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Abstract

Growth (and resorption) of biological tissue is formulated in the continuum setting. The treatment

is macroscopic, rather than cellular or sub-cellular. Certain assumptions that are central to classical

continuum mechanics are revisited, the theory is reformulated, and consequences for balance laws and

constitutive relations are deduced. The treatment incorporates multiple species. Sources and fluxes

of mass, and terms for momentum and energy transfer between species are introduced to enhance the

classical balance laws. The transported species include: (i) a fluid phase, and (ii) the precursors and

byproducts of the reactions that create and break down tissue. A notable feature is that the full extent

of coupling between mass transport and mechanics emerges from the thermodynamics. Contributions

to fluxes from the concentration gradient, chemical potential gradient, stress gradient, body force and

inertia have not emerged in a unified fashion from previous formulations of the problem. The present work

demonstrates these effects via a physically-consistent treatment. The presence of multiple, interacting

species requires that the formulation be consistent with mixture theory. This requirement has far-reaching

consequences. A preliminary numerical example is included to demonstrate some aspects of the coupled

formulation.

1 Background

Development of biological tissue, when described in the biomechanics literature, is generally broken down into

the distinct processes of growth, remodelling and morphogenesis. Growth, or conversely, resorption, involves

the addition or loss of mass. Remodelling results from a change in microstructure, which could manifest

itself as an evolution of macroscopic quantities such as state of internal stress, stiffness or material symmetry.

It also appears sometimes as fibrosis or hypertrophy. Morphogenesis involves both growth and remodelling,

as well as more complex changes in form. A classical example of morphogenesis is the development of an

embryo from a fertilized egg. These terms are based on the definitions developed by Taber (1995), and will

be followed in this work. In the present communication we will focus exclusively on growth, its continuum

formulation, and the implications that the process holds for the standard machinery of continuum mechanics.

Remodelling is treated in an accompanying paper (Garikipati et al., 2003). The larger and more complex
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problem of morphogenesis will not be treated in this body of work. For a review of these phenomena in the

context of arterial mechanics see Humphrey (1995).

The ideas here are applicable to soft (e.g., tendon, muscle) and hard (e.g., bone) tissue. In this paper,

growth of biological tissue will be treated at a macroscopic scale. The continuum formulation (e.g., consti-

tutive laws) at this scale may be motivated by cellular, sub-cellular or molecular processes. However, we

will not explicitly model processes at this fine a scale. The formulation can be applied with a specific tissue

e.g., muscle, as the body of interest. Our experiments, described separately, are on self-organizing tendon

(Calve et al., 2003) and cardiac muscle constructs (Baar et al., 2003), engineered in vitro.

The principal notion to be borne in mind while developing a continuum formulation for growth is that one

is presented with a system that is open with respect to mass. Scalar mass sources and sinks, and vectorial

mass fluxes must be considered. A mass source was first introduced in the context of biological growth by

Cowin and Hegedus (1976). The mass flux is a more recent addition of Epstein and Maugin (2000), who,

however, did not elaborate on the specific nature of the transported species. Kuhl and Steinmann (2002)

also incorporated the mass flux and specified a Fickean diffusive constitutive law for it. In their paper the

diffusing species is the material of the tissue itself. The approach to mass transport that is followed in our

paper is outlined in the next two paragraphs.

In order to be precise about the physiological relevance of our formulation, we have found it appropriate

to adopt a different approach from the papers in the preceding paragraph in regard to mass transport. We

do not consider mass transport of the material making up any tissue during growth. Instead, it is the

nutrients, enzymes and amino acids necessary for growth of tissue, byproducts of metabolic reactions, and

the tissue’s fluid phase (Swartz et al., 1999) that undergo diffusion1 in our treatment. There do exist certain

physiological processes in which cells or the surrounding matrix migrate within a tissue. One such process

is observed when leukocytes (white blood cells) such as neutrophils and monocytes are signalled to pass

through a capillary wall and are induced, by specific chemical attractors, to migrate to a site of infection.

