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ABSTRACT

Random walker image registration (RWIR) [1] has recently
been shown to be a promising method for deformable regis-
tration. The computational complexity of RWIR, however,
depends on two factors: 1) the number of unknown variables,
and 2) the number of discrete values each variable can take.
Having large values for both factors increases flexibility in
the spatial transformation model, which permits fine features
in the deformation fields, thereby allowing for increased ac-
curacy in the solution. However, this comes at a cost of in-
creased memory requirements and computation. In this paper,
we propose cost aggregation for RWIR to reduce the number
of unknowns, such that we group nodes with similar data costs
and obtain a non-uniform discretization of the image domain,
through which we perform registration. As our experimental
results show, we are able to achieve comparable registration
accuracy than that achieved by a uniform discretization [!]
while lowering complexity.

1. INTRODUCTION

The goal of deformable image registration is to find a spa-
tial transformation T : € — R” that best aligns two images
I, and I}, of dimensionality N. A growing trend in registra-
tion is to employ a graph-based approach, which proceeds as
follows. The image grid is represented as a graph G(V, &)
whose nodes x,, € V represent image coordinates x, and
edges e,y € & encode grid connectivities. The feasible pa-
rameter space of T'(x) is discretized and represented by a set
of K labels £ = {vy, -+, Vg, -}, where v € R, Then,
the registration task is cast as a graph-labeling problem where
the total cost of label-assignments is measured by a Markov
random field energy of the form:
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where D encodes an image dissimilarity term and R encodes
spatial regularization of the labels (and thus the transforma-
tion it represents).

If we employ diffusion regularization [2], then (1) can be
solved via a Gaussian Markov random field energy minimiza-
tion [1-3], which can be optimized analytically with random

walks. The overall registration framework, called random
walk image registration (RWIR) [1, 4], not only allows for
a globally optimal solution but allows for a probabilistic so-
lution, such that a simplex vector (i.e. whose elements sum
to unity) is assigned to each node, with entry k& encoding the
probability of assigning label k to that node.

Just like many other graph-based optimization formula-
tions, e.g. [5, 6], the computational complexity of RWIR de-
pends on: 1) the number of unknown variables, V' = |V
and 2) the number of discrete values each variable can take,
L = |£]. In the context of registration, employing large V and
L offers flexibility in the spatial transformation model, thus
permitting fine features in the resolved deformation fields,
which would allow for increased accuracy in the solution.
However, this comes at a cost of increased memory require-
ments and computation.

To reduce the computational complexity of RWIR, we re-
cently developed an approach that reduces L and proposed a
strategy that explores the solution search space progressively,
adding new labels to an initial label set that was generated
from a coarse sampling of the search space [4]. By examining
the probabilistic solution and generating labels at confident
regions in the solution, our algorithm was capable of enumer-
ating new candidate labels that can better represent the un-
known solution search space than the standard coarse-to-fine
sampling of the search space.

In this paper, we proceed in the complementary direc-
tion of decreasing V' to reduce the computational complex-
ity of RWIR. Specifically, we extend and adapt the idea of
cost aggregation [7] and propose to group neighbouring graph
nodes with similar data costs. Performing the aggregation
over the entire graph thus forms a non-uniform discretization
of the image domain, yielding a smaller graph that effectively
decreases the computational complexity of RWIR (V is re-
duced). As we will demonstrate in Section 3, the proposed
RWIR with cost aggregation can achieve registration accuracy
comparable to that achieved by uniform discretization [ 1], but
with much lower computational complexity.

We note that the idea of reducing V in registration has
been explored in [8, 9], where authors propose to non-
uniformly divide the image domain and group nodes to
produce a smaller graph representation, thereby reducing
V. Nevertheless, the grouping of graph nodes is carried
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Fig. 1. Intensity-based meshing employed in [2] results in asym-
metric discretization of the image domain that is dependent on the
image selected as the reference.

out within each image independently. The image domain
subdivision and the labelling problem were also preformed
independently. These methods thus implicitly assume that
the label boundaries (which represents 7T") are governed by a
single image, even though 7" should be dependent on both the
source and target images. As a result, the labelling boundaries
may be biased by the image boundaries. Similarly, Popuri
et al. [2] proposed to non-uniformly discretize the image
domain with a finite-element mesh (FEM) with a meshing
strategy, which nonetheless examines information derived
only from one image. As their meshing strategy is based
on image intensity gradients, it is also unclear how their ap-
proach generalizes to multi-modal registration (i.e. switching
the source and target images may lead to succinctly different
subdivisions, as shown in Fig. 1).

In summary, the approach of grouping pixels into patches
based on local intensities [2, 8, 9] had inherently assumed that
the label similarities are governed by local similarities within
a single image. Conversely, our approach of aggregating data
costs subdivide the image domain based on image similarity
that is derived from both images, which would better relate to
the actual registration objective.

