THE UNIFORM CLOSURE OF RATIONAL MODULES

TAVAN T. TRENT AND JAMES L. WANG

Abstract

For a smooth function g, the module $\Re(X) + g\Re(X)$ is dense in C(X) if and only if $\Re(Z)$ is dense in C(Z), where X is compact and nowhere dense and Z is the subset of X on which $\overline{\partial}g$ vanishes. The "localness" of the module $\Re(X) + g\Re(X)$ is also investigated.

Let X be a compact subset of the complex plane \mathbb{C} and let g be a continuous function on X. We denote by $\mathscr{R}(X, g)$ the rational module

$$\mathscr{R}(X) + \mathscr{R}(X)g = \{r_0(z) + r_1(z)g(z)\},\$$

where each r_i denotes a rational function with poles off X. The purpose of this paper is to study the uniform closure of such modules on X.

In the case that $g(z) = \overline{z}$, the closure of $\mathscr{R}(X, \overline{z})$ in various topologies was considered in [3], [4] and was applied to rational approximation problems in lip α . Further results were obtained in [6], [7]. A question which arose from these investigations concerned the characterization of the uniform closure of $\mathscr{R}(X, \overline{z})$ in C(X) when X has empty interior. This was settled in [5] by showing that $\mathscr{R}(X, \overline{z})$ is uniformly dense in C(X) whenever X has empty interior.

I. For the first section we assume that the interior of X is empty. We are interested in determining functions g for which $\mathscr{R}(X, g)$ is (uniformly) dense in C(X). It is well known that if X is a "Swiss cheese" then $\mathscr{R}(X)$ fails to be dense in C(X) (see [2]). Thus if $\mathscr{R}(X, g)$ is to be dense in C(X), we are led to make a natural assumption concerning the subset of X on which $\overline{\partial}g$ is zero. Here $\overline{\partial}$ denotes the operator $\frac{1}{2}(\partial_x + i\partial_y)$. We denote the uniform closures on X of $\mathscr{R}(X, g)$ and $\mathscr{R}(X)$ by R(X, g) and R(X) respectively.

Assume that g is continuously differentiable in a neighborhood of X. Denote by Z the subset of X on which $\overline{\partial}g$ vanishes. Let \mathbb{C} denote the complex plane. We have the following theorem:

THEOREM 1. Let $X \subset \mathbb{C}$ be a compact set with empty interior. Then R(X,g) = C(X) if and only if R(Z) = C(Z).

Before giving the proof we state a corollary, followed by several lemmas needed to establish the theorem.

The authors were partially supported by grants from the Research Grants Committee of the University of Alabama.

Received 18 September, 1980; revised 3 October, 1980.

COROLLARY. Let $X \subset \mathbb{C}$ be compact with empty interior and let p be a nonconstant polynomial in \overline{z} with coefficients in R(X). Then

$$R(X,p)=C(X).$$

Proof. If Z is the subset of X in which $\overline{\partial}p$ vanishes then m(Z) = 0, where m denotes area Lebesgue measure on \mathbb{C} . Appealing to a theorem of Hartogs and Rosenthal ([2], p. 47), $\mathcal{R}(Z)$ is dense in C(Z). Thus Theorem 1 applies.

For the next three lemmas, g will denote a continuously differentiable function on \mathbb{C} . Let μ be a finite Borel measure on X. For λ in \mathbb{C} we define the functions $\tilde{\mu}$ and $\hat{\mu}$ by

$$\tilde{\mu}(\lambda) = \int_{X} \frac{g(z) - g(\lambda)}{z - \lambda} d\mu(z) \text{ and } \hat{\mu}(\lambda) = \int_{X} \frac{1}{z - \lambda} d\mu(z).$$

(Here $\tilde{\mu}$ depends on the appropriate g considered in context; and $\hat{\mu}$ is the Cauchy transform of μ (see [1], p. 37).)

LEMMA 1. If $\mu \perp R(X, g)$, then $\tilde{\mu} \equiv 0$ off X.

Proof. We have $\tilde{\mu}(\lambda) = [gd\mu]^{\hat{\lambda}}(\lambda) - g(\lambda)\hat{\mu}(\lambda)$. If $\mu \perp R(X, g)$, then $\mu \perp R(X)$ and $gd\mu \perp R(X)$. Thus by Theorem 8.1 of [2], $\hat{\mu}$ and $[gd\mu]^{\hat{\lambda}}$ vanish off X.

