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Abstract

The quadratic assignment problem (QAP) is one of the most studied NP-
hard problems with various practical applications. In this work, we propose a
powerful population-based memetic algorithm (called BMA) for QAP. BMA in-
tegrates an effective local optimization algorithm called Breakout Local Search
(BLS) within the evolutionary computing framework which itself is based on a
uniform crossover, a fitness-based pool updating strategy and an adaptive mu-
tation procedure. Extensive computational studies on the set of 135 well-known
benchmark instances from the QAPLIB revealed that the proposed algorithm
is able to attain the best-known results for 133 instances and thus competes
very favorably with the current most effective QAP approaches. A study of the
search landscape and crossover operators is also proposed to shed light on the
behavior of the algorithm.

Keywords: Memetic algorithm; local search; landscape analysis; quadratic
assignment; combinatorial optimization.

1. Introduction

The quadratic assignment problem (QAP) is a classic NP-hard combinatorial
optimization problem with a number of applications (Cheng, Ho, & Kwan, 2012;
Garey & Johnson, 1979; Li, Xu, Jin, & Wang, 2012; Miao, Cai, & Xu, 2014;
Nikolić & Teodorović, 2014; Pardalos, Rendl, & Wolkowicz, 1994). QAP is
to determine a minimal cost assignment of n facilities to n locations, given a
flow aij from facility i to facility j for all i, j ∈ {1, ..., n} and a distance bqp
between locations q and p for all q, p ∈ {1, ..., n}. Let Π denote the set of the
permutation functions π : {1, ..., n} → {1, ..., n}, then QAP can mathematically
be formulated as follows:

minπ∈Πf(π) =

n∑

i=1

n∑

j=1

aijbπiπj
(1)
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where a and b are the flow and distance matrices respectively, and π ∈ Π is
a solution where πi represents the location chosen for facility i. The problem
objective is then to find a permutation π∗ in Π that minimizes the sum of the
products of the flow and distance matrices, i.e., f(π∗) ≤ f(π), ∀π ∈ Π.

Besides the facility location problem, QAP is notable for its ability to for-
mulate a number of other practical problems such as backboard wiring in elec-
tronics, design of typewriter keyboards, campus planning, analysis of chemical
reactions for organic compounds, balancing turbine runners, and many others.
QAP can equally formulate some classic combinatorial optimization problems
such as the traveling salesman, maximum clique and graph partitioning prob-
lems. Reviews on some significant applications of QAP can be found in Burkard
(1991); Duman & Or (2007) and Pardalos, Rendl, & Wolkowicz (1994), while
many solution methods are reviewed in Anstreicher (2003).

QAP is among the most studied and the hardest combinatorial optimization
problems. In fact, from a theoretical point of view, QAP is NP-hard (Garey
& Johnson, 1979). Consequently, no exact algorithm is expected to solve the
problem in a polynomial time and even small instances may require considerable
computation time. This hardness is confirmed in practice since the existing ex-
act algorithms can solve to optimality only small instances from the QAP bench-
mark library with up to 36 locations. Even approximation of the problem with a
guaranteed performance is known to be very hard (Hassin, Levin, & Sviridenko,
2009). For these reasons, heuristic and metaheuristic methods constitute a nat-
ural and useful approach for tackling this problem (Blum, Puchinger, Raidl, &
Roli, 2011). Such algorithms aim to provide satisfactory sub-optimal solutions
in acceptable computing time, but with no theoretically provable guarantee that
the attained solutions are the optimal ones. Performance of these heuristic al-
gorithms is typically assessed using a set of benchmark instances. Among the
numerous heuristic algorithms reported for QAP in the literature, local search
methods are very popular approaches, including simulated annealing (Wilhelm
& Ward, 1987), tabu search (Battiti & Tecchiolli, 1994; James, Rego, & Glover,
2009a,b; Misevicius & Kilda, 2006; Skorin-Kapov, 1990; Taillard, 1991), and
iterated local search (Benlic & Hao, 2013c; Stützle, 2006). Population-based
approaches constitute another class of popular tools for finding high quality
near-optimal solutions for QAP (Ahuja, Orlin, & Tiwari, 2000; Drezner, 2003,
2008; Fleurent & Ferland, 1993; Merz & Freisleben, 2000; Misevicius, 2004;
Stützle, 2006).

In this work, we are interested in solving QAP with heuristic algorithms.
We introduce a powerful memetic algorithm (BMA) for QAP which combines
an effective local search algorithm (BLS - Breakout Local Search), a crossover
operator, a pool updating strategy, and an adaptive mutation mechanism. BLS
is a general local search method which has shown very good results for several
NP-hard problems including maximum clique (Benlic & Hao, 2013a), maximum
cut (Benlic & Hao, 2013b), QAP (Benlic & Hao, 2013c) and vertex separator
(Benlic & Hao, 2013d). Its basic idea is to use a descent procedure to discover
local optima and employ dedicated perturbations to continually move from one
attractor to another in the search space. In this paper, we integrate BLS into the
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memetic framework, thus extending our work of Benlic & Hao (2013c). As we
show in this paper, the proposed memetic algorithm BMA exhibits an excellent
performance on the whole set of 135 well-known QAP benchmark instances.
Indeed, BMA attains the best-known solution for all the instances except for
only two cases. Furthermore, it outperforms its local search procedure BLS
which confirms the usefulness of the memetic framework. In order to gain some
insight into the functioning of the proposed memetic algorithm, we perform a
landscape analysis and justify the choice for the used crossover operator (see
Section 5).

The paper is organized as follows. In the next section, we briefly review the
most effective QAP approaches and highlight the contributions of this work.
In Section 3, we present our proposed memetic algorithm (BMA) and detail
its main components. Moreover, we highlight the differences and similarities
between BMA and the reviewed state-of-art approaches. Computational results
and comparisons with the top-performing QAP algorithms are presented in
Section 4. Section 5 provides a landscape study that we use to justify the
choices for the crossover operator of our memetic algorithm, and additionally
shows a comparison of several crossover operators. Conclusions are provided in
the last section.

2. State-of-art approaches for QAP and main contributions

In this section, we provide a literature review of the most popular heuristic
approaches for QAP, including four population-based algorithms (Drezner, 2008;
Merz & Freisleben, 2000; Misevicius, 2004; Stützle, 2006) and two local search
algorithms (James, Rego, & Glover, 2009a; Misevicius & Kilda, 2006), followed
by a summary of the main contributions of this study. In Section 3.5, we discuss
in more detail the relationships between these approaches and the proposed
BMA. Among the reviewed approaches, four algorithms from Drezner (2008);
James, Rego, & Glover (2009a); Misevicius (2004) and Misevicius & Kilda (2006)
report the best results on some particular class of QAP benchmark instances.
For this reason, these four algorithms will be used as reference algorithms for
our comparative study. Nevertheless, it is important to mention that none of
the existing QAP approaches can be considered as the most effective for all the
different types of QAP instances, due to significant differences in structure of
these instance (see Section 5).

A popular memetic approach for QAP (MA-QAP) is introduced in Merz
& Freisleben (2000) which incorporates the 2-opt local search procedure and
an adaptation of the standard uniform crossover UX that does not perform
any implicit mutation. The selection for reproduction is performed on a purely
random basis, while the selection for survival is achieved by choosing the best
individuals from the pool of parents and children. To overcome premature
convergence, the restart technique proposed in Eshelman (1991) is employed.
During the run, it is checked whether the average distance of the population
has dropped below a certain threshold or whether the average fitness of the
population did not change after a certain number of consecutive generations. If
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one of these conditions holds, the whole population is mutated except the best
individual, and each mutated individual is improved by the 2-opt local search
to obtain a local optimum. Afterwards, the algorithm proceeds with the usual
recombination process. We mention this work since it is one of the first memetic
algorithms applied to QAP and achieved remarkable results at the time it was
published.