2. METHODS

We first review the RWIR algorithm. Then, we present
our strategy for integrating cost aggregation into RWIR and
a method for interpolating probabilities from the solution
resolved for the aggregated graph. To allow for large de-
formations and to ensure that the obtained solution is dif-
feomorphic, we embed our ideas in the popular compositive
registration framework [10]. The overall proposed method is
outlined in Algorithm 1.

2.1. Review of random walker image registration

Under RWIR, grid connectivities between the V' graph nodes
are encoded with a Laplacian matrix L while the data term D
in (1) is encoded with a V' x K matrix D of data likelihood po-
tentials where D = [dp]v x x represents the data-likelihood
of assigning label % to node x,,. Usually, d,, is assumed to be

Algorithm 1 Compositive RWIR with cost aggregation

1: T =1Id //Initial velocity field

2: RES :={1,2,3,---}

3: RANGE = {dmaq, Smex, dmaz ...}
//RES and RANGE determine sampling
resolution of the solution space

4: forr = 1---length(RES) do

5:  Sample search space in RANGE(r) at resolution RES(r)

to obtain L£"

6: Iy« Iyoexp(T"™1)

7:  Compute D using (2) with L7, I, I,

8.

9

Compute V* using (4)
: Aggregate data term costs using (5)

10:  Calculate graph edges and graph weights

11:  Solve (3) using D#, V4, £4, and W4

12:  Compute update 7" from U4 using (8)

13:  Smooth update T' <— K ;. x T' to impose fluid-based regular-
ization

14:  Update the velocity field 7" < log(exp(T" ™) o exp(T))
via the squaring-and-scaling procedure [10]

15:  To impose elastic-like regularization, smooth the velocity
field T" < Ko xT"

16: end for

17: Compute the final transform as T' = exp(7™")

spatially independent of d,), and may be defined as:
dpe = exp(—D(F(x;), M (xp + Vi), (2)

such that low image dissimilarities between the transformed
image M (x, + vi) and F(x,) yield high potential values.
One then finds a probabilistic field U : Q — u (u € Ak, the
K -dimensional unit simplex) that minimizes:
K
E(Uy) = Y UfAUL+(1-Up) A1 = Up) + U] LU,
J=Lj#k

3
where Uy, denotes the k-th component of U; A; is a diagonal
matrix with entries [d1, - - ,dyk]. As[1,2] present, the first
two terms in (3) encourage U to be similar to D, while the
last term enforces diffusion regularization on U. When D is
normalized to rows with unity sum, the RHS of (3) is positive
definite and allows for a unique and global solution for Uy

(1]

2.2. RWIR with Cost Aggregation

In this paper, we extend cost aggregation [7] to RWIR.
Neighbouring nodes with similar data costs are merged into
a single node s. Repeating this merge operation over the en-
tire graph thus yields a set of aggregation nodes, s € V4,
where [V4| < [V|. Edges between these nodes, £ and cor-
responding edge weights VW4 are then determined based on
spatial proximity and data cost similarity, respectively. La-
belling is then performed on the smaller graph V4, using a
Laplacian matrix L4 defined by YA €4 and WA. Due to



cost aggregation, the graph size is significantly reduced, as
we will demonstrate in Section 3.

To compute V4, we adapted the simple linear iterative
clustering (SLIC) method of [12]. Based on k-means cluster-
ing, SLIC is a highly efficient superpixel generation algorithm
that has O(n) complexity, where n is the number of voxels in
the image. As initialization, b clusters are uniformly placed
on the image grid with ~y voxels in spacing. Then, SLIC as-
signs each node x,, to the closest cluster based on an aggrega-
tion distance [12] (more details below). For computational ef-
ficiency, only the clusters in close spatial proximity to x, will
be considered for assignment (as opposed to considering all
clusters). Like k-means, the algorithm then iterates between
updating the clusters and re-calculating the node-cluster as-
signments.

In our framework, we encourage node x, to be assigned
to a spatially near cluster if their data cost profiles (i.e. image
dissimilarity costs) are similar. We thus define aggregation
distance as:

AD = /|IDp, — Dy + B(Ilxp — x4l1/7)? S

where D), := [dp1 - - - dpi]. In words, the first term measures
the distance between data similarity profiles of node p and g,
the second term measures their spatial distance, and (3 is a
weight that has the effect of regularizing the sizes and shapes
of each aggregation node.

With V4 computed, we next compute the corresponding
data costs D# and connectivities £4. Specifically, the data
cost associated to each aggregation s € V4 and label k is
computed as a distance-weighted sum of data costs of all
nodes belonging to s, i.e.:

d = 3 exp(—I[xp — o[} d )

peEs

where ¢ is the centroid of s € V4 and p € s denotes the
nodes that have been aggregated into s. Consequently, nodes
closer to ¢, will have larger influence on the data costs of
s. An edge is then defined between s and ¢ (t € VA, if
their centroids are spatially close, i.e. ||os — ¢:|| < &, where
k € [3,5] mm. Finally, the edge weight between s and ¢ is
computed as:

Wi = exp(—|los — ou]). (6)
such that nodes with spatially close centroids have higher
edge weights.

