
Performance Evaluation of an Optimal CacheReplacement Policy for Wireless Data DisseminationJianliang Xua� Qinglong Hub Wang-Chien Leec Dik Lun Leeaa Hong Kong University of Science and Technology, Clear Water Bay, HKb IBM Silicon Valley Lab, San Jose, CA, USAc Penn State University, University Park, PA 16801, USAAbstractData caching at mobile clients is an important technique for improving the per-formance of wireless data dissemination systems. However, variable data sizes, dataupdates, limited client resources, and frequent client disconnections make cache man-agement a challenge. In this paper, we propose a gain-based cache replacement policy,Min-SAUD, for wireless data dissemination when cache consistency must be enforcedbefore a cached item is used. Min-SAUD considers several factors that a�ect cacheperformance, namely, access probability, update frequency, data size, retrieval delay,and cache validation cost. This paper employs stretch as the major performance metricsince it accounts for the data service time and thus is fair when items have di�erentsizes. We prove thatMin-SAUD achieves optimal stretch under some standard assump-tions. Moreover, a series of simulation experiments have been conducted to thoroughlyevaluate the performance of Min-SAUD under various system con�gurations. The sim-ulation results show that in most cases theMin-SAUD replacement policy substantiallyoutperforms two existing policies, namely LRU and SAIU.Index Terms: cache replacement, cache consistency, wireless data dissemination, datamanagement, mobile computing, performance analysis.1 Introduction�The author is now with the Hong Kong Baptist University.0Copyright 2002 IEEE. Personal use of this material is permitted. However, permission toreprint/republish this material for advertising or promotional purposes or for creating new collective worksfor resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in otherworks must be obtained from the IEEE. 1

Owing to the rapid development of mobile devices, wireless application standards, wirelesshigh-speed networks, and supporting software technologies, we are witnessing a take-o� ofwireless data applications in the commercial market. However, constraints of mobile wirelessenvironments, such as scarce bandwidth and limited client resources, remain barriers to thefull utilization of the capabilities of mobile computing. Client data caching has been consid-ered a good solution for coping with the ine�ciency of wireless data dissemination because itreduces the amount of tra�c over the wireless communication channel by answering queriesfrom data cached at the client [3, 9].In contrast to the typical use of caching techniques in operating systems and databasesystems, client-side data caching in wireless data dissemination has the following characteris-tics [21, 33]: 1) cached data items may have di�erent sizes; 2) data retrieval delays (i.e., cachemiss penalties) are di�erent for di�erent items subject to the broadcast schedule employed;3) data may constantly be updated over time at the server. In addition, mobile clients mayfrequently disconnect voluntarily (to save power and/or connection cost) or due to failure.These factors make the design of client cache management for wireless data dissemination achallenge. There are three important issues involved in client cache management: a cachereplacement policy determines which data item(s) should be deleted from the cache whenthe free space is insu�cient for accommodating an item to be cached [3], a cache prefetchingpolicy automatically preloads data items into the cache for possible future access requests[4], and a cache invalidation scheme maintains data consistency between the client cacheand the server [9]. In this paper, we study the cache replacement problem.As will be discussed in Section 2, cache replacement policies for wireless environmentshave been studied only for push-based broadcasts [3, 25, 30]. Furthermore, these previousstudies assumed that data items had the same size and ignored data updates and clientdisconnections. Little work has investigated cache replacement policies in a realistic wirelessenvironment where updates, disconnections, and variable data sizes are common.In a preliminary study [33], we developed a cache replacement policy, SAIU, for wirelesson-demand broadcast. SAIU took into consideration four factors that a�ect cache perfor-mance, i.e., access probability, update frequency, retrieval delay, and data size. However, an2

optimal formula for determining the best cached item(s) to replace based on these factors wasnot given in the preliminary study. Also, the inuence of the cache consistency requirementwas not considered in SAIU.In this paper, we propose an optimal cache replacement policy, called Min-SAUD, whichaccounts for the cost of ensuring cache consistency before each cached item is used. Weargue that cache consistency must be required since it is crucial for many applications suchas �nancial transactions, and that a cache replacement policy must take into considerationthe cache validation delay caused by the underlying cache invalidation scheme. In addition,Min-SAUD considers access probability, update frequency, retrieval delay, and data size indeveloping the gain function which determines the cached item(s) to be replaced.This paper employs stretch as the major performance metric since it accounts for thedata service time and thus is fair when items have di�erent sizes. The analytical study thatwe perform shows that Min-SAUD achieves optimal stretch under the standard assumptionsof the independent reference model [17] and Poisson arrivals of data accesses and updates.The adoption of the independent reference model makes sense, because it reects the accessbehavior on the web as shown in [11]. On the other hand, Poisson arrivals are usually usedto model data access and update processes [22].We conduct a series of simulation experiments to evaluate the performance of the Min-SAUD policy under di�erent system settings. The simulation removes the assumptions madein the analysis so that we can observe the impact of the assumptions during the analysis.The simulation simulates on-demand broadcasts and compares Min-SAUD to two cache re-placement policies, i.e., LRU and SAIU [33]. The results show that Min-SAUD achievesthe best performance under various system con�gurations. In particular, the performanceimprovement of Min-SAUD over the other schemes becomes prominent when the cache vali-dation delay is signi�cant. This indicates that cache validation cost plays an important rolein cache replacement policies.The rest of this paper is organized as follows. Section 2 reviews related work. Section 3describes the system architecture and the performance metric used in this study. The cachereplacement policy, Min-SAUD, and its optimality analysis and implementation issues are3

presented in Section 4. Section 5 introduces the simulation model for performance evaluation.The simulation results are presented in Section 6. Finally, Section 7 concludes the paper.2 Related WorkMobile wireless environments are limited by narrow bandwidth and frequent disconnectionsetc. Client-side data caching is an important technique to improve access performance insuch environments [3, 9]. A lot of research has been done on cache consistency, replacement,and prefetching in the past few years. However, most of the previous studies focused onthe cache consistency issue, with relatively little research being done on cache replacementand prefetching methods. Given the limited cache on mobile clients, the latter two issuesare very important to data access performance. In the following we briey review relatedstudies.2.1 Cache Consistency AlgorithmsBarbara and Imielinski were �rst to address the cache consistency issue for mobile environ-ments. In [9], three invalidation report (IR) based schemes, namely TS, AT, and SIG, werepresented. Most of the newly proposed invalidation schemes are variants of these basic IRschemes (e.g., [12, 13, 15, 18, 20, 23, 24, 29, 32, 35]). They di�er from one another mainlyin the organization of IR contents and the mechanism of uplink checking. All of these in-validation schemes incur certain cache validation delay for ensuring data consistency beforethe data is used.In location-dependent information services, there is yet another kind of cache invalidation,where a previously cached data instance may become invalid when the client moves to a newlocation. In a previous paper [34], we proposed, analyzed, and evaluated three schemesfor this kind of location-dependent cache invalidation. In this paper, we do not considerlocation-dependent services.
4