The Improved Hybrid Genetic Algorithm (IHGA) (Misevicius, 2004) incor-
porates a robust local improvement procedure as well as an effective restart
mechanism based on shift mutations. The author slightly improved the clas-
sic scheme of a uniform like crossover (ULX) to get a new optimized crossover
(OX). The optimized crossover is a crossover that (a) is ULX and (b) produces
a child that has the best fitness value among the children created by M runs
of ULX. The offspring is then improved with a local search mechanism, based
on the swap neighborhood, which contains a tabu search procedure and a so-
lution reconstruction procedure. The reconstruction is achieved by performing
a number µ of random swaps, where µ is varied according to the instance size.
Once convergence of the algorithm is observed, all the individuals but the best
undergo the shift mutation (SM), which simply consists in shifting all the items
in a wrap-around fashion by a predefined number of positions. IHGA is one of
the best-performing algorithms for the unstructured instances and real-life like
instances and is used as one of the references in our comparative study.

Drezner (2008) shows extensive computational experiments on QAP using
various variants of a hybrid genetic algorithm. The author compared the modi-
fied robust tabu search (MRT) and the simple tabu search as local optimization
algorithms combined with a crossover operator. Moreover, different parent selec-
tion (distance modification, gender modification) and pool updating strategies
were tested. The best version of the memetic algorithm is MRT60 which inte-
grates the modified robust tabu search MRT for offspring improvement. MRT
is identical to the robust tabu search (RTS) (Taillard, 1991) except that the
tabu tenure is generated in [0.2n, 1.8n] rather than in [0.9n, 1.1n]. MRT60 is
the best-performing memetic algorithm for the grid-based instances and is used
as another reference algorithm in our comparative study.

Population-based Iterated Local Search (PILS) (Stützle, 2006) is another
highly effective algorithm. The underlying iterated local search (ILS) algorithm
starts from a random assignment, and applies a first-improvement local search
procedure based on the 2-opt neighborhood. To speed up the search process,
the algorithm uses the don’t look bit strategy, previously proposed to accelerate
local search algorithms for TSP. Once a local optimum is reached, ILS applies
a perturbation that consists of exchanging k randomly chosen items, where
k is varied between kmin and kmax. Stützle extends the described ILS to a
population-based algorithm where no interaction between solutions takes place,
and each single solution is improved by the standard ILS. In the proposed PILS,
the population consists of µ solutions and in each iteration λ new solutions are
generated. A selection strategy, based both on quality and distance between
solutions, is then employed to form a new population of µ solutions from the
set of µ+ λ solutions.
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Cooperative parallel tabu search algorithm (CPTS) (James, Rego, & Glover,
2009a) executes in parallel several tabu search (TS) operators on multiple pro-
cessors. The TS operator is a modified version of Taillard’s RTS (Taillard, 1991)
obtained by changing the stopping criterion and the tabu tenure parameters for
each processor participating in the algorithm. In order to accomplish coopera-
tion between TS processes, CPTS maintains a global reference set which uses
information exchange to promote both intensification and diversification in a
parallel environment. CPTS globally obtains excellent results on the whole set
of QAP instances and is used as another reference algorithm in our comparative
study.

Iterated tabu search (ITS) by Misevicius & Kilda (2006) follows the general
scheme of the iterated local search metaheuristic. It employs a traditional tabu
search to reach local optima and triggers a perturbation (reconstruction) phase
in order to escape the attained local optimum. The “ruined” solution becomes
the new starting point for the basic TS procedure. ITS uses a perturbation
mechanism which varies adaptively the number of random perturbation moves
in some interval. ITS obtains excellent results on the unstructured instances
and real-life like instances and is used as another reference in our comparison.

Compared to the existing studies on QAP, this work has the following main
contributions:

First, the proposed BMA algorithm is based on a new local optimization pro-
cedure (i.e., BLS) which adopts an adaptive perturbation mechanism to better
escape local optima. The computational study discloses that this algorithm
performs very well on the set of 135 very popular QAP benchmark instances
by attaining the best-known result in 133 cases. This work thus confirms the
usefulness of the memetic framework for QAP.

Second, we provide an empirical justification to explain why the uniform
crossover is the best operator for QAP in comparison with the other crossover
operators studied in the literature.

Third, ideas of the proposed algorithm could help in designing effective
heuristics for other related permutation problems and applications such as those
mentioned in the introductory section.

3. An effective memetic algorithm for QAP

The termmemetic algorithm (MA) is employed to designate a general heuris-
tic approach which typically combines local optimization with a population-
based paradigm (Moscato, 1989; Moscato & Cotta, 2003). The purpose of such
a combination is to take advantages of both crossover that discovers unexplored
promising regions of the search space, and local optimization that finds good
solutions by concentrating the search around these regions. Since memetic al-
gorithm is a problem-independent framework, it needs to be properly adapted
to the specific problem at hand to ensure the best performance (Hao, 2012;
Krasnogor & Smith, 2005). In particular, local optimization operator and re-
combination operator are the two key components to consider. Finally, as for
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any population-based method, a healthy diversity of population must be main-
tained to avoid premature convergence. Previous studies show that memetic
algorithms are able to achieve excellent performances for a number of optimiza-
tion problems (Hart, Krasnogor, & Smith, 2004; Moscato & Cotta, 2003; Neri,
Cotta, & Moscato, 2012).

Given an initial population which consists of locally optimal solutions, a
memetic approach generates new solutions by applying crossover and/or mu-
tation, followed by a phase of local search to improve each offspring solution.
The right choice for a crossover operator depends on problem structure and
landscape properties (in Section 5, we show a study on the relationship between
the performance of a crossover operator and the structural properties of a given
problem). Moreover, the success of a memetic approach is conditioned by the ef-
fectiveness of the local search procedure. While the main role of the crossover is
to discover unexplored promising regions of the search space (i.e., exploration),
local search basically aims to find good solutions by concentrating the search
around these regions (i.e., exploitation).

The proposed memetic algorithm for QAP (BMA) employs the uniform
crossover operator (Section 3.1) (In Section 5.2, we justify why we chose this
particular crossover), a Breakout Local Search (BLS) procedure (Section 3.2),
a fitness-based population replacement strategy (Section 3.3), and an adaptive
mutation mechanism (Section 3.4). Each offspring solution, generated with the
uniform crossover, is improved with the BLS procedure. Our memetic approach
then applies a pool updating strategy to possibly replace the worst individual
from the population with the improved offspring solution. To avoid premature
convergence, BMA triggers an adaptive mutation mechanism to the entire popu-
lation if the best solution found during the search has not been improved during
a fixed number of generations. This displaces the search to distant regions each
time a search stagnation is detected.

The general architecture of our memetic approach is described in Algorithm
1. The main components are detailed in the following sections.

3.1. Parents selection and recombination

To determine a subset p ⊂ P of |p| parent individuals, we employ the tour-
nament selection strategy. Let λ be the size of the tournament pool. We select
each individual πi ∈ p in the following way: randomly choose λ individuals from
P ; among the λ chosen individuals, place the best one into p if it is not already
present in p. The time complexity of this operation is O(|P |). An advantage of
the tournament selection is that the selection pressure can easily be adjusted by
changing the size of the tournament pool λ. The larger the tournament pool is
the less is the chance to select weaker individuals. An experimental evaluation
of our QAP approach has revealed that putting a higher pressure on better
individuals gives better results than using a random selection.