2.3. Computing the transformation

Having solved (3), we obtain the probability matrix U# for
the aggregated graph. The next step is to derive a probabilistic
vector for each node in the original graph, i.e. p € V, so that
a dense displacement field is obtained and the source image
can be transformed in the end. In doing so, we first compute:

exp(—||xXp — 9
U, = Z p( HZp tll)UtAk 7
teEN

where N denotes the neighbourhood of s and Z is a normal-
ization constant, i.e. Z = Y, _\- exp(—|[x, — ). We then
compute the transformation as:

J
T(xp) = Z 9(Uy, j)vh(UpJ) (€)

j=1

where h returns the index to the j-th top probable label as
defined by U, and g returns the corresponding probability.
Note that the proposed probability-weighted combination of
the top-probable labels in (8) allows for the introduction of
new labels via probability-based interpolation.

2.4. Compositive registration

As noted in [2], the energy minimization in (3) does not guar-
antee a diffeomorphic solution. To ensure diffeomorphism
on T', we embed the proposed cost aggregation method into
a compositive registration framework [10], as summarized in
Algorithm 1. At a high level, this framework incrementally
updates the transformation with an update field, which we
compute efficiently using the proposed RWIR with cost ag-
gregation method.

3. RESULTS

Two multi-modal datasets were employed to evaluate the
proposed method: 1) Proton Density and T2 weighted brain
images from Retrospective Image Registration Evaluation
(RIRE)'; 2) T1 and T2 weighted thigh images from the visi-
ble human (VH) project?.

We compared the proposed cost aggregation (CA) strat-
egy with the multi-resolution (MR) framework originally pro-
posed in [1]. For a direct and fair comparison, we did not use
progressive search [4] in both frameworks; hence, the number
of labels allowed for each iteration was kept equal under both
frameworks. Lastly, we empirically set J = 8, and employed
the normalized local correlation as the image similarity mea-
sure D in all experiments.

In evaluating the registration accuracy achieved by both
frameworks, we performed synthetic experiments, where in
each trial, we attempted to recover a random warp that had
been introduced to a registered pair. The warps were gener-
ated by randomly displacing control points of a B-spline free-
form-deformation model, where the magnitude of displace-
ments (in voxels) were sampled from N(8, 2).

Fig. 2a reports the mean end-point-error (MEPE) ob-
tained for trials performed on the RIRE dataset. Clearly, our
proposed method (MR+CA) achieved lower errors in all reso-
lutions than those achieved with a standard MR scheme, but at
a significantly lower computational cost (Fig. 2c). As shown
in Fig. 2b, this was true under various parameter settings

1http ://www.insight-journal.org/rire/
2ftp: //nlmpubs.nlm.nih.gov/visible/bitmaps/mri/
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Fig. 2. Effects of proposed cost aggregation strategy as evaluated from 50 trials ran on RIRE images using compositive multi-resolution
RWIR (MR-RWIR). (a) MEPE after each level of a 4-level registration scheme with (MR+CAT1) and without cost aggregation (MR). Note
that in all levels, MR+CA achieved lower error than MR. (b) Final MEPE of MR and of MR+CA (using 8 different parameter settings). (c)
Computational complexity of matrix inversion for solving RWIR in each level: V (number of unknowns) x L (label set size). Note that

complexity of RWIR without CA was substantially higher than the cases with CA.

= {1000,2000, 3000, 4000} and = ™V iy CAT to

CA4, respectively; CA5 to CAS, v = Imgw'dlh) Fig. 3are-
ports results from synthetic experiments on the VH images.
This time, we repeated the proposed CA with 16 parameter
settings. Again, as evident from the Fig. 3b, the proposed CA
achieved lower registration error while requiring smaller V.
In both sets of experiments, we found no statistically signifi-
cant difference between the results obtained under the param-
eter settings tested, thus suggesting that our method is rela-
tively insensitive to these parameters once they are set in the
appropriate ranges.

4. CONCLUSIONS

We made two improvements to the original RWIR frame-
work [1]: 1) we applied cost aggregation to RWIR to obtain
a non-uniform discretization of the image domain and devel-
oped methods to compute the transformation from the solu-
tion of the aggregated graph, thereby dramatically reducing
computational complexity of [1]; and 2) we embedded the
strategy into a compositive registration framework that gener-
ates diffeomorphic transformation. Our experiments on vari-
ous multi-modal image pairs showed that our proposed frame-
work performed registration more efficiently without com-
prising registration accuracy. One future work includes incor-
porating our proposed framework with precomputation [13].
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