2.2 Cache Replacement and Prefetching PoliciesThe cache replacement issue for wireless data dissemination was �rst studied in the BroadcastDisks (Bdisk) project. Acharya et al. proposed a cache replacement policy called PIX [2, 3],in which the data item with the minimum value of p=x was evicted for replacement, wherep is the item's access probability and x is its broadcast frequency. Thus, an evicted itemeither has a low access probability or has a short retrieval delay. In a subsequent study [4],Acharya et al. explored the use of prefetching to further improve data access performance.Tassiulas et al. presented a cache update policy that attempted to minimize averageaccess latency [30]. In [30], the broadcast channel was divided into time slots of equal size,which were equal to the broadcast time of a single item. Let �i be the access rate for itemi and �i(n) be the amount of time from slot n to the next transmission of item i. A time-dependent reward (latency reduction) for item i at slot n is given by r(i; n) = �i�i(n) + �i2 .The proposed W-step look-ahead scheme made the cache update decision at slot n such thatthe cumulative average reward from slot n up to slot n+W was maximized. The larger thewindowW , the better the access performance but the worse the complexity of the algorithm.Caching algorithms for the Bdisk systems were also investigated by Khanna et al. [25].Di�erent from the previous work, their work assumed that neither knowledge of future datarequests nor knowledge of access probability distribution over the data items was available tothe clients. The proposed Gray algorithm took into consideration the factors of both accesshistory and retrieval delay for cache replacement/prefetching. Theoretical study showedthat, in terms of worst-case performance, Gray outperformed LRU by a factor proportionalto CacheSize= logCacheSize.In summary, existing studies on cache replacement for wireless data dissemination arebased on simplifying assumptions, such as �xed data sizes, no updates, and no disconnections,thereby making the proposed schemes impractical for a realistic wireless environment.2.3 Replacement Policies for Web Proxy CachingOther related work includes studies on web proxy caching [6, 31]. Here we briey describesome typical solutions for cache replacement in web proxy caching. Based on web traces, it5

was observed that small documents are accessed frequently [1, 28]. To deal with small docu-ment retrieval, the LRU-MIN cache replacement policy was proposed [1]. A generalized LRUreplacement policy that considered document size was also investigated [6]. More recently,cost-based cache replacement policies have been developed [10, 28]. Bolot and Hoschka de-veloped a cost-based algorithm which considers document retrieval delay [10]. Shim et al.proposed a cost-based replacement algorithm, LNC-R-W3-U, which explicitly considers doc-ument retrieval delay and document validation cost [28]. However, these existing studies didnot give analytical justi�cations for the cost functions used but solely relied on trace-basedsimulation, which was valid only for the particular traces used but failed to give insightfulobservations. Moreover, the characteristics of web access behavior may evolve from time totime. For example, the clients' preference to access small documents observed in [1] could notbe observed in more recent studies [11]. In addition, the web and mobile environments di�erin many aspects, e.g., the data delivery and update propagation methods are quite di�erent.None of the studies on web proxy caching employed the stretch performance measure, whichis the primary metric used in this paper (see Section 3.2).In a recent paper [19], Hosseini-Khayat explored the cache replacement problem for dataitems with variable sizes and di�erent cache miss penalties. However, [19] only studied theo�ine version of the problem in which the entire sequence of future requests is known inadvance. In contrast, this paper focuses on online cache replacement policies.More recently, Chang and Chen [16] investigated caching strategies for transcoding prox-ies. Transcoding is a transformation that is used to convert a multimedia object from oneform to another, which trades o� object �delity for size. A weighted transcoding graph wasdevised to manage multiple versions of objects in the proxy cache. This paper does notconsider object transcoding.3 BackgroundIn this section, we give a brief description of the system architecture and the performancemetric adopted in this study.
6

3.1 System Architecture
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

Server

Uplink Channel

Data Scheduler

App.

Client 1

A CB E

...Database

Client n

App.

C
ache M

anager

C
ache M

anager

Cache

D F

Downlink (Broadcast) Channel

F

pull requests

Q
ueue

Cache

Data Item Invalidation Report

Figure 1: A Generic System ArchitectureFigure 1 depicts a generic architecture of the wireless data dissemination systems studied.We assume that the system employs on-demand broadcasts for data dissemination. Thatis, the clients send pull requests to the server through the uplink channel. In response, theserver disseminates the requested data items to the clients through the broadcast channelbased on a scheduling algorithm [5, 7, 8]. The clients retrieve the items of their interest o�the air by monitoring the broadcast channel.Push-based broadcast is a common alternative to on-demand broadcast for wireless datadissemination [3]. In push-based broadcasts, a �xed set of data are periodically broadcastbased on precompiled data access patterns. In fact, push-based broadcasts can be seen as aspecial case of on-demand broadcasts, where uplink cost is zero and data scheduling is basedon the aggregate access patterns. Consequently, the result presented in this paper can alsobe applied to push-based broadcasts.As illustrated, there is a cache management mechanism in a client. Whenever an appli-cation issues a query, the local cache manager �rst checks whether the desired data item isin the cache. If it is a cache hit, the cache manager still needs to validate the consistency ofthe cached item with the master copy at the server. To validate the cached item, the cachemanager retrieves the next invalidation report from the broadcast channel (see below fordetails). If the item is veri�ed as being up-to-date, it is returned to the application imme-7

diately. If it is a cache hit but the value is obsolete or it is a cache miss, the cache managersends a pull request to the server, which will schedule the broadcast of the desired data.When the requested data item arrives on the wireless channel, the cache manager returns itto the user and retains a copy in the cache. The issue of cache replacement arises when thefree cache space is not enough to accommodate a data item to be cached. Since validationis important to ensure data consistency and the delay it causes cannot be neglected, wedevelop in this paper an optimal cache replacement scheme that incorporates the validationdelay in determining the cached item(s) to be replaced.Techniques based on invalidation report (IR) have been proposed to address the cacheconsistency issue [9, 20]. IRs are interleaved with the broadcast data and periodically broad-cast on the broadcast channel. An IR consists of the server's update history up to the mostrecent w broadcast intervals (w can be a constant or a variable). Every mobile client main-tains the timestamp Tl of the last cache validation. Thus, upon reception of an IR, a clientchecks to see whether its Tl is within the coverage of the IR received. If it is, the client startsthe invalidation process in accordance with the type of the IR received. Otherwise, it dropsthe cache contents entirely (when w is a constant) [9] or ignores the IR and sends its Tl tothe server in order to enlarge w of the next IR (when w is a variable) [20].3.2 Performance MetricsIn operating systems and database systems, cached items usually have the same size (e.g.,a page or a block). In these systems, since cache miss penalties for all cached items arethe same, the cache hit ratio metric is consistent with the access latency metric; i.e., thehigher the hit ratio, the shorter the overall access latency. Consequently, cache hit ratiois often used to measure the e�ectiveness of cache replacement policies in traditional cachemanagement.For applications in which cached items have di�erent sizes, the cache hit ratio is obviouslyno longer a reliable performance metric. In the previous work on web proxy caching, thebyte hit ratio, which is the ratio of the total number of bytes hit to the total number of bytesrequested, was introduced to evaluate cache performance. In a wireless data dissemination8

system, however, subject to the broadcast schedule employed, cache miss penalties di�erfor di�erent data items. Thus, the byte hit ratio cannot fairly reect the overall systemperformance either. In this paper, we use stretch to evaluate the performance of cachereplacement policies:Stretch [5]: the ratio of the access latency of a request to its service time, whereservice time is de�ned as the ratio of the requested item's size to the broadcastbandwidth.Generally, for a smaller item, which has a shorter service time, a shorter access latencyis expected by users. In contrast, users can tolerate a longer latency for a larger item.Since access latency does not count the di�erence in data size/service time, it is not a fairperformance metric. Stretch overcomes such a shortcoming in performance measure. Thus,this study aims to optimize the overall stretch performance of a cache replacement policywhile keeping access latency as short as possible. On the other hand, as we will discuss inSection 7, the proposed analysis technique can be extended to optimize other performancemetrics such as access latency and cache hit ratio.4 An Optimal Cache Replacement AlgorithmCache replacement policy plays a central role in cache management. Traditional cachereplacement policies (e.g., LRU), while suitable for cached items with the same size andmiss penalty, do not perform well in wireless data dissemination [33]. In the following, we�rst introduce a new gain-based cache replacement policy, Min-SAUD. Then, we show thatthe proposed policy results in the optimal access performance in terms of stretch. Finally,we address some of the implementation issues.4.1 The Min-SAUD Replacement PolicyIn this subsection, a gain-based cache replacement policy, Minimum Stretch integrated withAccess rates, Update frequencies, and cache validation Delay (denoted as Min-SAUD), isproposed for the wireless data dissemination systems under cache consistency. To facilitate9