For the crossover process, we employ a standard uniform operator (UX) that
recombines two parent individuals from subset p. Elements of the parents are
scanned from left to right and each element in the offspring keeps with equal
probability the value j ∈ [1...n] found in either of the two parents, under the
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Algorithm 1 General scheme of the proposed BMA algorithm

1: Initialize the number of BLS iterations for short and long runs ts and tl respectively,
the minimum mutation degree µmin and the increment m of mutation degree

2: Randomly generate initial population P

3: P ← BLS(P, ts) /* Improve each individual with ts iterations of BLS, Sect. 3.2
*/

4: πbest
← BestIndividual(P ) /* Initialize the best individual */

5: µ← µmin /* Initialize the current mutation degree */
6: for i := 0 to number of generations φ do

7: Select a subset of parent individuals p from P /* Sect. 3.1
8: π0

← Crossover(p) /* Generate an offspring, Sect. 3.1 */
9: π0

← BLS(π0, tl) /* Improve offspring π0 with long BLS run, Sect. 3.2 */
10: P ← ReplacementStrategy(P, π0) /* Sect. 3.3 */
11: if (πbest not improved after ν generations) then
12: P ←Mutate(P, µ) /* Sect. 3.4 */
13: P ← BLS(P, ts)
14: Update the best solution πbest if necessary
15: µ← µ+m /* Increase mutation degree */
16: end if

17: if (f(πbest) > f(π0) or µ > n) then
18: µ← µmin /* Reset mutation degree to default */
19: end if

20: if (f(πbest) > f(π0)) then
21: πbest

← π0

22: end if

23: end for

constraint that j has not been assigned before to any element in the offspring.
Any unassigned element is given a random value j such that j does not appear
twice in the offspring. An example of this recombination process is illustrated
in Figure 1. The complexity of this crossover is O(n).

Since the uniform crossover permits great flexibility, different variations of
its basic procedure have been proposed and applied to QAP (Merz & Freisleben,
2000; Misevicius, 2004). Despite its simplicity, the UX has shown to provide
very good results on different combinatorial optimization problems including
QAP. A comparison of the simple UX with several other crossover operators
used for QAP is reported in Section 5.2.

3.2. Breakout local search (BLS)

The local optimization procedure has a significant impact to the overall
performance of a memetic algorithm. In our case, we adopt an existing local
search algorithm BLS-QAP (Benlic & Hao, 2013c) (call it BLS for simplicity).

As most local search algorithms for QAP, BLS employs the swap operator
which consists in exchanging the values from two different positions in π, i.e.,
permuting the locations of two facilities. It uses the best improvement descent
procedure to exploit the whole swap neighborhood N(π), which is evaluated in
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Figure 1: An example of the uniform crossover (UX)

O(n2) time thanks to an effective neighborhood evaluation strategy proposed
in Taillard (1991).

Once a local optimum is returned by the best improvement descent pro-
cedure, BLS triggers a multi-type diversification mechanism which adaptively
determines the type T of perturbation moves and the number L of perturbations
(called jump magnitude) by considering some information related to the search
state.

This mechanism combines two complementary types of perturbation: a
guided perturbation (using a tabu list) and a random perturbation. The tabu-
based perturbation uses a selection rule that favors swap moves that minimize
the cost degradation, under the constraint that the move has not been applied
during the last γ iterations (where γ is the tabu tenure that takes a random
value from a given range), while the random perturbation performs moves se-
lected uniformly at random. In order to insure a good balance between an
intensified and a diversified search, BLS-QAP alternates probabilistically be-
tween the two types of perturbations. The probability of applying a particular
perturbation is determined dynamically depending on the current number ω of
consecutive non-improving attractors visited (see Benlic & Hao (2013c) for more
details). We limit the probability of applying the tabu-based perturbation over
the random perturbation to take values not less than Q.

To determine the jump magnitude L for the following perturbation phase, the
proposed algorithm uses a basic strategy which increments L if the local search
procedure returned to the immediate previous local optimum, and otherwise
resets L to its initial value L0.

Once the type T and the number L of perturbations are determined, we
apply accordingly L moves of type T to the current solution. The resulting
solution is used by the next round of the best improvement descent procedure
as its new starting point.

Once an offspring solution is created in the crossover phase (line 8 of Alg.
1), it is improved with tl iterations of the BLS procedure (line 9 of Alg. 1).
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As previously mentioned, the complexity of each iteration of the BLS descent
procedure is O(n2). The number of the descent iterations performed in each
iteration of BLS depends on the size sbasin of the basin of attraction of a local
optimum. This, in turn, depends on the type of perturbation used for the
previous perturbation phase. More precisely, after a phase of the directed (tabu-
based) perturbation, the descent-based local search requires, on average, less
steps to attain a local optimum than after the random perturbation. However,
the computational complexity of one iteration of the tabu-based perturbation is
O(n2), while the complexity of the random perturbation is O(1). Therefore, the
time complexity of one BLS iteration is bounded within O(sbasin ·n

2)+O(L·n2).

3.3. Pool updating strategy

For each offspring solution π0 created by the crossover operator and im-
proved with the BLS procedure (Section 3.2), we decide whether π0 should be
inserted into the population pool (lines 8-10 of Alg. 1). To base this decision,
our algorithm uses a classic replacement strategy which inserts π0 into P if
there is no individual in P identical to π0 (i.e., ∀πi ∈ P, πi 6= π0), and if the
fitness of π0 is better than the fitness of the worst individual πworst from P (i.e.,
f(π0) < f(πworst)). If this condition holds, P is updated by replacing πworst

with π0. To determine whether an identical solution to π0 is already present in
P , we compute the hamming distance between π0 and each πi ∈ P . The ham-
ming distance is defined as the number of positions at which the corresponding
elements are different. If two solutions are identical, the corresponding ham-
ming distance is 0. The overall time complexity of this pool update strategy is
thus O(|P | · n).

One potential risk of this replacement strategy is the premature loss of popu-
lation diversity, since offspring is being inserted into the population regardless of
its distance to other individuals in the population. To avoid this problem, more
sophisticated pool updating strategies have been proposed in the literature that
maintain population diversity by considering the similarity (distance) between
the offspring and other individuals from the population (see for instance Benlic
& Hao (2011); Lü & Hao (2010); Porumbel, Hao, & Kuntz (2010)). In our case,
the diversity is maintained by an adaptive mutation mechanism described in
Section 3.4. As a result, the proposed memetic approach is not really sensitive
to the pool replacement strategy employed.

3.4. Adaptive mutation procedure

As soon as a search stagnation is detected, i.e., the best solution πbest found
during the search has not been updated for a certain number of generations,
our BMA algorithm mutates the entire population with an adaptive mutation
procedure that adjusts the diversification strength µ ∈ [µmin, n] depending on
the previous search progress (see lines 11-16, Algorithm 1). At the beginning,
µ is set to µmin and is gradually augmented by an increment m if a solution
better than πbest has not been attained during ν generations. Once a solution
better than πbest is obtained, or µ has reached the maximum possible value n
(n being the problem size), µ is reset to µmin (see lines 17-19, Algorithm 1).
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Figure 2: An example of mutation with 3 exchanges for µ = 3

The mutation procedure of our memetic algorithm, which was previously
used in Merz & Freisleben (2000) for QAP, exchanges a sequence of locations
in the solution π to create an offspring that has a distance of µ to its parent
π. The distance measure used for this mutation operator is the well-known
hamming distance. To ensure that the distance between the offspring and its
parent is µ, in each step, the second selected location is swapped again in the
subsequent step, such that the resulting distance is equal to one plus the number
of swaps. An example of the mutation procedure is illustrated in Figure 2. The
complexity of the mutation procedure is O(|P | · µ).

3.5. Discussions

In this Section, we discuss similarities and differences between BMA and the
previously mentioned state-of-art QAP approaches, in particular those based on
the memetic framework.

In Section 2, we reviewed three popular memetic QAP algorithms, MA-QAP
(Merz & Freisleben, 2000), IHGA (Misevicius, 2004), and MRT60 (Drezner,
2008), the two latter ones being among the best performing algorithms cur-
rently available in the literature for this problem. The genetic operators em-
ployed by BMA are quite similar to those of MA-QAP and IHGA. Indeed, these
approaches create offspring solution by means of different adaptations of the
classic uniform crossover operator which provides surprisingly good results for
the QAP instances. One of the contributions of our work is an explanation for
the efficiency of these random crossovers obtained by analyzing the structures
of the QAP instances (see Section 5).

