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A B S T R A C T

For a smooth function g, the module &{X)+g<%{X) is dense in C{X) if and only if dt(Z) is dense in
C(Z), where X is compact and nowhere dense and Z is the subset of X on which fig vanishes. The
"localness" of the module 0l(X) + g<%(X) is also investigated.

Let X be a compact subset of the complex plane C and let g be a continuous
function on X. We denote by @{X, g) the rational module

»{X) + a{X)g = {ro(z) + r1(z)g(z)},

where each rk denotes a rational function with poles off X. The purpose of this paper
is to study the uniform closure of such modules on X.

In the case that g{z) = z, the closure of 0t{X,z) in various topologies was
considered in [3], [4] and was applied to rational approximation problems in lip a.
Further results were obtained in [6], [7]. A question which arose from these
investigations concerned the characterization of the uniform closure of ${X, z) in
C(X) when X has empty interior. This was settled in [5] by showing that <%{X, z) is
uniformly dense in C(X) whenever X has empty interior.

I. For the first section we assume that the interior of X is empty. We are
interested in determining functions g for which 01{X, g) is (uniformly) dense in C(X).
It is well known that if X is a "Swiss cheese" then 0t{X) fails to be dense in C{X) (see
[2]). Thus if ${X, g) is to be dense in C(X), we are led to make a natural assumption
concerning the subset of X on which Eg is zero. Here E denotes the operator
i(dx + idy). We denote the uniform closures on X of M{X,g) and 0t{X) by R(X,g)
and R(X) respectively.

Assume that g is continuously differentiate in a neighborhood of X. Denote by
Z the subset of X on which Eg vanishes. Let C denote the complex plane. We have
the following theorem:

THEOREM 1. Let X c C be a compact set with empty interior. Then
R(X,g) = C(X) if and only if R(Z) = C(Z).

Before giving the proof we state a corollary, followed by several lemmas needed
to establish the theorem.
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COROLLARY. Let X cz C be compact with empty interior and let p be a
nonconstant polynomial in z with coefficients in R(X). Then

R(X,p) = C(X).

Proof. If Z is the subset of X in which dp vanishes then m(Z) — 0, where m
denotes area Lebesgue measure on C. Appealing to a theorem of Hartogs and
Rosenthal ([2], p. 47), 0t(Z) is dense in C{Z). Thus Theorem 1 applies.

For the next three lemmas, g will denote a continuously differentiable function on
C. Let n be a finite Borel measure on X. For X in C we define the functions fi and fi
by

[9{Z)~9^X) pi?) and

(Here jl depends on the appropriate g considered in context; and fx is the Cauchy
transform of pt (see [1], p. 37).)

LEMMA 1. IfnlR(X,g),thenfi =

Proof We have fi(X) = lgdff\^(X)-g(X)fi(X). If n -LR(X, g), then n J_ R(X) and
gd/i ± R(X). Thus by Theorem 8.1 of [2], ft and \_gdix]" vanish off X.

LEMMA 2. Except for at most a countable subset of X, fi is continuous on C.

Proof Since fi has finite total variation, it is sufficient to show that jl is

continuous on the set of those X in C with n({X}) = 0. Because g is C\ — is
2 — A

bounded on X for z f X. Let Xn -+ Xo with ii{{Xn}) = 0 for n = 0 , 1 , . . . . Clearly

g{z)-g{Xn) g{z)-g{X0)
; converges pointwise to ——

z — An z — X0

for z =fc Xo. Apply the dominated convergence theorem to complete the proof.

The key needed in the proof of Theorem 1 is the following representation result.

LEMMA 3. Let Zl denote the subset ofC on which dg vanishes. Let h 6 CC
X(C) with

h = 0 in a neighborhood of Z t . There exists, a function fGC^iC) and an entire
function q with

- of{z) ; — dm{z) = h(X) + q(X)
n z — A

for XeC. (The left hand side of the equality is the Vitushkin operator evaluated at g
(see [2], p. 64).)
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Proof. Let 0 e Cc' (C). Then

(*) = - d<f>(z) — dm (z)
71 Z — A

The last equality can be found in ([2], p. 26). Since

applying d to (*) at A, we get

Define
( 0 if A e Zj

dh{A)
if

The assumption on /i ensures that / G C^C). The previous computation applied to /
gives

-
l_7t J

7t J Z-A

c

Since the solutions of dF = 0 in C are entire functions, the lemma is proved.

We use a duality argument to prove Theorem 1. Note that g e R{Z) by ([9],
p. 160) so one direction is trivial.