our discussion, the following notations are de�ned (note that these parameters are for oneclient only):� D: the number of data items in the database.� C: the size of the client cache.� ai: mean access arrival rate of data item i, i = 1; 2; : : : ; D.� ui: mean update arrival rate of data item i, i = 1; 2; : : : ; D.� xi: the ratio of update rate to access rate for data item i, i.e., xi = ui=ai, i =1; 2; : : : ; D.� pi: access probability of data item i, pi = ai=PDk=1 ak for i = 1; 2; : : : ; D.� li: access latency of data item i, i = 1; 2; : : : ; D.� bi: retrieval delay from the server (i.e., cache miss penalty) for data item i, i =1; 2; : : : ; D.� si: size of data item i, i = 1; 2; : : : ; D.� v: cache validation delay, i.e., access latency of an e�ective invalidation report.� dk: the data item requested in the k-th access,1 dk 2 f1; 2; : : : ; Dg.� Ck: the set of cached data items after the k-th access, Ck � f1; 2; : : : ; Dg.� Uk: the set of cached data items that are updated between the k-th access and the(k + 1)-th access, Uk � Ck.� Vk: the set of victims chosen to be replaced in the k-th access, Vk � (Ck�1 � Uk�1).The key issue for cache replacement is to determine a victim item set, Vk, when thefree space in the client cache is not enough to accommodate the incoming data item in thek-th access. In [33], we have observed that a cache replacement policy should choose thedata items with low access probability, short data retrieval delay, high update frequency,and large data size for replacement. As described in the introduction, a cache replacement1The client accesses are assumed to be numbered sequentially.
10

policy should also take into account the cost of cache validation. Thus, in Min-SAUD, again function incorporating these factors is de�ned for each cached item i:2gain(i) = pisi (bi1 + xi � v): (1)The idea is to maximize the total gain for the data items kept in the cache. Thus, to �ndspace for the k-th accessed data item, the Min-SAUD policy identi�es the optimal victimitem set V �k , V �k � (Ck�1 � Uk�1), such thatV �k = arg minVk�(Ck�1�Uk�1)Xi2Vk gain(i) (2)s:t: Xi2Vk si � Xj2(Ck�1�Uk�1) sj + sdk � C: (3)It is easy to see that Min-SAUD reduces to PIX when Bdisk is used and when dataitems have equal size and are read-only. This is because under that circumstance the dataretrieval delay of an item is inversely proportional to its broadcast frequency [3]. Therefore,Min-SAUD can be considered a generalization of PIX .4.2 Analysis of the Min-SAUD PolicyIn this section, we show that Min-SAUD is an optimal cache replacement policy in termsof stretch. The independent reference model [17] is assumed in the analysis. To facilitateour analysis, we assume that the arrivals of data accesses and updates for data item i followthe Poisson processes. Speci�cally, tai and tui , the inter-arrival times for data accesses andupdates of data item i, follow exponential distributions with means of ai and ui, respectively.In other words, the density functions for tai and tui are f(tai) = aie�aitai and g(tui) = uie�uitui ,respectively. Further, we assume that the access latency of the cache is zero since it isnegligible compared to the access latency to the server.The access cost, in terms of stretch, for a data item is the product of its access probabilityand its stretch. Recall that the stretch of a data item is the ratio of its access latency to2The gain function was derived while we were trying to prove the optimality of a heuristic gain functionthat we initially de�ned for cache replacement. 11

its service time, where the service time can be derived by the ratio of the item size to thebroadcast bandwidth. With a �xed broadcast bandwidth, we can ignore the bandwidthfactor and de�ne the relative stretch of a data item as the ratio of its access latency to itssize. Without loss of generality, assuming k accesses to the data items have taken place, wehave the relative access cost Sk for any caching strategy after the k-th access as follows:Sk = X1�i�D pi � lisi : (4)Under the data consistency requirement, even when a query generates a cache hit, theclient still needs to wait for the arrival of the e�ective IR, which is the next IR containingthe update information necessary for the validation of the cached copy. Let Pr(Ui) be theprobability that data item i is updated during the period from the current time to the arrivaltime of the e�ective IR of the next query on item i. Thus, Equation (4) can be re-writtenas: Sk = Xi2Ck pi � lisi +Xi=2Ck pi � lisi= Xi2Ck pi � lisi Pr(Ui) +Xi2Ck pi � lisi (1� Pr(Ui)) +Xi=2Ck pi � lisi : (5)The above equation consists of three terms, corresponding to three cases, namely, i) a cachehit but an obsolete copy, ii) a cache hit and an up-to-date copy, and iii) a cache miss. Theaccess latency li's in these three cases are v + bi, v, and bi, respectively:li = 8<: v + bi if i 2 Ck and an obsolete copy;v if i 2 Ck and an up-to-date copy;bi if i =2 Ck: (6)We are now going to derive Pr(Ui). We use Pr(U 0i) to denote the probability that dataitem i is updated during the period from the current time to the arrival time of the nextquery on data item i. We expect the chance that item i is updated during the IR waitingperiod but not updated between the current time and the arrival time of the next query onitem i is very slim, thus Pr(Ui) can be approximated by Pr(U 0i):Pr(Ui) := Pr(U 0i) = Pr(tui < tai) = Z 1tai=0 Z taitui =0 f(tai)g(tui)dtui dtai = uiui + ai : (7)12

Therefore, combining Equations (5), (6), and (7), we obtainSk = Xi2Ck �pi(v + bi)si � uiui + ai �+Xi2Ck �pi � vsi � aiui + ai �+Xi=2Ck pi � bisi= Xi2Ck pi(v + uibiui+ai)si +Xi=2Ck pi � bisi : (8)The following theorem proves that Min-SAUD is an optimal cache replacement policy.Theorem 1 The replacement policy Min-SAUD gives better access cost, in terms of stretch,than any other replacement policy.Proof: We derive the optimality of the Min-SAUD policy by showing that the cost Sk usingthis policy is always the minimum for all k. The proof uses the induction method.Suppose Sw is the optimal cost for some k = w given any cache replacement policy.Let Vw+1 be the victim set chosen to make room for dw+1. Therefore, we obtain Cw+1 =Cw � Uw [fdw+1g � Vw+1. Hence,Sw+1 = Xi2Cw+1 pi(v + uibiui+ai)si + Xi=2Cw+1 pi � bisi= Sw + Xi2Uw �pisi (bi1 + xi � v)�� pdw+1sdw+1 (bdw+11 + xdw+1 � v) + Xi2Vw+1 �pisi (bi1 + xi � v)�= B + Xi2Vw+1 pisi (bi1 + xi � v); (9)where B = Sw + Xi2Uw �pisi (bi1 + xi � v)�� pdw+1sdw+1 (bdw+11 + xdw+1 � v):Since a cache replacement policy cannot control the value of B, Equation (9) implies thatthe lowest access cost is achieved when the items with the lowest Pi2Vw+1 pisi (bi1+xi � v) arechosen as the victims. This is exactly what the Min-SAUD policy does. As the Min-SAUDpolicy makes this optimal decision for every replacement, subject to the restriction of cachecapacity, no other policy can provide a lower access cost. �
13