Moreover, as MA-QAP and IHGA, BMA applies a mutation mechanism
to the entire population in order to avoid premature convergence. However,
unlike the previously used mutation strategies, the mutation mechanism of BMA
adaptively adjusts the diversification strength depending on the previous search
progress.
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Yet, the most important difference between BMA and the three reference
memetic algorithms is the local search procedure. As stated earlier, BLS, em-
ployed by BMA for offspring improvement, constitutes the key component of
BMA. It combines the steepest descent with a dedicated and adaptive diver-
sification mechanism. On the other hand, the local search phase performed
by MA-QAP is the basic steepest descent algorithm, while IHGA and MRT60
improve solutions by means of a simple tabu search procedure.

PILS (Stützle, 2006) is a population-based approach which uses an adap-
tation of the iterated local search framework to improve each newly generated
solution. Although the perturbation mechanism of PILS determines the number
of perturbation moves in an adaptive way, it is only based on random moves
which constitutes the main difference with our BLS procedure.

Two local search algorithms, CPTS (James, Rego, & Glover, 2009a) and
ITS (Misevicius & Kilda, 2006) (see Section 2), are among the top performing
QAP methods. Even though BLS’s directed perturbation is based on the use
of a tabu list, CPTS is not very much related to BLS since it consists of a
parallel execution of several tabu search (TS) operators on multiple processors.
The proposed BLS is more related to ITS since both algorithms are variants of
the iterated local search method. Nevertheless, there are two major differences
between ITS and BLS. Firstly, BLS does not consider the tabu list during its
local search (descent) phases, unlike ITS which constraints each iteration of its
local search phase with a tabu list. As such, BLS and ITS explore different
trajectories during their respective search, leading to different local optima. In
fact, one of the keys to the effectiveness of BLS on QAP is that it completely
excludes diversification during local search, unlike tabu search for which the
intensification and diversification are always intertwined. Secondly, unlike ITS
which applies solely random moves to perturb the current local optimum, BLS
adaptively choses between two types of moves (random and directed) according
to the search status, leading to variable levels of diversification.

Finally, we mention the approach proposed by Kelly, Laguna, & Glover
(1994). In their work, the authors present a method which also starts with
the steepest descent to find local optima, and then applies a diversification
strategy to incrementally restrict the set of allowed swap moves in order to
escape local optima. The diversification procedure of this approach exploits
the search history as well, but unlike BLS, performs perturbations in a purely
deterministic way. It consists of imposing a “maximum tabu tenure” to moves
performed during each descent of local search, and applying the best move
among the non prohibited ones to perturb a local optimum.

4. Experimental evaluation

4.1. Benchmark instances

It is worthy to recall that given the very nature of heuristic algorithms, it is a
common practice to evaluate the performance of a new algorithm by testing it on
well-established benchmark instances of the problem and comparing its results
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Table 1: Settings of important parameters.

Para. Description Value

|P | Population size 15
ts number of iterations for short BLS run 5000
tl number of iterations for long BLS run 10000
µmin minimal mutation degree 0.5n
m increment of mutation degree 0.1n
λ the size of the tournament pool 4
ν number of generations without improvement before mu-

tation
|P |

L0 initial jump magnitude of BLS 0.05n (T. I & II), 0.15n (T. III & IV)
γ tabu tenure for directed perturb. with BLS random[0.9n, 1.1n]
Q smallest probability for applying BLS directed perturba-

tion
0.75

with those of the state-of-art methods. In our case, we evaluate the performance
of our BMA algorithm on the set of 135 instances from the QAPLIB1, whose size
n varies from 12 to 150 and is indicated in the instance name. These instances
are very popular and largely used in the literature. They are typically classified
into four types covering various real applications and random problems:

Type I. Real-life instances obtained from practical applications of QAP;

Type II. Unstructured, randomly generated instances for which the distance
and flow matrices are randomly generated based on a uniform dis-
tribution;

Type III. Randomly generated instances with structure that is similar to that
of real-life instances;

Type IV. Instances in which distances are based on the Manhattan distance
on a grid.

Among the 135 instances from the QAPLIB, we focus on the set of 21 selected
instances. The remaining 114 instances (including all the real-life instance of
Type I) are omitted from our experimental comparisons since BLS and BMA
(and many other state-of-art QAP methods) can solve them to optimality in
every single trial within a very short computation time (often less than a second).
However, to be exhaustive, we include the results of our BMA algorithm for these
114 instances in the Appendix (Table 8).

4.2. Experimental protocol

The proposed memetic algorithm BMA2 is programmed in C++, and com-
piled with GNU g++ on a Xeon E5440 with 2.83GHz and 2GB. Like other QAP
heuristic algorithms, BMA requires a number of parameters to be tuned (see

1urlhttp://www.seas.upenn.edu/qaplib/inst.html
2The code of our memetic algorithm, used to obtained the reported results, will be made

available online at http://www.info.univ-angers.fr/pub/hao/BMA.html
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Table 1), most of which are related to its BLS local optimizer and adopt the
values used in Benlic & Hao (2013c). According to the parameter analyses per-
formed in Benlic & Hao (2013b,c), the most relevant BLS parameters are the
initial jump magnitude L0 and the smallest probability for applying directed
over random perturbation Q. Moreover, as discussed in Benlic & Hao (2013c),
the optimal setting of these parameters depends on the landscape properties of
the QAP instance at hand and may vary for different instances. Additionally,
following the existing MA literature on discrete optimization (Benlic & Hao,
2011; Bontouxa, Artigues, & Feillet, 2010; Dorne & Hao, 1998; Hao, 2012; Lü
& Hao, 2010; Merz & Freisleben, 2000), BMA maintains a population of fairly
limited size. This, as well as the other parameters related to the genetic algo-
rithm components, is determined with a preliminary experiment. Even though
it is possible to find a configuration of parameters better than the one used in
this paper, the computational experiments reported in this section show that
the adopted setting performs globally well on the tested benchmark instances.
More generally, since the source code of our BMA algorithm will be made avail-
able online, the potential user can possibly apply any preferred method to tune
these parameters.

According to the practice in the QAP literature, the stopping condition is
the elapsed time. In our case, we set the maximum time limit to 2 hours for
all the instances, except for the largest instance tho150 for which we set the
maximum time allowed to 10 hours. Notice that some reference QAP algo-
rithms (Drezner, 2008; James, Rego, & Glover, 2009a) use an even higher time
limit for tho150 to reach the reported result. As shown below, the best-known
solutions are very often attained long before these time limits. Furthermore,
we provide computational results of our BMA algorithm with the time limit
reduced to 30 minutes. The reported results for BMA and BLS are obtained
over 10 independent executions.

We focus primarily on the comparisons in terms of the solution quality with
respect to the best-known results (BKR) reported in the literature, which were
obtained with different QAP algorithms under various conditions. For indicative
purposes, we also compare the results produced by our memetic approach and
those obtained with the 4 state-of-art QAP approaches which are the current
best performing methods:

1. Cooperative Parallel Tabu Search (CPTS) algorithm by James, Rego, &
Glover (2009a). The reported results are obtained using ten (1.3GHz)
Intel Intanium processors;

2. Iterated Tabu Search (ITS) by Misevicius & Kilda (2006). The results are
obtained using a 900 MHz Pentium computer;

3. Improved Hybrid Genetic Algorithm (IHGA) by Misevicius (2004). The
reported results are obtained on a x86 Family 6 processor;

4. A variant of a Hybrid Genetic Tabu Search Algorithm (MRT60) by Drezner
(2008). The reported results are obtained on a Pentium IV 2.8 GHz com-
puter.
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An exhaustive comparative analysis with the reference approaches is not
a straightforward task because of the differences in computing hardware, re-
sult reporting methodology, termination criterion, etc. This comparison is thus
presented only for indicative purposes. Nevertheless, this experiment provides
interesting indications on the performance of the proposed algorithm relative to
the state-of-art algorithms.

In addition, we evaluate the contribution of the proposed memetic approach
by comparing (under the same conditions) BMA with its BLS procedure (Benlic
& Hao, 2013c) which itself shows to be highly effective on the tested QAP
instances. This allows us to highlight the usefulness of the memetic framework.