This is the process of chemotaxis (Guyton and Hall, 1996; Widmaier et al., 2003). The migrant cells or

matrix then participate in some form of cell proliferation or death. Fibroblasts also migrate within the extra

cellular matrix during wound healing. A third example is the migration of stem cells to different locations

during the embryonic development of an animal. These processes involve very short range diffusion, and can

be treated by the approach described in this paper. We have chosen to focus upon homeostasis, defined by

Widmaier et al. (2003) as “. . . a state of reasonably stable balance between the physiological variables. . . ”2.

Since, to the best of our knowledge, processes of the type just described are not observed during homeostatic

tissue growth, we will ignore transport of the solid phase of the tissue.

The processes of cell proliferation and death, hypertrophy and atrophy, are complex and involve several

cascades of biochemical reactions. We will treat them in an elementary fashion, using source/sink terms that

govern inter-conversion of species, and the mass fluxes that supply reactants and remove byproducts. The

treatment will be mathematical; specific constituents will not be identified with any greater detail than to say

that they are either the tissue’s solid phase, the interstitial fluid phase, precursors of the solid phase (these

would include amino acids, nutrients and enzymes), or byproducts of reactions. We will return to explicitly

incorporate biochemical and cellular processes within our description of mass transport in a subsequent

paper.
1We use the terms “mass transport” and “diffusion” interchangeably.
2Widmaier et al. (2003) go on to say: “This simple definition cannot give a complete appreciation of what homeostasis truly

entails, however. There probably is no such thing as a physiological variable that is constant over long periods of time. In fact,

some variables undergo fairly dramatic swings about an average value during the course of a day, yet may still be considered

‘in balance’. That is because homeostasis is a dynamic process, not a static one.”
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Virtually all biological tissue consists of a solid and fluid phase and can be treated in the context of mixture

theory (Truesdell and Toupin, 1960; Truesdell and Noll, 1965; Bedford and Drumheller, 1983). When growth

is of interest, additional species (reactants and byproducts) must be considered as outlined above. The solid

phase is an anisotropic composite that is inhomogeneous at microscopic and macroscopic scales. The fluid,

being mostly water, may be modelled as incompressible, or compressible with a very large bulk modulus.

This level of complexity will be maintained throughout our treatment. The use of mixture theory leads to

difficulties associated with partitioning the boundary traction into portions corresponding to each species.

Rajagopal and Wineman (1990), suggested a resolution to this problem that holds in the case of saturated

media—a condition that is applicable to soft biological tissue. An alternative is to apply the theory of porous

media that grew out of the classical work of Fick and Darcy in the 1800s (Terzaghi, 1943; de Boer, 2000).

In this approach fluxes are introduced for each species. Since a species that diffuses must do so within some

medium, one may think of the various constituents diffusing through the solid phase3. This strategy has

been adopted in the present work.

1.1 Recent work

In a simplification that avoided the complexity of mixture theory or porous media, Cowin and Hegedus

(1976) accounted for the fluid phase via irreversible sources and fluxes of momentum, energy and entropy.

This approach was also followed by Epstein and Maugin (2000) and Kuhl and Steinmann (2002). While the

approach followed in the present paper, i.e. derivation of a mass balance law with mass source and flux,

and postulating sources and fluxes for momentum, energy and entropy, has been attempted recently by

Epstein and Maugin (2000), and Kuhl and Steinmann (2002), there are important differences between those

works and our paper. Epstein and Maugin conclude that the mass flux vanishes unless the internal energy

depends upon strain gradient terms (a second-order theory). This view ignores Fickean diffusion (where

the flux is linearly dependent upon concentration of the relevant species). Our treatment also results in the

dependence of mass flux upon strain gradient, but without the requirement of a strain gradient dependence

of the internal energy. Instead, the dissipation inequality motivates a constitutive relation for the mass flux

of each transported species. When properly formulated in a thermodynamic setting, the mass flux can be

constrained to depend upon the strain/stress gradient and the gradient in concentration (mass per unit

system volume) of the corresponding species. The latter term is the Fickean contribution to the mass flux.

The form obtained is essentially identical to de Groot and Mazur (1984).