4.3 Implementation IssuesIn this subsection, we �rst address three critical implementation issues, namely heap man-agement, estimate of running parameters, and maintenance of cached item attributes, forthe Min-SAUD policy. Finally, the client cache access mechanism is described.4.3.1 Heap ManagementIn Min-SAUD, the optimization problem de�ned by Equations (2) and (3) is essentially the0=1 knapsack problem, which is known to be NP-hard. Thus, a well-known heuristic for theknapsack problem is adopted to �nd a sub-optimal solution for Min-SAUD:3Throw out the cached data item i with the minimum gain(i)=si value until thefree cache space is su�cient to accommodate the incoming item.This heuristic can obtain the optimal solution when the data sizes are relatively small com-pared to the cache size [28].A (binary) min-heap data structure is used to implement the Min-SAUD policy. Thekey �eld for the heap is the gain(i)=si value for each cached data item i. When cachereplacement occurs, the root item of the heap is deleted. This operation is repeated untilsu�cient space is obtained for the incoming data item. Let N denote the number of cacheditems and M the victim set size. Every deletion operation has a complexity of O(logN).An insertion operation also has an O(logN) complexity. Thus, the time complexity forevery cache replacement operation is O(MlogN). In addition, when an item's gain(i)=sivalue is updated, its position in the heap needs to be adjusted. The time complexity forevery adjustment operation is O(logN). The practical complexity of Min-SAUD is furtherinvestigated by simulation experiments in Section 6.5.4.3.2 Estimate of Running ParametersSeveral parameters are involved in computation of the gain(i) function. Among these pa-rameters, pi is proportional to ai, si can be obtained when item i arrives, and v is a system3We do not distinguish Min-SAUD and this heuristic in the rest of this paper.14

parameter. In most cases, ui, bi, and ai are not available to the clients. Thus, we needmethods to estimate these values.A well-known exponential aging method is used to estimate ui and bi. Initially, ui and biare set to 0. When a new update on item i arrives, ui is updated according to the followingformula: ui = �u=(tc � tlui) + (1� �u) � ui; (10)where tc is the current time, tlui is the timestamp of the last update on item i, and �u is afactor to weight the importance of the most recent update with those of the past updates.The larger the �u value, the more important the recent updates.Similarly, when a query for item i is answered by the server, bi is re-evaluated as follows:bi = �s � (tc � tqti) + (1� �s) � bi; (11)where tqti is the query time and �s is a weight factor for the running bi estimate. ui and bi,estimated at the server-side, are piggybacked to the clients when data item i is delivered; tluiis also piggybacked so that the client can continue to update ui based on the received IRs.The client caches the data item as well as its ui, tlui , and bi values. The maintenance of theseparameters (along with some other parameters) will be discussed in the next subsection.Di�erent clients may have di�erent access patterns, while some of their data accessesare answered by the cache. It is di�cult for the server to know the real access patternthat originated from each client. Consequently, the access arrival rate ai is estimated at theclient-side. The exponential aging method might not be accurate because it does not agethe access rate for the time period since the last access. Therefore, a sliding average methodis employed in the implementation [28]. We keep a sliding window of k most recent accesstimestamps (t1i ; t2i ; � � � ; tki) for item i in the cache. The access rate ai is updated using thefollowing formula: ai = ktc � tki ; (12)where tc is the current time and tki is the timestamp of the oldest access to item i in thesliding window. When fewer than k access timestamps are available for item i, the meanaccess rate ai is estimated using the maximal number of available samples.15

To reduce the computational complexity, the access rates for all cached items are notupdated during each replacement. Instead, in the implementation we update the meanaccess rate when the data item is accessed. In addition, similar to [28], we employ an \agingdaemon" which periodically generates dummy accesses to all data items. If for an item thetime period since the last access is larger than an aging threshold, we use the current time toage its access rate. The advantages for the periodic aging approach are two-fold. First, theaging accounts for the time since the last access and hence, is able to catch up the changingworkload. Second, with infrequent periodic aging only minimal re-organization of the heapstructure is required. The settings of the estimate parameters are described in Section 6.4.3.3 Maintenance of Cached Item AttributesTo realize theMin-SAUD policy, a number of parameters must be maintained for each cacheddata item. They are si; ui; tlui ; bi, ai, and tki 's. We refer to these parameters as the cacheditem attributes (or simply attributes). To obtain these attributes e�ciently, one may storethe attributes for all data items in the client cache. Obviously, this strategy does not scaleup to the database size. In the other extreme, one may retain the attributes only for thecached data items. However, this will cause the so-called "starvation" problem, as observedin [26, 28], which states that a newly cached data item i could be selected as the �rstfew candidates for replacement since it has only incomplete information (it may incorrectlyproduce a relatively smaller gain value). If the cached item attributes are evicted from thecache together with data item i, then upon re-accessing item i, these attributes must becollected again from scratch. Consequently, item i is likely to be evicted again.Similar to [26], we employ a heuristic to maintain the cached item attributes. Theattributes for the currently cached data items are kept in the cache. Let Nc be the numberof cached items. For those data items that are not cached, we only retain the attributes forNc items with the largest gain(j)=sj values. Since the attributes themselves can be viewedas a kind of special data, as in the management for cached data, a separate heap is employedto manage the attributes for non-cached data. This heuristic is adaptive to the cache size.When the cache size is large, it can accommodate more data items and hence, attributes formore non-cached data can be retained in the cache. On the other hand, when the cache size16

is small, fewer data items are contained and thus fewer attributes are kept.4.3.4 Description of Client Cache Access MechanismWe have discussed the various implementation issues for theMin-SAUD policy; we now showthe client cache access mechanism in Algorithm 1. Whenever an application issues a queryfor data item i, this cache access procedure is invoked.Algorithm 1 CLIENT CACHE ACCESS MECHANISMItem heap: maintains item attributes and pointers to real data for cached dataAttribute heap: maintains the attributes for non-cached itemsInput: the key for the requested data item iOutput: the requested data item iProcedure:1: if cache hit then2: wait for completion of the cache validating procedure;3: for all item j's that have been updated since last cache invalidation do4: if item j's attributes are cached then5: update tluj according to the received IR and uj using Equation (10);6: move the node for item j from the item heap to the attribute heap if item j iscached;7: end if8: end for9: if still cache hit then10: // a cache hit and a valid copy11: adjust item node i's position in the item heap;12: return item i to the application;13: end if14: end if15: send to the server a request to schedule broadcast of item i;16: // a cache hit but an invalid copy or a cache miss17: monitor the broadcast channel until item i arrives;18: if there is no su�cient space to cache item i then19: while free space is insu�cient do20: remove the data pointed by the root of the item heap;21: move the node for that item from the item heap to the attribute heap;22: end while23: end if24: store item i and insert a node for it in the item heap (maybe moved from the attributeheap);25: return item i to the application; 17

5 Simulation ModelThe simulation model used for performance evaluation is similar to that used in a previousstudy [33]. It is implemented using CSIM [27]. A single cell environment is considered. Themodel consists of a single server and NumClient clients.4 On-demand broadcast is employedfor wireless data dissemination.The default system parameter settings are given in Table 1. The database is a collectionof DatabaseSize data items and is partitioned into disjointed regions, each with RegionSizeitems. The data access pattern and update pattern are applied on the regions (see Sec-tions 5.1 and 5.2 for details). Data item sizes vary from smin to smax and have the followingthree types of distributions:� INCRT: sizei = smin + (i�1)(smax�smin+1)DatabaseSize , i = 1; : : : ; DatabaseSize;� DECRT: sizei = smax � (i�1)(smax�smin+1)DatabaseSize , i = 1; : : : ; DatabaseSize;� RAND: sizei = smin + bprob() � (smax � smin + 1)c, i = 1; : : : ; DatabaseSize;where prob() is a random function uniformly distributed between 0 and 1. Combined withthe skewed access pattern, INCRT and DECRT represent clients' preference for frequentlyquerying smaller items and larger items, respectively; RAND models the case where nocorrelation between the access pattern and data size exists (see Sections 5.1 for furtherdetails).IRs are broadcast periodically on the broadcast channel with an interval of BroadcastInt.The broadcast channel has a bandwidth of BroadcastBW . It works in a preempt-resumemanner with IRs having the highest broadcast priority and all other messages having equalpriority. This strategy ensures that IRs can always reach the clients in time [20]. The uplinkchannel has a bandwidth of UplinkBW .5.1 Client ModelEach client is simulated by a process running a continuous loop that generates a stream ofqueries. After the current query is �nished, the client waits for a period of ThinkT ime and4Each client could be further treated as an aggregate of clients with lower access rates.18