According to the literature (Drezner, 2008; Misevicius, 2004; Stützle, 2006),
we employ several criteria for evaluation and comparison of our memetic algo-
rithm with other QAP approaches.

1. The number of instances for which an optimal or best-known solution is
reached within a reasonable computing time. This constitutes an indicator
on the effectiveness of an algorithm in terms of the solution quality.

2. The success rate of reaching an optimal or best-known solution which
provides information about the robustness of an algorithm.

3. The percentage deviation δ̄avg of the average solution from the published
best-known result over a certain number of runs. The percentage deviation
between solutions is computed as δ̄ = 100(z − z̄)/z̄[%], where z is the
average result over a given number of runs and z̄ the best-known objective
value. This indicator provides additional information about the robustness
of an algorithm.

Beside the aforementioned criteria, we also mention the amount of compu-
tational time required by each approach to reach the reported results. This pro-
vides an indication about the computational efficiency of an algorithm. More-
over, Table 7 in the Appendix provides a detailed summary of the computational
results for 21 selected QAPLIB instances obtained by BMA within a time limit
of 2 hours (10 hours for instance tho150) and 30 minutes respectively.

4.3. Computational results and comparisons

Table 2 reports comparative results with BLS (Section 3.2), CPTS (James,
Rego, & Glover, 2009a), ITS (Misevicius & Kilda, 2006) and IHGA (Misevicius,
2004), for unstructured instances (Type II) and real-life like instances (Type III).
Since MRT60 (Drezner, 2008) does not report results on these instances, it is
excluded from this comparison (in fact, MRT60 only reports results for instances
of Type IV). The second column ‘BKS’ shows for each instance the best-known
objective value ever reported in the literature. For each algorithm, column δ̄avg
indicates the percentage deviation between an average solution, obtained with
the given approach over 10 independent trials, and the best-known solution.
The success rate for reaching the best-known solution over 10 trials is given in
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Table 2: Comparative results between the proposed memetic algorithm (BMA), BLS (Benlic & Hao, 2013c), and three best performing QAP
approaches on unstructured instances (Type II) and real-life like instances (Type III): CPTS (James, Rego, & Glover, 2009a), ITS (Misevicius &
Kilda, 2006) and IHGA (Misevicius, 2004). The success rate of reaching the best-known result over 10 executions is indicated between parentheses.
Computing times are given in minutes for indicative purposes.

Problem BKS BMA BLS CPTS ITS IHGA
% δ̄avg t(m) % δ̄avg t(m) % δ̄avg t(m) % δ̄avg t(m) % δ̄avg t(m)

Random instances (Type II)
tai40a 3139370 0.059(2) 8.1 0.022(7) 38.9 0.148(1) 3.5 0.210(1) 0.8 0.209(1) 1.4
tai50a 4938796 0.131(2) 42.0 0.157(2) 45.1 0.440(0) 10.3 0.373(0) 3.0 0.262(0) 5.0
tai60a 7205962 0.144(2) 67.5 0.251(1) 47.9 0.476(0) 26.4 0.330(1) 9.7 0.583(0) 12
tai80a 13499184 0.426(0) 65.8 0.517(0) 47.3 0.691(0) 94.8 0.494(0) 25.0 0.756(0) 53.3
tai100a 21052466 0.405(0) 44.1 0.430(0) 39.0 0.589(0) 261.2 0.427(0) 60.0 0.606(0) 200.0
Average 0.233 45.5 0.275 43.6 0.469 79.2 0.367 19.2 0.483 54.3
Real-life like instances (Type III)
tai50b 458821517 0.000(10) 1.2 0.000(10) 2.8 0.000(10) 13.8 0.000(10) 0.9 0.000(10) 0.3
tai60b 608215054 0.000(10) 5.2 0.000(10) 5.6 0.000(10) 30.4 0.000(10) 2.2 0.000(10) 0.7
tai80b 818415043 0.000(10) 31.3 0.000(10) 11.4 0.000(10) 110.9 0.000(10) 5.8 0.000(10) 2.5
tai100b 1185996137 0.000(10) 13.6 0.000(10) 16.0 0.001(8) 241.0 0.000(9) 23.3 0.000(10) 7.3
tai150b 498896643 0.060(1) 78.1 0.100(0) 80.5 0.076(0) 7377.8 0.100(1) 60.0 0.111(2) 38.3
Average 0.012 25.9 0.020 23.3 0.015 1554.8 0.020 18.4 0.022 9.8
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Table 3: Comparative results between the proposed memetic algorithm (BMA), BLS (Benlic &
Hao, 2013c), CPTS (James, Rego, & Glover, 2009a) and MRT60 (Drezner, 2008) on grid-based
(Type IV) instances. The success rate of reaching the best-known result over 10 executions is
indicated between parentheses. Computing times are given in minutes for indicative purposes.
Problem BKS BMA BLS CPTS MRT60

% δ̄avg t(m) % δ̄avg t(m) % δ̄avg t(m) % δ̄avg t(m)
sko72 48498 0.000(10) 3.5 0.000(10) 4.1 0.000(10) 69.6 0.000(10) 19.9
sko81 66256 0.000(10) 4.3 0.000(10) 13.9 0.000(10) 121.4 0.000(10) 31.9
sko90 90998 0.000(10) 15.3 0.000(10) 16.6 0.000(10) 193.7 0.000(10) 48.5

sko100a 115534 0.000(10) 22.3 0.001(9) 20.8 0.000(10) 304.8 0.000(10) 73.6
sko100b 152002 0.000(10) 6.5 0.000(10) 10.8 0.000(10) 309.6 0.000(10) 73.6
sko100c 147862 0.000(10) 12.0 0.000(10) 15.5 0.000(10) 316.1 0.000(10) 73.6
sko100d 149576 0.006(9) 20.9 0.001(5) 38.9 0.000(10) 309.8 0.000(10) 73.6
sko100e 149150 0.000(10) 11.9 0.000(10) 42.5 0.000(10) 309.1 0.000(10) 73.6
sko100f 149036 0.000(10) 23.0 0.000(10) 17.3 0.003(4) 310.3 0.000(9) 43.5
wil100 273038 0.000(10) 14.5 0.000(10) 18.9 0.000(10) 316.6 0.000(10) 73.6
tho150 8133398 0.008(3) 416.4 0.023(1) 268.8 0.013(0) 1991.7 0.003(3) 1223.6
Average 0.001 50.1 0.002 42.6 0.001 413.9 0.000 164.5

parentheses next to the value of δ̄avg. The CPU time (in minutes) is only given
for indicative purposes. From Table 2, we can make the following observations.

For the unstructured instances (Type II), BMA finds the best-known solution
for 3 out of the 5 instances, with an average deviation δ̄avg of 0.233 over the
5 instances. For three hard instances tai40a, tai50a and tai60a, it reaches
the best-known solution in 20% of the trials. Compared to its local search
procedure BLS, BMA statistically outperforms (with p-value< 0.05) BLS for two
hard instances, tai60a and tai80a, and reduces the average percentage deviation
from 0.275 to 0.233 over the 5 instances. The current most effective approach for
instances of Type II is probably ITS (Misevicius & Kilda, 2006), which attains
the best-known result for 2 out of the 5 instances with an average deviation δ̄avg
of 0.367. One notices that ITS shows worse results than both BMA and BLS,
but it requires shorter computing time. To verify the performance of BMA under
short computing budgets, we show in Appendix (Table 7) the results of BMA
within a significantly shorter cutoff limit (30 minutes). From Table 7, we observe
that BMA does remain very competitive with ITS, with an average deviation
δ̄avg of 0.356 over the 5 instances. Finally, the two other reference algorithms
CPTS and IHGA achieve results which are slightly worse than BMA, BLS and
ITS.