While modelling hard biological tissue, it is common to assume a Fickean flux, and a mass source that

depends upon the strain energy density (Harrigan and Hamilton, 1993), and therefore upon the strain. This

introduces coupling between mass transport and mechanics. One possible difficulty with this approach is

that one could conceive of a mass source that satisfies other requirements, such as the dissipation inequality,

but does not depend upon any mechanical quantities. Strain- or stress-mediated mass transport would then

be absent in the boundary value problems solved with such a formulation.

The present paper is aimed at a complete treatment of mass transport, coupled with mechanics, for the

growth problem. Initial sections (Sections 2–5) treat the balance of mass, balance of linear and angular

momenta, the forms of the First and Second Laws for this problem, and kinematics of growth, respectively.

The Clausius-Duhem inequality and its implications for constitutive relations are the subject of Section 6.

3A more sophisticated, and physiologically-correct, description is that the interstitial fluid diffuses relative to the solid phase,

while precursors and byproducts of reactants diffuse with respect to the fluid.
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Examples are provided as appropriate to illustrate the important results. A preliminary numerical example

appears in Section 7. A discussion and conclusion are provided in Section 8.

2 Balance of mass for an open system

The tissue of interest, B, occupies the open region Ω0 ⊂ R
3 in the reference configuration. Points in B are

parameterized by their reference positions, X. The deformation of B is a point-to-point map, ϕ(X, t) ∈ R
3,

of Ω0, carrying the point at X to its current position x = ϕ(X, t), at time t ∈ [0, T ]. In its current

configuration, B occupies the open region Ωt = ϕt(Ω0), Ωt ⊂ R
3 (see Figure 1). The tangent map of ϕ is

the deformation gradient F := ∂ϕ/∂X.

X

x

Πι

π
ι

N · M ι

n · mι

P N

σn

ϕ

Ω0

Ωt

Figure 1: The continuum tissue with diffusing species and under stress.

The tissue consists of several species, of which the solid phase is denoted s, and the fluid phase is f. The

remaining species, α, . . . , ω, are precursors of the tissue or byproducts of its breakdown in chemical reactions.

The index ι will be used to indicate an arbitrary species. (Where appropriate, we will use the term “system”

to refer to the species collectively. Where the presence of several species is an unimportant fact, we will

use the term “tissue”. ) The system is open with respect to mass. Species α, . . . , ω have sources/sinks,

Πα, . . . ,Πω, and mass fluxes, Mα, . . . ,Mω, respectively. The sources specify mass production rates per unit

volume of the tissue in its reference configuration, Ω0. The fluxes specify mass flow rates per unit cross-

sectional area in Ω0. Importantly, these flux vectors are defined relative to the solid phase. As discussed in

Section 1, the solid tissue phase has only a mass source/sink associated with it, and no flux. The fluid tissue

phase has only a mass flux, and no source/sink4.

Since the solid phase, s, does not undergo transport, its motion is specified entirely by ϕ(X , t). We

describe the remaining species f, α, . . . , ω as convecting with the solid phase and diffusing with respect to it.

They therefore have a velocity relative to s. Since the remaining species convect with s, it implies a local

homogenization of deformation. The modelling assumption is made that at each point, X, the individual

phases undergo the same deformation.

We define concentrations of the species ρι
0 = ρ̄ι

0f
ι as masses per unit volume in Ω0. The intrinsic species

density is ρ̄ι
0, and f ι is the volume fraction of ι, for ι = s, f, α, . . . , ω. In an experiment it is far easier to

4Considering the case of the lymphatic fluid, this implies that lymph glands are assumed not to be present.

4



measure the concentration, ρι
0, rather than the intrinsic species density, ρ̄ι

0
5. The concentrations also have the

property
∑

ι

ρι
0 = ρ0, the total material density of the tissue, with the sum being over all species s, f, α, . . . , ω.

The concentrations, ρι
0, change as a result of mass transport and inter-conversion of species, implying that

the total density in the reference configuration, ρ0, changes with time. They are parameterized as ρι
0(X , t).