Parameter Setting MeaningNumClient 200 Number of aggregate clients in a cellDatabaseSize 2,000 data items Number of data items in the databaseRegionSize 20 data items Number of data items per database regionsmin 1KB The minimum data item size in the databasesmax 100KB The maximum data item size in the databaseBroadcastBW 115 Kbps Channel bandwidth from the server to the clientsUplinkBW 14.4 Kbps Channel bandwidth from the clients to the serverBroadcastInt 20 seconds Broadcast interval for invalidation reportsConMsgSize 512 bytes Size of control message in an invalidation reportTable 1: Default System Parameter SettingsParameter Setting MeaningThinkT ime 10 seconds Mean think time between consecutive queriesp 0.1 Probability of client disconnection per IR intervalCacheSizeRatio 5% Ratio of the cache size to the database sizeParaSize 4 bytes each Overhead for each cached parameter in replacement policiesDiscT ime 200 seconds Mean disconnection time� 0.80 Zipf distribution parameterTable 2: Default Client Parameter Settingsthen makes the next query request.5 The ThinkT ime parameter allows the cost of clientprocessing relative to data broadcast time to be adjusted, thus it can be used to modelworkload processing as well as the relative speeds of the client CPU and the broadcastmedium [3]. When a client is in the thinking state, it has a probability of p to enter thedisconnected state every IR broadcast interval. The time that a client is in a disconnectedstate follows an exponential distribution with a mean ofDiscT ime. Each client has a cache ofsize CacheSize, which is de�ned as 0:5�(smax+smin�1)�DatabaseSize�CacheSizeRatio.In order to maintain fairness to di�erent caching schemes, the CacheSize parameter includesboth the space needed for storing item attributes and the space available for storing data.Each cached parameter occupies ParaSize bytes.The client access pattern follows a Zipf distribution with skewness parameter � [36].5Since a query is initiated after the completion of the last query, the access arrivals do not follow thePoisson process. Thus, the analytical assumptions are relaxed in the simulation.19

Parameter Setting MeaningUpdateT ime 80 seconds Mean update inter-arrive time for the databaseUpdate-Cold=Update-Hot 80/20 Setting for the Cold/Hot update patternTable 3: Default Server Parameter SettingsThe data items are sorted such that item 0 is the most frequently accessed, and itemDatabaseSize � 1 is the least frequently accessed. In other words, with the INCRT sizesetting, the clients access the smallest item most frequently; with the DECRT size setting,the clients access the largest item most frequently. Zipf distributions are frequently used tomodel non-uniform access patterns. The probability of accessing any item within a databaseregion is uniform, while accesses to the database regions follow the Zipf distribution. Table 2summarizes the default client parameter settings.5.2 Server ModelThe server is modeled by a single process. Table 3 gives the server parameter settings.Requests from the clients are bu�ered at the server, assuming an in�nite queue bu�er isused. After broadcasting the current item, the server chooses an outstanding request fromthe bu�er as the next candidate according to the scheduling algorithm used. Comparedwith queueing delay and data transmission delay, the overhead of broadcast scheduling andrequest processing at the server is negligible. Therefore, they are not considered in themodel.The server process generates data updates with an exponentially distributed update inter-arrival time having a mean of UpdateT ime. A Cold=Hot update pattern is assumed in thesimulation model. Speci�cally, the uniform distribution is applied to all the database regions.Within a region, Update-Cold% of the updates are for the �rst Update-Hot% items, andUpdate-Hot% of the updates are for the rest. For example, we assume in the experimentsthat, within a region, 80% of the updates occur on the �rst 20% of data items (i.e., update-hotitems), and 20% of the updates occur on the remaining 80% of data items (i.e., update-colditems).
20

6 Performance EvaluationThis section evaluates the performance of the proposed cache replacement policy by simu-lation. Average stretch is the primary performance metric employed in this study. In theexperiments, we employ LTSF [5] as the on-demand broadcast scheduling algorithm andAAW AT [20] as the cache invalidation scheme, since they demonstrated superior perfor-mance over other schemes [5, 20]. In LTSF, the data item with the largest total currentstretch is chosen for the next broadcast, where the current stretch of a pending request isthe ratio of the time the request has been in the system to its service time. In AAW AT, theupdating history window w and content organization of the next IR are dynamically decidedbased on the system workload.The results are obtained when the system has reached a stable state; i.e., each client hasissued at least 5,000 queries after its cache is full, so that the warm-up e�ect on the clientcache and the broadcast channel is eliminated. For the exponential aging estimate method,we set �s = �u = 0:25 [3, 28]. For the sliding average method, the aging period is set to10,000 seconds and the aging threshold is set to roughly the product of the average accesslatency and the database size. Unless it is mentioned explicitly, the broadcast bandwidth isfully utilized.The overall cache performance in a wireless data dissemination system is determined byseveral factors, such as cache size, cache validation delay, access skewness, and item sizeratio. In the following, we �rst explore the robustness of the proposed cache replacementpolicy, Min-SAUD, under various workloads. Then, we analyze the time complexity of theMin-SAUD policy. The LRU policy is included as a yardstick in the performance evaluation.We also compare Min-SAUD to SAIU, which makes use of a cost function of bi � ai=(si � ui)to determine the victims [33].6.1 Experiment #1: Impact of the Cache SizeThis subsection investigates the performance of the cache replacement schemes under dif-ferent cache sizes. The simulation results are shown in Figure 2. To estimate data retrievaldelays, and access and update frequencies, Min-SAUD(EST) uses Equations (10), (11), and21

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 S
tr

et
ch

Cache Size (% of Database Size)

LRU
SAIU(IDL)

Min-SAUD(IDL)
Min-SAUD(EST)(a) INCRT 75

80

85

90

95

100

105

110

115

120

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 S
tr

et
ch

Cache Size (% of Database Size)

LRU
SAIU(IDL)

Min-SAUD(IDL)
Min-SAUD(EST)

(b) DECRT

50

60

70

80

90

100

110

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 S
tr

et
ch

Cache Size (% of Database Size)

LRU
SAIU(IDL)

Min-SAUD(IDL)
Min-SAUD(EST)

(c) RANDFigure 2: Stretch Performance under Various Cache Sizes(12). Min-SAUD(IDL) and SAIU(IDL) are assumed to have perfect knowledge of data ac-cess and update frequencies. Moreover, inMin-SAUD(IDL) and SAIU(IDL) the cache spaceused for storing the cached attributes is not counted.In Figure 2, it is obvious that Min-SAUD achieves the best stretch performance. Onaverage, the improvement of Min-SAUD(IDL) over LRU for INCRT, RAND, and DECRTis 30.7%, 21.7%, and 11.8%, respectively; and the improvement of Min-SAUD(IDL) overSAIU(IDL) for INCRT and RAND is 24.6% and 8.9%, respectively. Min-SAUD(IDL) andSAIU(IDL) have a similar performance for DECRT. The improvement follows a decreasingorder of INCRT, RAND, and DECRT. This can be explained as follows. First, since Min-SAUD takes into consideration the data size, it caches more frequently accessed items in the22

INCRT size setting, whereas it has to balance between caching more items and caching morefrequently accessed items in the other two settings especially for DECRT. Thus, Min-SAUDoutperforms LRU to a greater extent for INCRT than for RAND and DECRT. Second, be-cause the inuence of cache validation delay on the stretch performance follows a decreasingorder of INCRT, RAND, and DECRT (see next subsection for details), Min-SAUD, whichtakes into consideration the cache validation delay, improves performance the most for IN-CRT and the least for DECRT. As the cache size increases, the improvement of Min-SAUDover LRU and SAIU becomes more signi�cant (for example, for INCRT, from 14.3% to 42.1%over LRU and from 20.1% to 31.5% over SAIU). This implies that Min-SAUD can utilizethe cache space more e�ectively.Since the system parameters (i.e., access and update frequencies) inMin-SAUD(EST) areonly estimates and they occupy some cache space, it shows that Min-SAUD(EST) performsslightly worse (within 10%) than Min-SAUD(IDL). But still, in most cases, it outperformsSAIU(IDL), which has perfect knowledge of data access and update frequencies.