LEMMA 2. Except for at most a countable subset of X, $\tilde{\mu}$ is continuous on C.

Proof. Since μ has finite total variation, it is sufficient to show that $\tilde{\mu}$ is continuous on the set of those λ in \mathbb{C} with $\mu(\{\lambda\}) = 0$. Because g is C^1 , $\frac{g(z) - g(\lambda)}{z - \lambda}$ is bounded on X for $z \neq \lambda$. Let $\lambda_n \to \lambda_0$ with $\mu(\{\lambda_n\}) = 0$ for n = 0, 1, Clearly

$$\frac{g(z) - g(\lambda_n)}{z - \lambda_n}$$
 converges pointwise to $\frac{g(z) - g(\lambda_0)}{z - \lambda_0}$

for $z \neq \lambda_0$. Apply the dominated convergence theorem to complete the proof.

The key needed in the proof of Theorem 1 is the following representation result.

LEMMA 3. Let Z_1 denote the subset of \mathbb{C} on which $\overline{\partial}g$ vanishes. Let $h \in C_c^1(\mathbb{C})$ with $h \equiv 0$ in a neighborhood of Z_1 . There exists a function $f \in C_c^1(C)$ and an entire function q with

$$\frac{1}{\pi} \int_{C} \overline{\partial} f(z) \frac{g(z) - g(\lambda)}{z - \lambda} \, dm(z) = h(\lambda) + q(\lambda)$$

for $\lambda \in \mathbb{C}$. (The left hand side of the equality is the Vitushkin operator evaluated at g (see [2], p. 64).)

Proof. Let $\phi \in C^1_c(\mathbb{C})$. Then

$$(*) = \frac{1}{\pi} \int_{C} \bar{\partial}\phi(z) \frac{g(z) - g(\lambda)}{z - \lambda} dm(z)$$
$$= \left[\bar{\partial}\phi g \frac{dm}{\pi} \right]^{2} (\lambda) - g(\lambda) \left[\bar{\partial}\phi \frac{dm}{\pi} \right]^{2} (\lambda)$$
$$= \left[\bar{\partial}\phi g \frac{dm}{\pi} \right]^{2} (\lambda) + g(\lambda)\phi(\lambda) .$$

The last equality can be found in ([2], p. 26). Since

$$\bar{\partial}\left(\left[\bar{\partial}\phi g\,\frac{dm}{\pi}\right](\lambda)\right) = -\bar{\partial}\phi(\lambda)g(\lambda)\,,$$

applying $\bar{\partial}$ to (*) at λ , we get

Define

$$\partial(*) = \partial g(\lambda)\phi(\lambda).$$

$$f(\lambda) = \begin{cases} 0 & \text{if } \lambda \in Z_1 \\ \\ \frac{\overline{\partial}h(\lambda)}{\overline{\partial}g(\lambda)} & \text{if } \lambda \notin Z_1 . \end{cases}$$

The assumption on h ensures that $f \in C_c^1(\mathbb{C})$. The previous computation applied to f gives

$$\bar{\partial}\left[\frac{1}{\pi}\int_{C}\bar{\partial}f(z)\frac{g(z)-g(\lambda)}{z-\lambda}\,dm(z)\right]=\,\bar{\partial}h(\lambda)\,.$$

Since the solutions of $\bar{\partial}F \equiv 0$ in \mathbb{C} are entire functions, the lemma is proved.

We use a duality argument to prove Theorem 1. Note that $g \in R(Z)$ by ([9], p. 160) so one direction is trivial.