2.1 Balance of mass in the reference configuration

This subsection is a review of standard results in continuum mass transport (Chadwick, 1999). Recall that

Ω0 is a fixed volume. The statement of balance of mass of the solid phase of the tissue can be written in

integral form over Ω0 and, using standard arguments, localized to

∂ρs
0

∂t
= Πs. (1)

Since the solid phase of the tissue does not undergo mass transport, there is no associated flux. Observe

that the explicit dependence upon position and time has been suppressed.

The fluid phase of the tissue, f, may be thought of as the interstitial or lymphatic fluid that perfuses the

tissue. As explained above, we do not consider sources of fluid in the region of interest. The fluid therefore

enters and leaves Ω0 as a flux, M f . The balance of mass also can be written in integral form, manipulated

with the Divergence Theorem, and localized to

∂ρf
0

∂t
= −∇ · M f , (2)

where ∇(•) is the gradient operator defined on Ω0, and ∇ · (•) denotes the divergence of a vector or tensor

argument on Ω0.

For the precursor and byproduct species, ι = α, . . . , ω, the balance of mass can be written in integral

form including the influences of sources and fluxes and, using the Divergence Theorem, localized to

∂ρι
0

∂t
= Πι − ∇ · M ι, ∀ ι = α, . . . , ω. (3)

Of course, this last equation is the general form of mass balance for any species ι, recalling that in particular,

M s = 0 and Πf = 0. This form will be used in the development that follows.

The fluxes, M ι, ∀ ι = f, α, . . . , ω, represent mass transport of the fluid, of precursors to the reaction

site, and of byproducts from sites of tissue breakdown. The sources, Πι, ∀ι = s, α, . . . , ω, arise from inter-

conversion of species. The sources/sinks in (1) and (3) are therefore related, as tissue and byproducts are

formed by consuming precursors (amino acids and nutrients, for instance). To maintain a degree of simplicity

in this initial exposition, we will restrict our description of tissue breakdown to the reverse of this reaction.

These assumptions on the sources leads to the pointwise result

∑

ι

Πι = 0, (4)

a conclusion that is consistent with classical mixture theory (Truesdell and Noll, 1965). The section that

follows contains an example in which the Law of Mass Action is invoked to describe a set of inter-related

sources, Πι.
5In our experiments we have measured the mass concentration ρι

0 of collagen in engineered tendons grown in vitro. These

results will be presented elsewhere (Calve et al., 2004).
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2.1.1 Sources, sinks and stoichiometry: An example based upon the Law of Mass Action

The conversion of precursors to tissue and the reverse process of its breakdown are governed by a series of

chemical reactions. The stoichiometry of these reactions varies in a limited range. Continuing in the simple

vein adopted above, it is assumed that the formation of tissue and byproducts from precursors, and the

breakdown of tissue, are governed by the forward and reverse directions of a single reaction:

ω∑

ι=α

nι[ι] −→ [s]. (5)

Here, nι is the (possibly fractional) number of moles of species ι in the reaction. For a tissue precursor,

nι > 0, and for a byproduct, nι < 0. By the Law of Mass Action for this reaction, the rate of the forward

reaction (number of moles of s produced per unit time, per unit volume in Ω0) is kf

ω∏

ι=α

[ρι
0]

nι , where
∏

on the right hand-side denotes a product, not to be confused with the source, Π. The rate of the reverse

reaction (number of moles of s consumed per unit time, per unit volume in Ω0) is kr[ρ
s
0], where kf and kr

are the corresponding reaction rates. Assuming, for the purpose of this example, that the solid phase is a

single compound, let the molecular weight of s be Ms. From the above arguments the source term for s is

Πs =

(

kf

ω∏

ι=α

[ρι
0]

nι − kr[ρ
s
0]

)

Ms, (6)

Since the formation of one mole of s requires consumption of nι moles of ι, we have

Πι = −

(

kf

ω∏

ϑ=α

[ρϑ
0 ]nϑ − kr[s]

)

nιMι, (7)

where Mι is the molecular weight of species ι. Since, due to conservation of mass, Ms =
ω∑

ι=α

nιMι, the

sources satisfy
ω∑

ι=s,α

Πι = 0.

