candidate points. The generated 1030 points P1

i ð1 6 i 6 1030Þ are
then transformed by different transformations including Euclid-
ean, similarity and affine transformations to be P2

i . All the image
points P2

i are disturbed by adding zero-mean Gaussian noises with
the standard derivation ranging from 0 to 8 pixels. Seed points are
organized by using the Delaunay triangulation algorithm. The per-
2 http://www.robots.ox.ac.uk/vgg/research/affine/.
formance is measured via comparing the parameters K = [a,b,c]T

that relate original candidate points to their corresponding trian-
gles and KH = [a0,b0,c0]T that relate transformed candidate points
to their corresponding triangles. The error is computed as follows:

err ¼ ja� a0j þ jb� b0j þ jc� c0j
3

: ð6Þ

The simulation involves three kinds of geometric transforma-
tions, i.e. Euclidean, similarity and affine transformations. Note
that for similarity and affine transformations, scale change is in-
volved. To reveal the influence of scale change, scaling up (Similar-
ity1 and Affine1 in Fig. 5) and scaling down (Similarity2 and
Affine2 in Fig. 5) are carried out. For each transformation under
one noise level, we run the experiment results 100 times, and
the mean and standard derivations of the errors in Eq. (6) are
shown in Fig. 5. As can be seen from Fig. 5, triangle constraint un-
der different geometric transformation performs robustly. When
there are zero noises, the K and KH are exactly same for all the
three transformations. The errors increase almost linearly with re-
spect to the level of noise. Note that the errors of Similarity2 (Af-
fine2) are slightly higher than Similarity1 (Affine1), since
triangles become smaller, which might influence the accuracy of
estimated parameters.
geometric transformations. The difference between Similarity1 (Affine1) and
Similarity2 (Affine2) is the value of scale factors. Similarity1 (Affine1) is the result
of scaling up. Alternatively, Similarity2 (Affine2) is of scaling down.

http://www.robots.ox.ac.uk/vgg/research/affine/
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Fig. 7. Experiment results of the number of correct matches (NCM) for different categories from Oxford dataset.
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3.2. Parameter selection

Good match exploration involves two parameters that intro-
duced in Section 2.3, i.e. the similarity threshold, s, for determin-
ing whether a feature pair is good enough to be selected as
temporary match, and the size coefficient, k, for testing if the tem-
porary matches from corresponding triangles can be accepted as
final matches. These two parameters affect the performance of
the proposed method in terms of NCM and MS. Intuitively, the
number of correct matches and the matching score vary as one
falling and the other raising. To find optimal parameters empiri-
cally, we test different parameter combinations on Oxford dataset.
Note that a match is defined correct if the distance between the
ground truth location (projected by the provided ground truth
homography for each pair of relative images) and the estimated
location (computed by OMM or our method) is less than 6 pixels,
incorrect otherwise.
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Fig. 8. Experiment results of the matching score (M
3.2.1. Experimental setting
The first and the third images from every category of Oxford

dataset are used for evaluating the performance difference be-
tween parameter combinations. The similarity threshold, s, ranges
from 0.0 to 1.0 in theory. Specially, s = 1.0 means that the match
exploration is closed, i.e., no matches will be explored. Conversely,
the restriction of selecting good matches is totally released when
s = 0.0. The size coefficient k can also be set using a value in
[0.0,1.0], where k = 0.0 and k = 1.0 are extreme cases. The case
where k = 0.0 turns all temporary matches into final matches no
matter how many temporary matches are explored between the
corresponding triangles. That is to say, the discriminating power
is completely loss. On the other hand, k = 1.0, directly rejects all
of temporary matches. We skip over these extreme cases that vio-
late the original intention of good match exploration, and adopt 9
options for both s and k, i.e. 0.1 to 0.9 at a fixed interval 0.1, to
accomplish the task of parameter selection.
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Table 1
Performance comparison between our method and OMM for fundamental matrix
estimation. The error is measured using Symmetric Epipolar Distance.