Proof of Theorem 1. Let g be continuously differentiable in \mathbb{C} . Suppose that μ is a finite Borel measure on X with $\mu \perp R(X, g)$. By Lemma 1, $\tilde{\mu} \equiv 0$ off X. Since X has empty interior, Lemma 2 says that $\tilde{\mu} = 0$, except for at most a countable subset of X. Choose any h in $C_c^1(\mathbb{C})$ which vanishes in a neighborhood of Z_1 . Then there exists an $f \in C_c^1(\mathbb{C})$ and an entire function q satisfying Lemma 3.

$$\int_{X} h d\mu = \int_{X} h + q \, d\mu = \int_{C} \overline{\partial} f \, \widetilde{\mu} \, \frac{dm}{\pi} = 0 \, .$$

The second equality follows from Fubini's theorem and the third since $\tilde{\mu} = 0$ almost everywhere with respect to the measure *m*. Hence $\mu|_{x-z}$ is the zero measure and the

support of μ is contained in Z. Since X has no interior and $\mu|_{X-Z}$ is the zero measure, continuity shows that $\mu \perp R(Z, g)$ and thus $\mu \perp R(Z)$. If we assume that $\Re(Z)$ is dense in C(Z), then we must have $\mu|_Z \equiv 0$ also. Hence $\mu \equiv 0$ and $\Re(X, g)$ is dense in C(X).

II. For the case in which the interior of X is not empty, $\mathscr{R}(X, g)$ is not dense in C(X), if g is twice continuously differentiable. This follows since $\mathscr{R}(X, g)$ is contained in the solutions of the equation

$$(-\bar{\partial}g)\bar{\partial}^2F + \bar{\partial}^2g\bar{\partial}F = 0$$

in the interior of X.

A natural question is whether the module R(X, g) is "local". That is, suppose that $f \in C(X)$ and for every z in X there is a neighborhood U(z) of z with $f \in R(X \cap \overline{U(z)}, g)$. In this case we say that f is "locally" in R(X, g). If f is "locally" in R(X, g), is f in R(X, g)? A related question was considered in [8]. Again handling the set Z on which $\overline{\partial g}$ vanishes in X seems to be the primary obstacle. While we cannot prove a localization theorem in the generality of section one, we have the following result.

THEOREM 2. Let $p(\bar{z})$ be a polynomial in \bar{z} . Then the module R(X, p) is "local".

The proof will follow several lemmas. The first is a partial converse of Lemma 1.

LEMMA 4. Let g be C^1 in a neighborhood of X and let $Z_1 = \{z \in \mathbb{C} : \overline{\partial}g(z) = 0\}$. Assume that Z_1 does not contain any connected components of $\mathbb{C} - X$. If $\tilde{\mu} \equiv 0$ off X, then $\mu \perp R(X, g)$.

(Note: the hypothesis holds if Z_1 has no interior.)

Proof. Assume that $g \in C_c^1(\mathbb{C})$ and that $\tilde{\mu} \equiv 0$ off X. As before

$$0 = \tilde{\mu}(\lambda) = [gd\mu]^{\hat{}}(\lambda) - g(\lambda)\hat{\mu}(\lambda)$$

for $\lambda \in \mathbb{C} - X$. Differentiating with respect to $\overline{\partial}$ and using the analyticity of the Cauchy transform off X we get $0 = 0 - \overline{\partial}g(\lambda)\hat{\mu}(\lambda)$ for $\lambda \notin X$. Again by analyticity and the hypothesis on Z_1 , we see that $\hat{\mu}$, and thus $[gd\mu]$, vanish off X. Now by a theorem in ([2], p. 46) we have $\mu \perp R(X)$ and $\mu \perp gR(X)$.

LEMMA 5. Assume that g is C^2 in a neighborhood of X. Let $h \in C_c^2(\mathbb{C})$ with $\overline{\partial g} \in C^1$ in a neighborhood of X. Let μ be a finite Borel measure on X. There exists a finite Borel measure γ with

(1) support $\gamma \subset$ support of h and

$$(2) \quad \tilde{\gamma} = h\tilde{\mu}.$$

(Here $\tilde{\mu}$ and $\tilde{\gamma}$ are computed with respect to g.)

Proof. By a theorem in ([2], p. 50)

$$\tilde{\mu} = \left[gd\mu\right]^{-} - g\hat{\mu} = \left[\bar{\partial}g\hat{\mu}\frac{dm}{\pi}\right]^{-}.$$

This fact will be used repeatedly. Define

$$d\gamma = -\bar{\partial}h\hat{\mu}\frac{dm}{\pi} + hd\mu + \bar{\partial}\left[\frac{\bar{\partial}h}{\bar{\partial}g}\right]\left[\bar{\partial}g\hat{\mu}\frac{dm}{\pi}\right]\frac{dm}{\pi} - \bar{\partial}h\hat{\mu}\frac{dm}{\pi}.$$