2.2 Balance of mass in the current configuration

In the current configuration, Ωt, the concentration, source and mass flux of species ι are ρι(x, t), πι(x, t),

and mι(x, t) respectively. The boundary is ∂Ωt, and has outward normal n (Figure 1). Since the defor-

mation, ϕ(X, t), is applied to the tissue (the system), standard arguments yield ρι = ρι
0(detF )−1, and

πι = Πι(detF )−1. By Nanson’s formula, the normals satisfy nda = F−TNdA, where dA and da are the

area elements on the boundaries ∂Ω0 and ∂Ωt, and n and N are the corresponding normals, respectively.

The Piola transform then gives mι = (detF )−1FM ι. For any species ι, the local form of balance of mass

follows from its integral form by using the Divergence Theorem and Reynolds’ Transport Theorem:

dρι

dt
= πι − ∇x · mι − ρι

∇x · v, ∀ ι = α, . . . , ω., (8)

where dρι/dt := ∂ρι/∂t+ ∇ρι · v is the material time derivative, and v(x, t) is the spatial velocity related

to the material velocity V by v(x, t) = V (X, t) ◦ ϕ−1 . The appropriate restrictions apply on πι and mι.
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3 Balance of linear and angular momenta

3.1 Balance of linear momentum

We first write the balance of linear momentum in the reference configuration, Ω0. The tissue, B, is subject

to surface traction, T , and body force per unit mass, g. The natural boundary condition then implies that

T =
∑

ι P ιN on ∂Ω0, where P ι is the partial first Piola-Kirchhoff stress tensor corresponding to species

ι, and the index runs over all species. Thus, P ιN is the corresponding partial traction. The mass fluxes,

M ι, (ι = f, α, . . . , ω), and mass sources, Πι, (ι = s, α, . . . , ω) make important contributions to the balance

of linear momentum, as shown below.

The tissue undergoes deformation, ϕ(X , t), and has a material velocity field V (X , t) = ∂ϕ(X , t)/∂t.

In discussing momentum and energy, it proves convenient to define a material velocity of species ι relative

to the solid phase as V ι = (1/ρι
0)FM ι. Recall (from Section 2) that the remaining species are described

as deforming with the solid phase and diffusing relative to it. Therefore F is common to all species. The

spatial velocity corresponding to V ι is vι = (1/ρι)mι = V ι, by the Piola transform. Since fluxes are defined

relative to the solid tissue phase, which does not diffuse, the total material velocity of the solid phase is

V , and for each of the remaining species it is V + V ι, ι = f, α, . . . , ω. Formally, we can write the material

velocity as V +V ι, ι = s, f, α, . . . , ω with the understanding that V s = 0. Likewise, Πf = 0. This convention

has been adopted in the remainder of the paper.

What follows is fully compatible with classical mixture theory (Truesdell and Noll, 1965). There are some

differences arising chiefly due to our choice of velocity of the solid phase, V , to parametrize the motion of

the mixture. This is in contrast with the usual choice of barycentric velocity of the mixture for the same

purpose. Due to this difference we have detailed the following derivations.

The balance of linear momentum of species ι written in integral form over Ω0 is,

d

dt

∫

Ω0

ρι
0(V + V ι)dV =

∫

Ω0

ρι
0gdV +

∫

Ω0

ρι
0q

ιdV +

∫

Ω0

Πι(V + V ι)dV

+

∫

∂Ω0

P ιNdA−

∫

∂Ω0

(V + V ι)M ι · NdA, (9)

where g is the body force per unit mass, and qι is the force per unit mass exerted upon ι by the other species

present. Attention is drawn to the fact that the mass source distributed through the volume, and the influx

over the boundary affect the rate of change of momentum in (9). Summing over all species, the balance of

linear momentum for the system is obtained:

∑

ι

d

dt

∫

Ω0

ρι
0(V + V ι)dV =

∑

ι

∫

Ω0

ρι
0gdV +

∑

ι

∫

Ω0

ρι
0q

ιdV

+
∑

ι

∫

Ω0

Πι(V + V ι)dV +
∑

ι

∫

∂Ω0

P ιNdA

−
∑

ι

∫

∂Ω0

(V + V ι)M ι · NdA, (10)