Image pair MC I MC II MC III UL WC

Our method 2.2385 1.2107 1.9037 1.9783 2.2544
OMM 3.4593 1.9446 2.4936 3.8952 2.6654
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The trade-off between the capability of exploring more matches
(NCM) and the accuracy of matching (MS) lies on the parameter
choice. Intuitively, higher s and k lead to less good matches to be
explored but keep the matching score higher. On the other hand,
the quantity of correct matches increases and the matching score
decreases as s and k turn down. First, the influences of s and k
on NCM and MS are separately evaluated as shown in Fig. 6(a)
and (b). To generalize different categories, we then integrate the
results of parameter influences on NCM by

Encms;i;k;j ¼
P8

c¼1NCMc
s;i;k;j

8
: ð7Þ

As can be seen in Fig. 6(a), the quantity of Encm is low when s and k
are all set to 0.9, which grows as s and k decrease and reaches the
maxima when both s and k change to 0.1. Fig. 6(b) gives the integra-
tion of the parameter influence on MS, Ems, calculated in the same
way with that of NCM, the trend of which however is not like the
intuition described above. The reason is that high similarity thresh-
old and size coefficient lead to few good matches explored by the
procedure. So the improvement of MS will be slight. But if the
restriction is too loose, bad matches are also accepted together with
good ones as final matches, which will instead reduce the matching
score. Therefore, the parameter combinations increasing MS are
those exploring good matches much more than bad ones.

To analyze the comprehensive effect of two parameters, we
merge the results of Fig. 6(a) and (b) as follows. For eliminating
the influence brought by the difference of value range, the results
are normalized into [0,1] separately as (take Encm for example, and
Ems in the same way)

CEncms;i;k;j  Encms;i;k;j �minfEncmg; ð8Þ

CEncms;i;k;j  
CEncms;i;k;j

maxfCEncmg : ð9Þ

To balance the importance of CEncm and CEms, the comprehensive
effect CE is computed as follows

CEs;i;k;j  
CEncms;i;k;j þ CEmss;i;k;j

2
: ð10Þ

Fig. 6(c) draws the visual result of comprehensive effect. As can be
seen in the graph, the overall best performance is obtained by the
parameter combination (s = 0.6,k = 0.4). As the values of the param-
eters vary around, the performance decreases. Together with the
best combination, i.e. (s = 0.6,k = 0.4), we additionally select three
parameter combinations (s = 0.5,k = 0.5), (s = 0.6,k = 0.5) and
Fig. 9. Irrelative image pair. Upper row: OMM results and Lower row: our results. There
and 0 hit by our method for image pair (b). False positive matches are marked by ‘�’ an
(s = 0.7,k = 0.4) for further comparing the performance of our meth-
od against OMM.

3.3. Performance evaluation

3.3.1. Relative image pair matching
Every category of Oxford dataset contains six images capturing

the same scene with geometric and/or photometric transforma-
tions. Figs. 7 and 8 show the results in terms of NCM and MS for
different categories, respectively. As can be seen, all of the NCMs
by our method using four different parameter combinations se-
lected based on the parameter comprehensive effect are consider-
ably more than those obtained by OMM for all eight categories as
shown in Fig. 7. And the quantities of correct matches using our
method from high to low are obtained by setting (s = 0.6,k = 0.4),
(s = 0.7,k = 0.4), (s = 0.5,k = 0.5) and (s = 0.6,k = 0.5), which is con-
sistent with the trend shown in Fig. 6(a). With respect to MS,
TCM performs mostly better than OMM except for the third pairs
of the image sequence of Trees with (s = 0.6,k = 0.4) as shown in
Fig. 8(d). The reason is that there are a huge amount of features
(the largest number of correct matches reaches about 8000 by
TCM) that increase the possibility of accidentally considering
incorrect matches as correct. Note that we do not draw the match-
ing scores for the image pairs with no matches by using our meth-
od (only very few unstable correct matches by OMM), i.e. the
matching score is undefined 0

0

� �
. The margins between the MS

curves of our method using different parameters are not as distinct
as those of the NCM curves, since they are close to 100%. Again, the
results displayed in Figs. 7 and 8 certify that there is a trade-off be-
tween NCM and MS, which can be adjusted according to the de-
mand of task. From the results, we can see that TCM using the
parameter combinations selected from Section 3.2 significantly
outperforms OMM.