Clearly (1) holds. Computing we derive the following sequence of equalities;

$$\hat{\gamma} = h\hat{\mu} - \frac{\bar{\partial}h}{\bar{\partial}g} \left[\bar{\partial}g\hat{\mu} \frac{dm}{\pi} \right]^{\hat{}},$$
$$\bar{\partial}g\hat{\gamma} dm = \bar{\partial}gh\hat{\mu} dm - \bar{\partial}h \left[\bar{\partial}g\hat{\mu} \frac{dm}{\pi} \right]^{\hat{}} dm,$$
$$\left[\bar{\partial}g\hat{\gamma} dm \right]^{\hat{}} = h \left[\bar{\partial}g\hat{\mu} dm \right]^{\hat{}},$$

and so $\tilde{\gamma} = h\tilde{\mu}$.

Proof of Theorem 2. Take g to be the polynomial $p(\bar{z})$. We must show that if $\mu \perp R(X, p)$, then μ annihilates all functions "locally" in R(X, p). Suppose that f is "locally" in R(X, p). For each z in X let U(z) denote an open disc with center z for which $f \in R(X \cap U(z), p)$. If $p(\bar{z})$ is constant then R(X, p) = R(X), which is well known to be local (see [2], p. 51). Otherwise let Z denote the finite subset of X on which $\bar{\partial}p(\bar{z})$ is zero. For values of z in X - Z assume that U(z) does not meet Z. By compactness we need only add a finite number of values of U(z) with z in X - Z to the collection of values of U(z) with z in Z to obtain a finite open covering of X. Relabel this covering by U_1, \ldots, U_n . For $i = 1, \ldots, n$ let h_i denote a C^{∞} function, which is identically one in a neighborhood of the center of U_i , and which has compact support $\overline{U_i}$. Define

$$j_m = h_m \bigg/ \sum_{i=1}^n h_i \, .$$

By our choice of j_m Lemma 5 applies and we have a measure γ_m on X with

(3)
$$\hat{\gamma}_m = j_m \tilde{\mu}$$
.

Hence

$$\sum_{m=1}^{n} \tilde{\gamma}_{m} = \left(\sum_{m=1}^{n} j_{m}\right) \tilde{\mu} = \tilde{\mu} ,$$

so

$$\sum_{m=1}^{n} \gamma_m = \mu$$

By Lemma 1 and (3) $\tilde{\gamma}_m$ vanishes off $X \cap \bar{U}_m$. Lemma 4 asserts that $\gamma_m \perp R(X \cap \bar{U}_m, p)$. Therefore

$$\int_{X} f d\mu = \sum_{m=1}^{n} \int_{X} f d\gamma_m = 0.$$

III. Let $g_1, ..., g_n$ be continuous functions on X. It would be interesting to investigate the rational module $\Re(X) + \Re(X)g_1 + ... + \Re(X)g_n$. The special case when $g_1 = \overline{z}, ..., g_n = \overline{z}^n$ was treated in [3] and [6]. The general situation appears difficult even if X has empty interior.

We wish to thank A. Browder for the suggestion to consider the rational module for g a polynomial in \overline{z} .

References

- 1. J. Garnett, Analytic capacity and measure, Lecture Notes in Math., 297 (Springer, Berlin, 1973).
- 2. T. Gamelin, Uniform algebras (Prentice Hall, Englewood Cliffs, 1969).
- 3. A. O'Farrell, "Annihilators of rational modules", J. Func. Anal., 19 (1975), 373-389.
- 4. A. O'Farrell, "Hausdorff content and rational approximation in fractional Lipschitz norms", Trans. Amer. Math. Soc., 228, (1977), 187-206.
- 5. T. Trent and J. L. Wang, "Uniform approximation by rational modules", Proc. Amer. Math. Soc. 81 (1981), 62-64.
- J. L. Wang, "Approximation by rational modules on nowhere dense sets", Pac. J. Math. 80 (1979), 293-295.
- 7. J. L. Wang, "The closures of rational modules", submitted.
- 8. A. O'Farrell, "Localness of certain Banach modules", Ind. U. Math. J., 24 (1975), 1135-1141.
- 9. A. Browder, Introduction to function algebras (Benjamin, New York, 1969).

College of Arts and Sciences, The University of Alabama, University, Alabama 35486, U.S.A.