7



The interaction forces, ρι
0q

ι, satisfy a relation with the mass sources, Πι, that is elucidated by the

following argument: The rate of change of momentum of the entire system is affected by external agents

only, and is independent of internal interactions of any nature (qι and Πι). This observation leads to the

following equivalent expression for the rate of change of linear momentum of the system:

∑

ι

d

dt

∫

Ω0

ρι
0(V + V ι)dV =

∫

Ω0

ρ0gdV +

∫

∂Ω0

PNdA

−
∑

ι

∫

∂Ω0

(V + V ι)M ι · NdA. (11)

Here, P =
∑

ι

P ι and ρ0 =
∑

ι

ρι
0. Since both (10) and (11) represent the balance of linear momentum of the

system, it follows that,

∑

ι

∫

Ω0

ρι
0q

ιdV +
∑

ι

∫

Ω0

Πι(V + V ι)dV = 0. (12)

Recalling the relation between the sources (4), and localizing leads to

∑

ι

(ρι
0q

ι + ΠιV ι) = 0, (13)

a result that is also consistent with classical mixture theory (Truesdell and Noll, 1965).

Having established (13) we return to the balance of linear momentum for a single species (9) in order to

simplify it. Writing (V + V ι)[M ι · N ] as ((V + V ι) ⊗ M ι)N , and using the Divergence Theorem,

∫

Ω0

(
∂ρι

0

∂t
(V + V ι) + ρι

0

∂

∂t
(V + V ι)

)

dV =

∫

Ω0

ρι
0 (g + qι) dV

+

∫

Ω0

(Πι (V + V ι) + ∇ · P ι) dV

−

∫

Ω0

∇ · ((V + V ι) ⊗ M ι) dV (14)

Applying the product rule to the last term and using the mass balance equation (3) gives

∫

Ω0

ρι
0

∂

∂t
(V + V ι) dV =

∫

Ω0

ρι
0 (g + qι) dV

+

∫

Ω0

(∇ · P ι − (∇ (V + V ι))M ι) dV (15)

8



Localizing this result gives the balance of linear momentum for a single species in the reference configuration:

ρι
0

∂

∂t
(V + V ι) = ρι

0 (g + qι) + ∇ · P ι − (∇ (V + V ι)) M ι (16)

The balance of linear momentum for a single species in the current configuration, Ωt, is obtained via

similar arguments and the Reynolds Transport Theorem:

ρι ∂

∂t
(v + vι) = ρι (g + qι) + ∇x · σι

− (∇x (v + vι))mι − ρι (∇x (v + vι))v, (17)

where σι = (detF )−1P ιF T is the partial Cauchy stress of species ι.

3.2 Angular Momentum

For the purely mechanical theory, balance of angular momentum implies that the Cauchy stress is symmetric:

σι = σιT . We now re-examine this result in the presence of mass transport. For any species, ι, beginning

with the integral form of balance of angular momentum written over Ω0, we have,

d

dt

∫

Ω0

ϕ × ρι
0(V + V ι)dV =

∫

Ω0

ϕ × [ρι
0 (g + qι) + Πι (V + V ι)] dV

+

∫

∂Ω0

ϕ × (P ι − (V + V ι) ⊗ M ι)NdA (18)

Applying properties of the cross product, the Divergence Theorem and product rule gives

∫

Ω0

V × ρι
0V

ι + ϕ ×

(
∂ρι

0

∂t
(V + V ι) + ρι

0

∂

∂t
(V + V ι)

)

dV =

∫

Ω0

ϕ × ρι
0 (g + qι + Πι (V + V ι)) dV

+

∫

Ω0

(ϕ × ∇ · P ι − ϕ × (∇ (V + V ι)M ι)) dV

∫

Ω0

(−ϕ × (V + V ι)∇ · (M ι)) dV

−

∫

Ω0

ǫ:
(

(P ι − (V + V ι) ⊗ M ι)F T
)

dV, (19)

9



where ǫ is the permutation symbol, and ǫ: A is written as ǫijkAjk in indicial form, for any second-order

tensor A. Using the mass balance equation (3), and balance of linear momentum (16), we have

∫

Ω0

V × ρι
0V

ιdV = −

∫

Ω0

ǫ:









P ι − (V + V ι) ⊗ M ι

︸︷︷︸

ρι

0F
−1V ι




F T




dV.