3.3.2. Irrelative image pair matching
From another perspective, a good measurement has to be ro-

bust to noisy images. Therefore, we use an additional pair of
are 22 hits by OMM and 0 hit by our method for image pair (a), and 20 hits by OMM
d linked by lines.



(a)
Merton College I

(MCI)

(b)
Merton College II

(MCII)

(c)
Merton College III

(MCIII)

(d)
 University Library

(UL)

(f)
 Wadham College

 (WC)

Fig. 10. Visual results of epipolar geometry estimation for each category from Oxford Colleges dataset. The ground truth, our result and the result by OMM are plotted in red
solid line, blue dashed line and green dotted line, respectively. (For interpretation of the references in colour in this figure legend, the reader is referred to the web version of
this article.)
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irrelative images taken by ourselves to test and verify the validity
of our method. As shown in Fig. 9, there are 22 hits by OMM
marked in red ‘�’ and linked by lines and 0 hit by our method.
No doubt that the 22 matches are all false positive.
3 http://www.csse.uwa.edu.au/pk/Research/MatlabFns.
4 http://www.robots.ox.ac.uk/vgg/data2.html.
4. Application to fundamental matrix estimation

As one of the most fundamental tasks in computer vision and
pattern recognition, many applications benefit from more good
matches between images, such as tracking (Ta et al., 2009),
depth-map estimation (Tola et al., 2008) and image retrieval (Jegou
et al., 2008). In this section, we apply Triangle Constraint Measure-
ment to the task of estimating the fundamental matrix, F, from
point correspondences, which is of practical importance. The fun-
damental matrix relating two images is estimated from a number
of correspondences between the images, which are assumed to
be projections of the same 3D points. As is known, fundamental
matrix can be described by a 3 � 3 singular matrix, which connects
two perspective images of an object or scene.

F estimation has been the focus of many researchers, and a few
techniques have been developed (Luong and Faugeras, 1996; Chesi
et al., 2002; Hartley and Zisserman, 2004). We adopt a popular and
simple scheme, i.e. fitting F using RANSAC,3 to estimate the F based
on the matches between real images from Oxford colleges dataset4

using our method and OMM, respectively, and compare experimen-
tally the errors between the estimated Fs in virtue of the ground
truth corner correspondences provided by the dataset. Several error
criteria have been proposed, a survey of which is studied in (Fathy
et al., 2011). Without loss of generality, we choose Symmetric Epipo-
lar Distance (SED) as our error criterion, which is defined as:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i¼1

x0
i
TbF �xi

� �2

ðbFxiÞ21þðbF �xiÞ22
þ x0

i
TbFxi

� �2

bFT x0
i

� �2

1
þ bFT x0

i

� �2

2

2p

vuuuut
; ð11Þ

where �x denotes for the ground truth of x; bF is the estimated F and
p stands for the number of used correspondences provided by the
dataset.

http://www.csse.uwa.edu.au/pk/Research/MatlabFns
http://www.robots.ox.ac.uk/vgg/data2.html
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Since the estimation is based on RANSAC, the estimated funda-
mental matrix may slightly vary for each run. So we repeat the
estimation procedure 100 times for each category and average
the SED as the final errors. Table 1 gives the error comparison be-
tween our method and OMM. The results reveal that our method is
more robust and suitable than OMM. Visual results can be found in
Fig. 10. The ground truth, our result and the result by OMM are
plotted in red solid line, blue dashed line and green dotted line,
respectively.

5. Conclusion

Similarity measurement is the crucial part for numerous tasks
built on local image features. There are two factors for a good mea-
surement, i.e. the matching accuracy and the number of correct
matches. Unfortunately, existing methods hardly take in consider-
ation both two factors. We have proposed a new measurement to
improve the matching accuracy and the number of correct matches
simultaneously. Experimental results have demonstrated that our
method outperformed OMM in terms of matching relative and
irrelative image pairs.
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