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 A
cc

es
s

L
at

en
cy

 (
br

oa
dc

as
t u

ni
ts

)

Cache Size (% of Database Size)

LRU
SAIU(IDL)

Min-SAUD(IDL)
Min-SAUD(EST)

(a) Access Latency

30

25

20

15

10

5

1 2 3 4 5 6 7 8 9 10

C
ac

he
 B

yt
e

H
it

R
at

io
(%

)

Cache Size (% of Database Size)

LRU
SAIU(IDL)

Min-SAUD(IDL)
Min-SAUD(EST)

(b) Cache Byte Hit RatioFigure 3: Performance under Various Cache Sizes (RAND)The performance of access latency and cache byte hit ratio for RAND is shown in Figure 3.Although Min-SAUD attempts to optimize stretch by design, it performs much better thanLRU and only slightly worse than SAIU in terms of these two metrics. Similar results areobserved for INCRT and DECRT. 23

6.2 Experiment #2: Impact of the Cache Validation Delay

40

60

80

100

120

140

10 20 30 40 50

A
ve

ra
ge

 S
tr

et
ch

IR Broadcast Interval (seconds)

LRU
SAIU(IDL)

Min-SAUD(IDL)
Min-SAUD(EST)

No Caching

(a) INCRT 90

95

100

105

110

115

120

10 20 30 40 50

A
ve

ra
ge

 S
tr

et
ch

IR Broadcast Interval (seconds)

LRU
SAIU(IDL)

Min-SAUD(IDL)
Min-SAUD(EST)

No Caching

(b) DECRT

50

60

70

80

90

100

110

10 20 30 40 50

A
ve

ra
ge

 S
tr

et
ch

IR Broadcast Interval (seconds)

LRU
SAIU(IDL)

Min-SAUD(IDL)
Min-SAUD(EST)

No Caching(c) RANDFigure 4: Stretch Performance under Di�erent IR Broadcast IntervalsAs pointed out in the previous sections, cache validation cost can have a great impact on theperformance of a cache replacement policy. Such inuence is investigated by experiments inthis subsection. Figure 4 illustrates the performance when the IR broadcast interval variesfrom 1 second to 50 seconds. Note that the larger the IR broadcast interval, the longer thecache validation delay. In Figure 4, we also include a No Caching scheme for comparison. Inthe No Caching scheme, the clients do not cache any data locally and hence, its performanceis not a�ected by the IR interval.Let's �rst compare the INCRT, RAND, and DECRT size settings. The inuence of thecache validation delay on stretch follows a decreasing order. The reason is as follows. When24

most of the queries are cache hits, the access latency is dominated by the cache validationdelay. In contrast, when the cache hit ratio is low, the access latency is dominated by thedata broadcast speed. In other words, the higher the cache hit ratio, the more dominantthe cache validation delay in the performance. Furthermore, for a certain cache validationdelay, the inuence on stretch is more signi�cant for smaller data items (with shorter servicetimes). As a result, since INCRT has more (smaller) cached data items than the other two,and DECRT has the least (larger) cached data items, the cache validation delay has themost impact on stretch for INCRT and the least impact for DECRT.When di�erent cache replacement policies are considered,Min-SAUD performs the best inall cases. Compared with SAIU, Min-SAUD adapts to di�erent IR broadcast intervals muchbetter. For example, in the INCRT size setting, the performance of Min-SAUD degrades98% when the IR broadcast interval is increased from 1 second to 50 seconds, whereas thestretch of SAIU degrades 265%. This convinces us of the need to integrate the cost of cachevalidation in a cache replacement policy.

0

20

40

60

80

100

10 20 30 40 50

A
ve

rg
e

St
re

tc
h

IR Broadcast Interval (seconds)

Overall
Cache Miss

Cache Hit

Figure 5: Individual Stretch for Cache Hit and Cache Miss (RAND, Min-SAUD(EST))Another observation from Figure 4 is that the performance of the cache schemes improves�rst and degrades again as the IR broadcast interval is decreased. This is particularly truefor the RAND size setting. This can be explained using Figure 5. As the IR broadcastinterval is decreased, the cache validation delay becomes shorter. Hence, the stretch for acache-hit query improves, leading to an overall performance improvement. However, whenthe IR broadcast interval becomes smaller than a certain value (e.g., 5 seconds for RAND),25

the overhead for IR broadcasts becomes very high. As a result, the data retrieval delay and,hence, the stretch for a cache-miss query or an invalid cache-hit query (i.e., a cache hit butan obsolete copy) turns out to be very long. Therefore, the overall performance begins todegrade.6.3 Experiment #3: Inuence of the Item Size Ratio

40

50

60

70

80

90

100

110

120

1 10 100 1000

A
ve

ra
ge

 S
tr

et
ch

Item Size Ratio

LRU
SAIU(IDL)

Min-SAUD(IDL)
Min-SAUD(EST)

(a) INCRT 90

95

100

105

110

115

120

1 10 100 1000

A
ve

ra
ge

 S
tr

et
ch

Item Size Ratio

LRU
SAIU(IDL)

Min-SAUD(IDL)
Min-SAUD(EST)

(b) DECRT

60

70

80

90

100

110

120

1 10 100 1000

A
ve

ra
ge

 S
tr

et
ch

Item Size Ratio

LRU
SAIU(IDL)

Min-SAUD(IDL)
Min-SAUD(EST)

(c) RANDFigure 6: Stretch Performance for Di�erent Item Size RatiosThis subsection explores the inuence of item size ratio, the ratio of the maximum item sizesmax to the minimum item size smin, on the system performance. In the experiments, smaxis �xed to 100 KB and smin varies from 100 KB to 0.1 KB; i.e., the size ratio varies from 1 to1,000. In order to make a fair comparison, when smin is decreased, the cache size is reduced26

according to the following formula: CacheSize = 0:5� (smax + smin � 1)�DatabaseSize�CacheSizeRatio.The experimental results are shown in Figure 6. The best performance is achieved byMin-SAUD. When the size settings are INCRT and RAND, the performance improvementof Min-SAUD over LRU and SAIU becomes prominent as the size ratio is increased. Thereason is two-fold. First, in these two settings, for a larger size ratio, the frequently accesseditems have smaller relative sizes to the cache size, and more data items can be cached. Thus,Min-SAUD, as shown in Section 6.1, can more e�ectively make use of the cache space thanthe other schemes and hence, has a greater improvement over LRU and SAIU for a largersize ratio. Second, as the size ratio is increased, since more (smaller) items are cached, thecache validation delay becomes a signi�cant factor. As a result, a much better performance isobtained for Min-SAUD. However, the above phenomena cannot be observed in the DECRTsize setting, since the clients access the largest items more frequently. Consequently, itsperformance is almost the same for di�erent item size ratios.
20

25

30

35

40

45

1 10 100 1000

C
ac

he
 H

it
R

at
io

 (
%

)

Item Size Ratio

Min-SAUD(EST, INCRT)
Min-SAUD(EST, RAND)

Figure 7: Cache Hit Ratio under Various Item Size Ratios (Min-SAUD(EST))It is also observed in Figure 6 that for INCRT and RAND the performance curve forms a"U" shape when the size ratio is varied. This is explained as follows. As shown in Figure 7,when the size ratio is increased from 1 (i.e., uniform sizes) to 10 (i.e., non-uniform sizes), thecache hit ratio improves greatly since for the case of non-uniform sizes some smaller itemsare accessed more frequently. As a result, a better overall stretch is observed. However, withfurther increasing the size ratio, because the sizes of the cold items become relatively larger27

to those of the hot items, caching a cold item will replace more hot items. This results in aworse cache hit ratio and also a worse overall stretch.6.4 Experiment #4: Inuence of the Data Access SkewnessThe inuence of the access skewness is evaluated in this subsection. Figure 8 presents theexperimental results as the � parameter of the Zipf distribution varies from 0 to 0.95. When� is 0, the access pattern is uniform. The larger the � value, the more skewed the accesspattern.