Recalling the relation of the permutation symbol to the cross product, and the indicated relation between

M ι and V ι leads to

0 = −

∫

Ω0

ǫ:
((

P ι − V ι ⊗ ρι
0F

−1V ι
)
F T
)

dV. (20)

Localizing this result and again applying the properties of the permutation symbol we are led to the symmetry

condition,
(
P ι − V ι ⊗ ρι

0F
−1V ι

)
F T = F

(
P ι − V ι ⊗ ρι

0F
−1V ι

)T
. (21)

But, (V ι ⊗F−1V ι)F T = V ι ⊗V ι. Thus, the symmetry P ιF T = F (P ι)T that results from conservation of

angular momentum for the purely mechanical theory, is retained in this case. The partial Cauchy stresses

are therefore symmetric: σι = σιT . This is in contrast with the non-symmetric Cauchy stress arrived at by

Epstein and Maugin (2000). The origin of this difference lies in the fact that these authors use a single species

with V = ∂ϕ/∂t as the material velocity, rather than multiple species with material velocities V + V ι.

4 Balance of energy and the entropy inequality

4.1 Balance of energy

Since mass is undergoing transport with respect to B, and inter-conversion between species ι = s, α, . . . , ω,

it is appropriate to work with energy and energy-like quantities per unit mass. In addition to the terms

introduced in previous sections, the internal energy per unit mass of species ι is denoted eι; the heat supply

to species ι per unit mass of that species is rι; and the partial heat flux vector of ι is Qι, defined on Ω0. An

interaction energy appears between species: The energy transferred to ι by all other species is ẽι, per unit

mass of ι. In the arguments to follow in this section we will use the fluxes M ι and the associated velocities,

V ι. Working in Ω0, we relate the rate of change of internal and kinetic energies of species ι to the work done

on ι by mechanical loads, processes of mass production and transport, heating and energy transfer:

d

dt

∫

Ω0

ρι
0

(

eι +
1

2
‖V + V ι‖2

)

dV =

∫

Ω0

(ρι
0g · (V + V ι) + ρι

0r
ι) dV

+

∫

Ω0

ρι
0q

ι · (V + V ι)dV +

∫

Ω0

(

Πι

(

eι +
1

2
‖V + V ι‖2

)

+ ρι
0ẽ

ι

)

dV

+

∫

∂Ω0

(

(V + V ι) · P ι − M ι

(

eι +
1

2
‖V + V ι‖2

)

− Qι

)

· NdA. (22)
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Summing over all species, the rate of change of energy of the system is,

∑

ι

d

dt

∫

Ω0

ρι
0

(

eι +
1

2
‖V + V ι‖2

)

dV =
∑

ι

∫

Ω0

(ρι
0g · (V + V ι) + ρι

0r
ι) dV

+
∑

ι

∫

Ω0

ρι
0q

ι · (V + V ι)dV +
∑

ι

∫

Ω0

(

Πι

(

eι +
1

2
‖V + V ι‖2

)

+ ρι
0ẽ

ι

)

dV

+
∑

ι

∫

∂Ω0

(

(V + V ι) · P ι − M ι

(

eι +
1

2
‖V + V ι‖2

)

− Qι

)

· NdA. (23)

The inter-species energy transfers are related to interaction forces and mass sources. To demonstrate

this, we proceed as follows: The rate of change of energy of the system can also be expressed by considering

the system interacting with its environment, in which case the internal interactions between species (mass

interconversion, interaction forces and inter-species energy transfers) play no role. This viewpoint gives,

∑

ι

d

dt

∫

Ω0

ρι
0

(

eι +
1

2
‖V + V ι‖2

)

dV =
∑

ι

∫

Ω0

(ρι
0g · (V + V ι) + ρι

0r
ι) dV

+
∑

ι

∫

∂Ω0

(

(V + V ι) · P ι − M ι

(

eι +
1

2
‖V + V ι‖2

)