For the real-life like instances (Type III), BMA is able to attain the best-
known solution for all the instances in every single trial, except for the largest
instance tai150b where the success rate is 10%. It reports an average deviation
δ̄avg of 0.012 over the 5 instances. Unlike BMA, BLS is unable to reach the
best-known solution for tai150b with the given computing conditions. When
the running time of BMA is greatly reduced, it is still able to attain the best-
known solution for all the five instances but with an average deviation δ̄avg of
0.051 (see Table 7). Two reference approaches, ITS (Misevicius & Kilda, 2006)
and IHGA (Misevicius, 2004), are also able to attain the best-known result for
all the 5 real-life like instances with an average deviation δ̄avg of 0.020 and 0.022
respectively.
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We now turn our attention to the instances with grid distances (Type IV,
Table 3). Among the 4 reference methods, only CPTS (James, Rego, & Glover,
2009a) and MRT60 (Drezner, 2008) report results for these instances. In Table
3, we show the results of our BMA and BLS algorithms together with those
of CPTS and MRT60 for these Type IV instances. From Table 3, we observe
that BMA is able to reach the best-known result for all the instances of this
type. For 9 out of 11 instances, it has a success rate of 100%. For the two
remaining instances (sko100d and tho150), the success rate is 90% and 30%
respectively. BLS also attains the best-known result for the hardest instance
tho150 with a success rate of 10%. MRT60 has a slightly better success rate
than BMA on instance sko100d (10/10 v.s. 9/10) and reports a slightly worse
success rate than BMA on sko100f (9/10 v.s. 10/10). On the other instances,
BMA and MRT60 have the same success rates with a very slight advantage for
MRT60 in terms of the average gap over all the instances. On the other hand,
CPTS performs globally well except for the hardest instance tho150 for which
CPTS fails to attain the best-known solution. We conclude that BMA competes
favorably with MRT60 and CPTS on the Type IV instances.

5. Analysis and discussion

The performance of a memetic algorithm may be influenced by the character-
istics of the search landscape like the average distance between local optima and
the relative distance of local optima to the nearest global optimum. Analyses of
correlation between solution fitness and distance to global optimum have shown
to be particularly useful for a better understanding of algorithm behavior and
for designing suitable operators for a more effective search. Landscape studies
have been previously reported for QAP in Merz & Freisleben (2000) and Stützle
(2006) and for other well-known problems like the TSP problem (Boese, 1995)
and the flow-shop scheduling problem (Reeves, 1997). In this section, we report
a similar analysis, based on solutions sampled by our BLS procedure which are
probably quite different from the solutions used in the previous studies on QAP.

We perform the landscape analysis on 16 QAPLIB instances, based on a set
of distinct solutions obtained after 2000 independent runs of our BLS approach.
The number of iterations per run is set to 200000. As the distance between
solutions, we calculate the number of facilities that are allocated to distinct
locations in two solutions π and π′, i.e., d(π, π′) = |{i|πi 6= π′

i}|. Since global
optima for the analyzed instances are not known, we use instead the best-known
local optima to compute fitness-distance correlation and refer to them as global
optima.

5.1. Landscape analysis - FDC and distribution of local optima

The fitness distance correlation (FDC) coefficient ρ (Jones & Forrest, 1995)
captures the correlation between the solution fitness and its distance to the
nearest global optimum (or best-known solution if global optimum is not avail-
able). For a minimization problem, if the fitness of a solution decreases with
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the decrease of distance from the optimum, then it should be easy to reach the
target optimum for an algorithm that concentrates around the best candidate
solutions found so far, since there is a “path” to the optimum via solutions
with decreasing (better) fitness. A value of ρ = 1 indicates perfect correlation
between fitness and distance to the optimum. For correlation of ρ = −1, the
fitness function is completely misleading. FDC can also be visualized with a FD
plot, where the same data used for estimating ρ is displayed graphically.
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Figure 3: Distances of local optima to the best-known solution based on solutions sampled
by the BLS algorithm for instances tai100a (Type II), sko100a (Type III) and tai100b (Type
IV).

In column ‘ρ’ of Table 4, we report FDC coefficients for the 16 selected
QAP instances. For illustrative purpose, FD plots for three instances (tai100a,
sko100a and tai100b) are given in Figure 3. As it can be seen from the FDC
coefficients in Table 4, there is a clear difference in correlation among instances of
different types. For randomly generated instances (Type II), the FDC coefficient
ρ is negative except in one case (tai50a) where ρ is close to zero. Indeed, from
the FD plots in Figure 3 it is clear that there is no correlation between fitness
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Table 4: Analytical results for 16 QAP instances. Column ‘#dlo’ indicates the number of
distinct local optima over 2000 independent runs of BLS; Columns ‘avg dlo’, ‘avg dgo’ and
‘avg dhq ’ report respectively the average distance between local optima, the average distance
between local and global optima, and the average distance between the highest quality local
optima; Column ‘ρ’ shows the value of the fitness-distance correlation coefficient.

Instance #dlo avg dlo avg dgo avg dhq ρ Type
tai40a 349 38.5 39.2 38.4 -0.028 II
tai50a 1760 48.6 49.1 48.7 0.029 II
tai60a 1995 58.6 59.2 58.6 -0.024 II
tai80a 2000 78.8 79.0 78.8 -0.058 II
tai100a 2000 98.8 99.0 98.9 -0.012 II
tai80b 730 61.7 78.7 68.7 0.040 III
tai100b 1007 80.7 97.7 89.1 0.11 III
sko72 228 66.8 68.3 65.7 0.287 IV
sko81 388 75.4 74.5 76.5 -0.048 IV
sko90 487 85.08 85.7 82.8 0.348 IV
sko100a 968 95.4 94.2 95.4 0.366 IV
sko100b 628 95.9 92.5 95.5 0.280 IV
sko100c 559 91.0 91.3 93.9 0.233 IV
sko100d 1212 96.3 93.9 96.3 0.433 IV
sko100e 545 94.3 92.4 96.2 0.569 IV
sko100f 1230 96.6 93.5 97.2 0.317 IV

and distance for the random instance tai100a.
For grid-based instances (Type IV), significant FDC exists except in one

case (sko81, ρ < 0), while for two real-life like instances tai80b and tai100b the
FDC is also low ρ < 0.15 but higher than for random instances. The FD plots
in Figure 3 for instances sko100a and tai100b also confirm this observation.

Table 4 additionally reports the average distance between local optima avg
dlo, the average distance between local optima and the nearest global optimum
avg dgo, and the average distance between the highest quality local optima
avg dhq. It can be observed that, regardless of the instance type, the values
of avg dlo, avg dgo, and avg dhq are very large, close to the maximal possible
value n. This implies that local optima are scattered in the search space. Even
high quality local optima are distant from each other and share no common
structure. These observations will allow us to understand why the uniform
crossover operator is appropriate for QAP.

5.2. Comparison of recombination operators

The objective of this section is to justify, based on the landscape analysis
provided in Section 5.1, the choices for the crossover operator used by our BMA
algorithm. We compare three versions of our BMA algorithm incorporating the
three recombination operators of the literature for permutation problems: the
standard uniform crossover (UX) described in Section 3.1, the block crossover
(BX) and the distance preserving crossover (DPX).

The block crossover (BX), also called the multi-point crossover, is one of the
classic recombination operators. Firstly, it chooses randomly a certain number
of crossing points. Once the points have been chosen, starting from left to right,
all the elements of the first parent are simply copied over to the offspring π0 until
the first crossing point is reached. Then all the elements of the second parent
are copied over to π0 until the second crossing point is reached. This procedure
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continues until reaching the last position in π0. During the crossover process,
we constrain an element to take on a value j ∈ [1...n] that has not already been
assigned to some element in π0. The rest of unassigned elements are randomly
assigned a value j ∈ [1...n] such that solution feasibility is maintained.

The distance preserving crossover (DPX) has previously been applied to
QAP in Merz & Freisleben (2000). The basic idea of DPX is to create an
offspring that has the same distance to each of its parents, and that distance is
equal to the distance between the parents themselves. Elements with the same
values in both parents are copied to the offspring. The values of all the other
elements change.