40

50

60

70

80

90

100

110

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 S
tr

et
ch

Request Skewness (theta)

LRU
SAIU(IDL)

Min-SAUD(IDL)
Min-SAUD(EST)

(a) INCRT 75

80

85

90

95

100

105

110

115

120

125

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 S
tr

et
ch

Request Skewness (theta)

LRU
SAIU(IDL)

Min-SAUD(IDL)
Min-SAUD(EST)

(b) DECRT

50

60

70

80

90

100

110

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 S
tr

et
ch

Request Skewness (theta)

LRU
SAIU(IDL)

Min-SAUD(IDL)
Min-SAUD(EST)

(c) RANDFigure 8: Stretch Performance under Various Levels of Access SkewnessIt is shown that Min-SAUD has the best stretch performance in all cases. In particular,due to similar reasons to those described in Section 6.1,Min-SAUD improves the performance28

over LRU and SAIU most greatly when � is set to 0.95 for INCRT, where the smallest itemsare accessed frequently.With increasing skewness, the stretch performance becomes better in most cases. Thisis mainly due to a higher cache hit ratio. However, there is an exception for DECRT. Theperformance degrades when � is increased from 0 to 0.2 (see Figure 8(b)). This is becausewhen the access pattern changes from a uniform pattern (� = 0) to a lightly skewed pattern(� = 0:2), under the DECRT scheme more large items are accessed and a worse data retrievaldelay is obtained. On the other hand, for a lightly skewed access pattern, the cache hit ratiocannot be improved very much. Thus, the overall access latency worsens a little bit andhence, a slightly worse stretch performance is observed.6.5 Experiment #5: Algorithm ComplexityWe have shown in the previous few subsections thatMin-SAUD in most cases demonstrates amuch better stretch performance than LRU and SAIU. In this subsection, we study the timecomplexity of replacement operations for the Min-SAUD policy. The LRU policy is includedas a yardstick. Recall that a heap structure is used to implement Min-SAUD (Section 4.3).LRU is implemented also with a heap structure in the simulation. As can be seen, the timecomplexity for replacement consists of two parts: the removal of victims and the insertion ofthe incoming item. Thus, we approximate the time complexity by the number of item nodesthat are visited in the heap for every replacement.
22 26 14 14 20 21

100

335

43
62

93

198

0

50

100

150

200

250

300

350

C
o
m

p
le

x
it
y
 (

n
o
d
e
s
 v

is
it
e
d
)

Average Case Worst Case

LRU (INCRT)

Min-SAUD (INCRT)

LRU (DECRT)

Min-SAUD (DECRT)

LRU (RAND)

Min-SAUD (RAND)

Figure 9: Comparison of Algorithm Complexity29

Figure 9 shows the results obtained for the default system setting. The time complexityfor both the average case and the worst case is measured. The worst case occurs whena very large item is to be cached (in this case many cached items need to be removed formaking room). From Figure 9, we can see that Min-SAUD has only a little bit worse averagecomplexity than LRU. The time complexity for INCRT is higher than those for DECRTand RAND in both LRU and Min-SAUD. This is because in the INCRT size setting moresmall data items are preferentially kept in the cache, thus the heap size is much larger thanthose for DECRT and RAND, which leads to worse complexity.7 ConclusionIn this paper, we have investigated the cache replacement issue in a realistic wireless datadissemination environment where restrictions on data size, data update, and client discon-nection imposed by most of the previous work are relieved. Moreover, unlike the existingwork, we took into account the cost of cache validation in the design of a cache replacementpolicy under cache consistency. An optimal gain-based cache replacement policy,Min-SAUD,which incorporates various factors, namely, data item size, retrieval delay, access probability,update frequency, and cache validation delay, was proposed.We showed by analysis that the stretch of Min-SAUD is optimal when the independentreference model and the Poisson processes of data accesses and updates are assumed. A seriesof simulation experiments were also conducted to evaluate the performance of Min-SAUD.The results demonstrated that in most cases Min-SAUD performs substantially better thanthe well-known LRU policy and the SAIU policy under various workloads, especially whenthe cache validation delay is an important concern. Min-SAUD(EST), a practical realizationof the Min-SAUD policy, showed a close performance to Min-SAUD(IDL), which has perfectknowledge of access and update frequencies. Through analysis in Section 4.3.1 and Section6.5, it is not di�cult to see that the time complexity ofMin-SAUD, O(MlogN) is reasonable.To the best of our knowledge, this is the �rst study that analytically studied how thevarious factors, such as access latency and cache validation delay, a�ect cache performance.The analysis serves as the basic guideline for the design of cache management strategies. In30

this paper, we have employed the stretch as the major performance measure. On the otherhand, we can see that the proposed technique can be easily extended to optimizeMin-SAUDunder other metrics such as access latency and cache hit ratio. For example, to optimizeaccess latency, we can simply revise the gain function as gain(i) = pi(bi1+xi � v); to optimizecache hit ratio and byte hit ratio, the gain function is revised as gain(i) = pi1+xi and pisi1+xi ,respectively. Performance evaluation of these policies can be done in a similar manner.While this study was performed in the context of wireless data dissemination, it is obviousthat the analytical study can be applied to data caching on remote clients under the cacheconsistency requirement. Along with studies on cache consistency for the web [14], this studycan be applied to web client caching or web proxy caching.As part of future work, we also plan to extend the cache replacement policy to a cacheadmission policy for client data caching. As shown in the simulation results, there is stillroom for improving the parameter estimate methods. If better estimation methods canbe proposed, the performance of the practical Min-SAUD policy will be further improvedtowards that of the ideal policy. It would be an interesting topic to combine the prefetchingtechnique into the current scheme.8 AcknowledgmentsThe authors would like to thank the anonymous reviewers for their valuable commentsand suggestions that improved the quality of this paper. The research was supported byResearch Grant Council, Hong Kong SAR, China under grant numbers HKUST-6241/00Eand HKUST6079/01E.References[1] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and E. Fox. Caching proxies:Limitations and potentials. In Proceedings of the 4th International World Wide WebConference (WWW4), pages 119{133, Boston, MA, USA, December 1995.
31

[2] S. Acharya. Broadcast disks: Dissemination-based data management for asymmetriccommunication environments. In PhD Dissertation at Brown University, May 1998.[3] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks: Data manage-ment for asymmetric communications environments. In Proceedings of ACM SIGMODConference on Management of Data, pages 199{210, San Jose, CA, USA, May 1995.[4] S. Acharya, M. Franklin, and S. Zdonik. Prefetching from a broadcast disk. In Pro-ceedings of the 12th International Conference on Data Engineering (ICDE'96), pages276{285, New Orleans, LA, USA, February 1996.[5] S. Acharya and S. Muthukrishnan. Scheduling on-demand broadcasts: New metricsand algorithms. In Proceedings of the 4th Annual ACM/IEEE International Conferenceon Mobile Computing and Networking (MobiCom'98), pages 43{54, Dallas, TX, USA,October 1998.[6] C. Aggarwal, J. L. Wolf, and P. S. Yu. Caching on the world wide web. IEEE Trans-actions on Knowledge and Data Engineering, 11(1):94{107, January/February 1999.[7] D. Aksoy and M. J. Franklin. R x W: A scheduling approach for large-scale on-demanddata broadcast. ACM/IEEE Transactions on Networking, 7(6):846{860, 1999.[8] D. Aksoy, M. J. Franklin, and S. Zdonik. Data staging for on-demand broadcast. Pro-ceedings of the 27th VLDB Conference (VLDB'01), Roma, Italy, September 2001.[9] D. Barbara and T. Imielinksi. Sleepers and workaholics: Caching strategies for mobileenvironments. In Proceedings of ACM SIGMOD Conference on Management of Data,pages 1{12, Minneapolis, MN, USA, May 1994 (An extended version appeared in VLDBJournal 4(4):567{602, 1995).[10] J. Bolot and P. Hoschka. Performance engineering of the world wide web: Applicationto dimensioning and cache design. In Proceedings of the 5th International World WideWeb Conference (WWW5), Paris, France, May 1996.32