Proof of Theorem 1. Let g be continuously differentiate in C. Suppose that (i is
a finite Borel measure on X with fi _L R(X, g). By Lemma 1, Jx = 0 off X. Since X
has empty interior, Lemma 2 says that p. = 0, except for at most a countable subset
of X. Choose any h in CC

X(C) which vanishes in a neighborhood of Zj . Then there
exists an / G C,f(C) and an entire function q satisfying Lemma 3.

hdn = \h + qd(i = \5fii— = 0.

The second equality follows from Fubini's theorem and the third since /I = 0 almost
everywhere with respect to the measure m. Hence ^ | x_z is the zero measure and the
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support of pi is contained in Z. Since X has no interior and p\X-z i s t n e z e r o measure,
continuity shows that \i 1 R{Z,g) and thus /x 1 R{Z). If we assume that ffl(Z) is
dense in C{Z), then we must have fi\z = 0 also. Hence /i = 0 and ffl(X, g) is dense in
C(X).

II. For the case in which the interior of X is not empty, $(X, g) is not dense in
C(X), if g is twice continuously differentiable. This follows since 3&{X, g) is contained
in the solutions of the equation

(-dg)d2F + d2gdF = 0
in the interior of X.

A natural question is whether the module R{X, g) is "local". That is, suppose that
/ e C(X) and for every z in X there is a neighborhood U(z) of z with
fe R(X n l/(z), g). In this case we say that / is "locally" in R(X, g). If / is "locally"
in R(X, g), is / in R{X, g)l A related question was considered in [8]. Again handling
the set Z on which dg vanishes in X seems to be the primary obstacle. While we
cannot prove a localization theorem in the generality of section one, we have the
following result.

THEOREM 2. Let p(z) be a polynomial in z. Then the module R{X, p) is "bear.

The proof will follow several lemmas. The first is a partial converse of Lemma 1.

LEMMA 4. Let g be C1 in a neighborhood of X and let Zx = { z e C : Bg{z) = 0}.
Assume that Zy does not contain any connected components ofC — X. Ifjl = 0 off X,
then ii±R{X,g).

(Note: the hypothesis holds if Zx has no interior.)

Proof. Assume that g e C^C) and that /I = 0 off X. As before

for XeC — X. Differentiating with respect to d and using the analyticity of the
Cauchy transform off X we get 0 = 0 — dg{X)fi(X) for A ^ X. Again by analyticity and
the hypothesis on Z l 5 we see that p., and thus [#d/i] , vanish off X. Now by a
theorem in ([2], p. 46) we have n 1 R(X) and n 1 gR{X).

LEMMA 5. Assume that g is C2 in a neighborhood of X. Let h e C2(C) with

-r-e C1 in a neighborhood of X. Let fi be a finite Borel measure on X. There exists a

finite Borel measure y with

(1) support y c support ofh and

(2) v = hli.

(Here ji and y are computed with respect to g.)
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Proof. By a theorem in ([2], p. 50)

This fact will be used repeatedly. Define

l f s - <*m~fdm A dm
J L ^ J n n

Clearly (1) holds. Computing we derive the following sequence of equalities;

day dm = dghu dm — dh\ dgu — dm ,
L * J

[dgydnif = h[dg{idmy,

and so y = hjl.

Proof of Theorem 2. Take g to be the polynomial p(z). We must show that if
H 1 R(X, p), then fi annihilates all functions "locally" in R(X, p). Suppose that / is
"locally" in R{X, p). For each z in X let U(z) denote an open disc with center z for

which feR(X n U(z), p). If p(z) is constant then R(X,p) = R(X), which is well
known to be local (see [2], p. 51). Otherwise let Z denote the finite subset of X on
which Bp(z) is zero. For values of z in X — Z assume that U(z) does not meet Z. By
compactness we need only add a finite number of values of U(z) with z in X — Z to
the collection of values of U(z) with z in Z to obtain a finite open covering of X.
Relabel this covering by Uv,..., Un. For i = \,...,n let h{ denote a C00 function,
which is identically one in a neighborhood of the center of Ut, and which has
compact support Ut. Define

L = K

By our choice of jm Lemma 5 applies and we have a measure ym on X with

(3) ym = jmA •

Hence
n / n

Yy = Vi
m = 1 \m = 1

SO
n

Z ^m = V •
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By Lemma 1 and (3) ym vanishes off X n Um. Lemma 4 asserts that
ym 1 R{X n Um, p). Therefore

m = 1
X

III. Let g{,...,gn be continuous functions on X. It would be interesting to
investigate the rational module $(X) + M{X)gi +... + !%(X)gn. The special case when
gx = z, ...,gn = z" was treated in [3] and [6]. The general situation appears difficult
even if X has empty interior.

We wish to thank A. Browder for the suggestion to consider the rational module
for g a polynomial in z.
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