Generally, we can classify recombination operators into two classes, those
that try to exploit an existing structure in a problem (e.g., the DPX crossover)
and those that perform recombination in a purely random way (e.g., UX and BX
crossovers). The former operators usually perform well on the class of problems
with exploitable global structure and landscapes with highly correlated local
optima (e.g., the traveling salesman problem (Bontouxa, Artigues, & Feillet,
2010) and the graph partitioning problem (Benlic & Hao, 2011)). Otherwise,
these operators become destructive introducing a too strong perturbation.

Table 5 shows the average percentage deviation from the best-known result
δ̄avg for the three versions of our BMA over 10 runs on 16 QAPLIB instances.
The stopping condition used is the number of generations φ = 1, 500 with 10, 000
BLS iterations per generation. We indicate in parentheses the number of times
each version of BMA reached the best-known result over the 10 executions.
Moreover, we study the degree of perturbation pstr induced by each crossover,
and report in Table 6 the average pstr caused by the three operators over the
1,500 generations. Here, we define the perturbation degree pstr as the minimum
distance between the created offspring and one of its parents expressed as a
percentage of n.

From Table 5, we observe that the best performance is obtained by the
BMA version integrating the standard UX operator, with an average δ̄avg of
0.073 over the 16 instances. The second best performing BMA version inte-
grates the block crossover (BX) with an average δ̄avg of 0.079. On the other
hand, the results indicate that DPX is less effective with an average δ̄avg of 0.100
over the 16 instances. We further observe that the difference in performance
between operators UX & BX and DPX is particularly notable on unstructured
instances (Type II) since local optima are the most uncorrelated for these in-
stances. Indeed, on the other instances with slightly higher FDC coefficient ρ,
this difference is much less obvious.

As expected, we observe from Table 6 that on random, unstructured in-
stances, the amount of perturbation induced with DPX is much stronger than
with UX and BX, since DPX is designed to exploit the problem structure that
is missing for instances of Type II. Indeed, the degree of perturbation pstr with
DPX crossover on unstructured instances is almost 100%. On the other hand,
the amount of perturbation caused by DPX is greatly smaller when applied to
more structured instances of Type IV.
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Table 5: Percentage deviations δ̄avg of the average solution (obtained after 10 runs) from the
published best-known result for the three versions of our BMA integrating respectively the
uniform (UX), the block (BX), and the distance preserving (DPX) crossover.
Instance UX BX DPX Instance UX BX DPX
tai40a 0.059(2) 0.067(1) 0.074(0) sko100a 0.000(10) 0.000(10) 0.001(9)
tai50a 0.135(2) 0.250(1) 0.286(0) sko100b 0.000(10) 0.000(10) 0.000(10)

tai60a 0.220(2) 0.249(1) 0.270(0) sko100c 0.000(10) 0.000(10) 0.000(10)

tai80a 0.410(0) 0.420(0) 0.536(0) sko100d 0.000(10) 0.000(10) 0.000(10)

tai100a 0.340(0) 0.270(0) 0.431(0) sko100e 0.000(10) 0.000(10) 0.000(10)

sko72 0.000(10) 0.000(10) 0.000(10) sko100f 0.000(10) 0.000(10) 0.000(10)

sko81 0.000(10) 0.000(10) 0.000(10) tai80b 0.000(10) 0.000(10) 0.000(10)

sko90 0.000(10) 0.010(8) 0.003(9) tai100b 0.000(10) 0.000(10) 0.000(10)

Table 6: The average perturbation degree pstr over 1500 generations introduced by three
versions of our BMA integrating respectively the uniform (UX), the block (BX), and the
distance preserving (DPX) crossover. pstr is expressed as a percentage of n.
Instance UX BX DPX Instance UX BX DPX
tai40a 45.8 36.7 95.9 sko100a 21.8 13.7 95.4
tai50a 46.9 39.0 97.1 sko100b 16.9 14.0 47.6
tai60a 45.2 38.6 97.5 sko100c 18.9 15.9 41.6
tai80a 48.4 36.9 98.4 sko100d 18.5 11.8 40.3
tai100a 46.9 36.5 98.6 sko100e 29.5 22.7 43.1
sko72 22.3 32.4 76.8 sko100f 28.3 20.6 63.9
sko81 25.4 21.1 67.1 tai80b 13.7 10.6 35.6
sko90 27.9 24.6 49.0 tai100b 17.3 11.9 27.5

6. Conclusion

In this article, we presented a simple and effective memetic algorithm (BMA)
for the well-known quadratic assignment problem. BMA combines a dedicated
local search named Breakout Local Search (BLS) with the standard uniform
crossover (UX), a simple pool updating strategy and an adaptive mutation
mechanism.

The BLS procedure, which is the key component of BMA, alternates between
a local search phase (to reach local optima) and a dedicated perturbation phase
(to discover new promising regions). The perturbation mechanism of BLS dy-
namically determines the number of perturbation moves and adaptively chooses
between two types of perturbation moves of different intensities depending on
the current search state.

Genetic operators (crossover and mutation) are integrated to further enforce
the search capacity of BMA. The choice of these operators is based on observa-
tions made from a landscape analysis which investigates the structure of QAP
instances. The analysis revealed a very low fitness-distance correlation between
local optima for randomly generated instances, and a medium correlation for
instances of other types. These observations provide a basis to explain why the
standard uniform crossover generally leads to better results for unstructured
instances (Type II) than a crossover that tries to exploit the problem structure.

We evaluated the proposed algorithm on the set of 135 benchmark instances
from the QAPLIB. Computational results revealed that BMA performs very
well on these instances. Indeed, BMA outperforms its local search component
(BLS) and is able to reach the current best-known solution for 133 instances.
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In particular, BMA performs particularly well on unstructured instances
(Type II) which are considered to be the hardest for the existing QAP methods.
For real-life like instances (Type III) and instances with grid distances (Type
IV), BMA remains competitive with respect to the best performing approaches
as well. The computing time needed for our proposed algorithm to reach its
best solution varies on average from several seconds to about one hour, except
for the largest problem for which 7 hours are needed. When the computing time
is limited to 30 minutes, BMA is still able to attain the best known result for
130 out of the 135 benchmark instances.
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Appendix

This appendix includes two tables (Tables 7 and 8). Table 7 shows the
best, average and worst result obtained by BMA after 10 independent runs for
21 selected QAPLIB instances, within a time limit of 2 hours (10 hours for
instance tho150) and 30 minutes respectively.

Table 8 shows the computational results of our BMA algorithm on the set
of 114 easy QAP instances of the QAPLIB. For all these instances, each run of
BMA can attain the best known result with a computing time ranging from 0
second to at most 2.5 minutes.
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Table 7: Computational results of the proposed BMA algorithm with a time limit of 2 hours
and 30 minutes respectively on the set of 21 hard instances from the QAPLIB. Columns
‘% δ̄best’, ‘% δ̄avg ’ and ‘% δ̄worst’ show respectively the percentage deviation of our best,
average, and worst solution from the best-known solution (BKR) over all the trials; Column
‘tavg(min)’ indicates the average computing time in minutes when the best solution in each
trial was attained.
Problem Time limit of 2 hours Time limit of 30 minutes
Name BKS % δ̄best % δ̄avg % δ̄worst tavg(m) % δ̄best % δ̄avg % δ̄worst tavg(m)
tai40a 3139370 0.000(2) 0.059 0.074 8.1 0.000(1) 0.067 0.074 3.7
tai50a 4938796 0.000(2) 0.131 0.291 42.0 0.053(0) 0.264 0.409 3.8
tai60a 7205962 0.000(2) 0.144 0.259 67.5 0.165(0) 0.307 0.369 13.9
tai80a 13499184 0.246(0) 0.426 0.561 65.8 0.430(0) 0.563 0.670 16.4
tai100a 21052466 0.269(0) 0.405 0.550 44.1 0.340(0) 0.582 0.715 11.2
tai50b 458821517 0.000(10) 0.000 0.000 1.2 0.000(10) 0.000 0.000 1.2
tai60b 608215054 0.000(10) 0.000 0.000 5.2 0.000(10) 0.000 0.000 5.2
tai80b 818415043 0.000(10) 0.000 0.000 31.3 0.000(9) 0.028 0.283 3.1
tai100b 1185996137 0.000(10) 0.000 0.000 13.6 0.000(8) 0.028 0.100 7.9
tai150b 498896643 0.000(1) 0.060 0.365 78.1 0.000(1) 0.198 0.225 15.0
sko72 66256 0.000(10) 0.000 0.000 3.5 0.000(8) 0.012 0.063 1.3
sko81 90998 0.000(10) 0.000 0.000 4.3 0.000(10) 0.000 0.000 4.5
sko90 115534 0.000(10) 0.000 0.000 15.3 0.000(7) 0.025 0.123 4.43