[11] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and Zipf-likedistributions: Evidence and implications. In Proceedings of IEEE INFOCOM'99, pages126{134, New York, NY, USA, March 1999.[12] J. Cai and K.-L. Tan. Energy-e�cient selective cache invalidation. ACM/Baltzer Journalof Wireless Networks (WINET), 5(6):489{502, 1999.[13] G. Cao. A scalable low-latency cache invalidation strategy for mobile environments. InIEEE Transactions on Knowledge and Data Engineering (TKDE), to appear, 2002 (Apreliminary version appeared in ACM/IEEE MobiCom'2000).[14] P. Cao and C. Liu. Maintaining strong cache consistency in the world-wide web. IEEETransactions on Computers, 47(4):445{457, April 1998.[15] B. Y. L. Chan, A. Si, and H. V. Leong. Cache management for mobile databases:Design and evaluation. In Proceedings of the 14th International Conference on DataEngineering (ICDE'98), pages 54{63, Orlando, Florida, USA, February 1998.[16] C.-Y. Chang and M.-S. Chen, \Exploring aggregate e�ect with weighted transcodinggraphs for e�cient cache replacement in transcoding proxies," in Proceedings of the 18thIEEE International Conference on Data Engineering (ICDE'02), pages 383{392, SanJose, CA, USA, February 26 - March 1 2002.[17] E. G. Co�man, Jr., and P. J. Denning. Operating Systems Theory. Prentice Hall, NJ,USA, 1973.[18] C. C. F. Fong, J. C. S. Lui, and M. H. Wong. Quantifying complexity and performancegains of distributed caching in a wireless network environment. In Proceedings of the 13thInternational Conference on Data Engineering (ICDE'97), pages 104{113, Birmingham,UK, October 1997.[19] S. Hosseini-Khayat. On optimal replacement of nonuniform cache objects. IEEE Trans-actions on Computers (TOC), 49(8):769{778, August 2000.33

[20] Q. L. Hu and D. L. Lee. Cache algorithms based on adaptive invalidation reports formobile environments. Cluster Computing, 1(1):39{48, February 1998.[21] T. Imielinski and B. R. Badrinath. Wireless mobile computing: Challenges in datamanagement. Communications of the ACM, 37(10):18{28, 1994.[22] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons, NewYork, NY, USA, 1991.[23] J. Jing, A. K. Elmagarmid, A. Helal, and R. Alonso. Bit-sequences: A new cacheinvalidation method in mobile environments. ACM/Baltzer Journal of Mobile Networksand Applications (MONET), 2(2):115{127, 1997.[24] A. Kahol, S. Khurana, S. K. S. Gupta, and P. K. Srimani. A strategy to managecache consistency in a distributed mobile wireless environment. IEEE Transactionson Parallel and Distributed Systems (TPDS), 12(7):686{700, July 2001 (A preliminaryversion appeared in IEEE ICDCS'2000).[25] S. Khanna and V. Liberatore. On broadcast disk paging. SIAM Journal on Computing,29(5):1683{1702, 2000.[26] P. Scheuermann, J. Shim, and R. Vingralek. WATCHMAN: A data warehouse intelligentcache manager. In Proceedings of the 22nd VLDB Conference, pages 51{62, Mumbai,India, September 1996.[27] H. Schwetman. CSIM user's guide (version 18). MCC Corporation,http://www.mesquite.com, 1998.[28] J. Shim, P. Scheuermann, and R. Vingralek. Proxy cache design: Algorithms, imple-mentation and performance. IEEE Transactions on Knowledge and Data Engineering(TKDE), 11(4):549{562, July/August 1999.[29] K. L. Tan, J. Cai, and B. C. Ooi. An evaluation of cache invalidation strategies inwireless environments. IEEE Transactions on Parallel and Distributed Systems (TPDS),12(8):789{807, August 2001. 34

[30] L. Tassiulas and C. J. Su. Optimal memory management strategies for a mobile user ina broadcast data delivery system. IEEE Journal on Selected Areas in Communications(JSAC), 15(7):1226{1238, September 1997.[31] J. Wang. A survey of web caching schemes for the internet. ACM Computer Commu-nication Review, 5(29):36{46, October 1999.[32] K.-L. Wu, P. S. Yu, and M.-S. Chen. Energy-e�cient caching for wireless mobilecomputing. In Proceedings of the 12th International Conference on Data Engineering(ICDE'96), pages 336{343, New Orleans, LA, USA, February 1996.[33] J. Xu, Q. L. Hu, D. L. Lee, and W.-C. Lee. SAIU: An e�cient cache replacementpolicy for wireless on-demand broadcasts. In Proceedings of the 9th ACM InternationalConference on Information and Knowledge Management (CIKM), pages 46{53, McLean,VA, USA, November 2000.[34] J. Xu, X. Tang, and D. L. Lee. Performance analysis of location-dependent cacheinvalidation schemes for mobile environments. IEEE Transactions on Knowledge andData Engineering (TKDE), to appear, 2002.[35] J. Yuen, E. Chan, K. Y. Lam, and H. W. Leung. Cache invalidation scheme for mobilecomputing systems with real-time data. ACM SIGMOD Record, 29(4):34{39, 2000.[36] G. K. Zipf. Human Behaviour and the Principle of Least E�ort. Addison-Wesley, MA,USA, 1949.

35

Jianliang Xu is an Assistant Professor in the Department of Computer Science at HongKong Baptist University. He received the B.Eng. degree in computer science and engineeringfrom Zhejiang University, Hangzhou, China in 1998, and the Ph.D. degree in computerscience from Hong Kong University of Science and Technology in 2002. His research interestsinclude mobile/pervasive computing, location-aware computing, Internet technologies, andwireless networks.Qinglong Hu is an advisory software engineer at Database Technology Institute of IBMSilicon Valley Laboratories, San Jose, CA. He received the B.S. and the M.S. degree incomputer science from East China Normal University, Shanghai, China, in 1986 and 1989respectively, and the Ph.D. degree in computer science from the Hong Kong University ofScience and Technology in January 1999. Currently his research interests include mobile &pervasive computing, wireless networks, and distributed systems.Wang-Chien Lee is an Associate Professor of Computer Science and Engineering De-partment in Penn State University. His primary research interests lie in the areas of mobileand pervasive computing, data management, and Internet technologies. He has guest-editedspecial issues on mobile database related topics for several journals, including IEEE Trans-action on Computer, IEEE Personal Communications Magazine, ACM WINET and ACMMONET. He was the program committee co-chair for the First International Conferenceon Mobile Data Access (MDA'99) and the International Workshop on Pervasive Computing(PC2000). He has also been a panelist, session chair, industry chair, and program committeemembers to various symposia, workshops, and conferences. Wang-Chien received his Ph.D.in Computer and Information Science from the Ohio State University. He is a member ofthe IEEE Computer Society and IEEE Communications Society and also the Associationfor Computer Machinery.Dik Lun Lee received the MS and PhD degrees in computer science from the Universityof Toronto in 1981 and 1985, respectively. He is a Professor in the Department of ComputerScience at the Hong Kong University of Science and Technology, and was an Associate Pro-fessor in the Department of Computer and Information Science at the Ohio State University,Columbus, Ohio, USA. He has served as a guest editor for several special issues on database-36

related topics, and as a program committee member and chair for numerous internationalconferences. He was the founding conference chair for the International Conference on Mo-bile Data Management. His research interests include document retrieval and management,discovery, management and integration of information resources on Internet, and mobile andpervasive computing. He was the Chairman of the ACM Hong Kong Chapter.

37