sko100a 152002 0.000(10) 0.000 0.000 22.3 0.000(7) 0.005 0.016 9.8
sko100b 153890 0.000(10) 0.000 0.000 56.5 0.000(7) 0.001 0.004 6.75
sko100c 147862 0.000(10) 0.000 0.000 12.0 0.000(10) 0.000 0.000 8.9
sko100d 149576 0.000(9) 0.006 0.065 20.9 0.000(6) 0.024 0.176 11.45
sko100e 149150 0.000(10) 0.000 0.000 11.9 0.000(10) 0.000 0.000 9.93
sko100f 149036 0.000(10) 0.000 0.000 23.0 0.000(7) 0.001 0.005 10.6
wil100 273038 0.000(10) 0.000 0.000 14.5 0.000(10) 0.000 0.000 7.7
tho150 8133398 0.000(3) 0.007 0.064 416.4 0.019(0) 0.057 0.096 22.4
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Table 8: Computational results of our BMA algorithm for the set of 114 easy instances of
the QAPLIB. Column ‘BKR’ indicates the optimal/best-known result ever reported in the
literature. Column ‘#best′ indicates the number of times a best-known solution was found
over 100 executions; Column ‘% δ̄avg ’ shows the percentage deviation of our average solution
from the best-known solution (BKR) over all the trials; Column ‘tavg(sec)’ indicates the
average computing time in seconds when the best solution in each trial was attained.

Instance BKR #best % δ̄avg tavg(sec) Instance BKR #best % δ̄avg tavg(sec)

bur26a 5426670 100/100 0.000 0.8 tai20a 703482 100/100 0.000 0.0
bur26b 3817852 100/100 0.000 0.8 tai25a 1167256 100/100 0.000 0.0
bur26c 5426795 100/100 0.000 0.5 tai30a 1818146 100/100 0.000 0.0
bur26d 3821225 100/100 0.000 0.2 tai35a 242002 100/100 0.000 0.1
bur26e 5386879 100/100 0.000 0.2 rou15 354210 100/100 0.000 0.4
bur26f 3782044 100/100 0.000 0.2 rou20 725522 100/100 0.000 0.5
bur26g 10117172 100/100 0.000 0.3 lipa20a 3683 100/100 0.000 0.1
bur26h 7098658 100/100 0.000 0.2 lipa20b 27076 100/100 0.000 0.0
tai64c 1855928 100/100 0.000 2.4 lipa30a 13178 100/100 0.000 0.2
chr12a 9552 100/100 0.000 0.2 lipa30b 151426 100/100 0.000 0.1
chr12b 9742 100/100 0.000 0.2 lipa40a 31538 100/100 0.000 1.1
chr12c 11156 100/100 0.000 0.2 lipa40b 476581 100/100 0.000 0.3
chr15a 9896 100/100 0.000 0.3 lipa50a 62093 100/100 0.000 1.5
chr15b 7990 100/100 0.000 0.4 lipa50b 1210244 100/100 0.000 0.4
chr15c 9504 100/100 0.000 0.3 lipa60a 107218 100/100 0.000 8.2
chr18a 11098 100/100 0.000 0.4 lipa60b 2520135 100/100 0.000 0.4
chr18b 1534 100/100 0.000 0.5 lipa70a 169755 100/100 0.000 30.7
chr20a 2192 100/100 0.000 2.1 lipa70b 4603200 100/100 0.000 1.5
chr20b 2298 100/100 0.000 5.7 lipa80a 253195 100/100 0.000 51.2
chr20c 14142 100/100 0.000 0.8 lipa80b 7763962 100/100 0.000 4.1
chr22a 6156 100/100 0.000 1.6 lipa90a 360630 100/100 0.000 149.1
chr22b 6194 100/100 0.000 1.8 lipa90b 12490441 100/100 0.000 4.2
chr25a 3796 100/100 0.000 9.5 tai10a 135028 100/100 0.000 0.0
els19 17212548 100/100 0.000 0.4 tai12a 224416 100/100 0.000 0.1
esc16a 68 100/100 0.000 0.0 tai15a 388214 100/100 0.000 0.2
esc16b 292 100/100 0.000 0.0 tai17a 491812 100/100 0.000 0.4
esc16c 160 100/100 0.000 0.0 nug12 578 100/100 0.000 0.1
esc16d 16 100/100 0.000 0.0 nug14 1014 100/100 0.000 0.1
esc16e 28 100/100 0.000 0.0 nug15 1150 100/100 0.000 0.2
esc16f 0 100/100 0.000 0.1 nug16a 1610 100/100 0.000 0.2
esc16g 26 100/100 0.000 0.1 nug16b 1240 100/100 0.000 0.3
esc16h 996 100/100 0.000 0.0 nug17 1732 100/100 0.000 0.3
esc16i 14 100/100 0.000 0.0 nug18 1930 100/100 0.000 0.3
esc16j 8 100/100 0.000 0.0 nug20 2570 100/100 0.000 0.4
esc32a 130 100/100 0.000 0.0 nug21 2438 100/100 0.000 0.4
esc32b 168 100/100 0.000 0.1 nug22 3596 100/100 0.000 0.4
esc32c 642 100/100 0.000 0.1 nug24 3488 100/100 0.000 0.6
esc32d 200 100/100 0.000 0.1 nug25 3744 100/100 0.000 0.6
esc32e 2 100/100 0.000 0.1 nug27 5234 100/100 0.000 0.5
esc32g 6 100/100 0.000 0.0 nug28 5166 100/100 0.000 0.7
esc32h 438 100/100 0.000 0.1 nug30 6124 100/100 0.000 1.8
esc64a 116 100/100 0.000 0.2 scr12 31410 100/100 0.000 0.1
esc128 64 100/100 0.000 1.3 scr15 51140 100/100 0.000 0.3
had12 1652 100/100 0.000 0.2 scr20 110030 100/100 0.000 0.5
had14 2724 100/100 0.000 0.1 tho30 149936 100/100 0.000 0.3
had16 3720 100/100 0.000 0.3 tho40 240516 100/100 0.000 0.4
had18 5358 100/100 0.000 0.2 wil50 48816 100/100 0.000 23.6
had20 6922 100/100 0.000 0.3 tai10b 1183760 100/100 0.000 0.0
kra30a 88900 100/100 0.000 2.4 tai12b 39464925 100/100 0.000 0.0
kra30b 91420 100/100 0.000 1.2 tai15b 51765268 100/100 0.000 0.1
kra32 88700 100/100 0.000 1.1 tai30b 637117113 100/100 0.000 0.0
ste36a 9526 100/100 0.000 4.9 tai35b 283315445 100/100 0.000 0.0
ste36b 15852 100/100 0.000 1.3 tai40b 637250948 100/100 0.000 0.2
ste36c 8239110 100/100 0.000 2.6 sko42 15812 100/100 0.000 1.3
rou12 235528 100/100 0.000 0.2 sko49 23386 100/100 0.000 0.5
tai20b 122455319 100/100 0.000 0.0 sko56 34458 100/100 0.000 1.0
tai25b 344355646 100/100 0.000 0.0 sko64 48498 100/100 0.000 1.5
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