− Qι

)

· NdA. (24)

Since (23) and (24) are equivalent, it follows that,

∑

ι





∫

Ω0

(

ρι
0q

ι · (V + V ι) + Πι

(

eι +
1

2
‖V + V ι‖2

)

+ ρι
0ẽ

ι

)

dV



 = 0, (25)

and on localizing this result,

∑

ι

(

ρι
0q

ι · (V + V ι) + Πι

(

eι +
1

2
‖V + V ι‖2

)

+ ρι
0ẽ

ι

)

= 0. (26)

Using (4) and (13) the above equation is reduced to

∑

ι

(

ρι
0q

ι · V ι + Πι

(

eι +
1

2
‖V ι‖2

)

+ ρι
0ẽ

ι

)

= 0. (27)

This result relating the interaction energies to interaction forces between species, their sources and relative

velocities, is identical to that obtained from classical mixture theory (Truesdell and Noll, 1965). Together

with (4) and (13) it demonstrates that the present formulation is consistent with mixture theory.

Equation (22) for the rate of change of energy of a single species can be further simplified by applying

the Divergence Theorem and product rule, giving first,

11



∫

Ω0

(
∂ρι

0

∂t

(

eι +
1

2
‖V + V ι‖2

)

+ ρι
0

∂

∂t

(

eι +
1

2
‖V + V ι‖2

))

dV =

∫

Ω0

(

ρι
0g · (V + V ι) + ρι

0r
ι + Πι

(

eι +
1

2
‖V + V ι‖2

)

+ ρι
0ẽ

ι

)

dV

+

∫

Ω0

ρι
0q

ι · (V + V ι)dV

+

∫

Ω0

((V + V ι) · ∇ · P ι + P ι: ∇ (V + V ι)) dV

−

∫

Ω0

(

∇ · (M ι)

(

eι +
1

2
‖V + V ι‖2

))

dV

−

∫

Ω0

((∇eι + (V + V ι) · ∇ (V + V ι)) · (M ι) − ∇ · Qι) dV. (28)

Using the balance of mass (3), balance of linear momentum (16), and localizing the result, we have,

ρι
0

∂eι

∂t
= P ι: ∇ (V + V ι) − ∇ · Qι + ρι

0r
ι + ρι

0ẽ
ι − ∇eι · M ι (29)

Summing over ι gives,

∑

ι

ρι
0

∂eι

∂t
=

∑

ι

(

P ι: Ḟ + P ι: ∇V ι − ∇ · Qι + ρι
0r

ι + ρι
0ẽ

ι − ∇eι · M ι
)

(30)

Substituting for
∑

ι

ρι
0ẽ

ι from (27),

∑

ι

ρι
0

∂eι

∂t
=

∑

ι

(

P ι: Ḟ + P ι: ∇V ι − ∇ · Qι + ρι
0r

ι − ∇eι · M ι
)

−
∑

ι

(

ρι
0q

ι · V ι + Πι

(

eι +
1

2
‖V ι‖2

))

. (31)

This form of the balance of energy is most convenient for combining with the entropy inequality leading

to the Clausius-Duhem form of the dissipation inequality.
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4.2 The entropy inequality: Clausius-Duhem form

Let ηι be the entropy per unit mass of species ι, and θ the temperature. The entropy production inequality

holds for the system as a whole. Accordingly, we write

∑

ι

d

dt

∫

Ω0

ρι
0η

ιdV ≥
∑

ι

∫

Ω0

(

Πιηι +
ρι
0r

ι

θ

)

dV

−
∑

ι

∫

∂Ω0

(

M ι · Nηι +
Qι

θ
· N

)

dA. (32)

Applying the Divergence Theorem, using the mass balance equation (3), and localizing the result, we have

the entropy inequality,

∑

ι

ρι
0

∂ηι

∂t
≥
∑

ι

(
ρι
0r

ι

θ
− ∇ηι · M ι −

∇ · Qι

θ
+

∇θ · Qι

θ2

)

. (33)

Now, multiplying Equation (33) by θ, subtracting it from Equation (31) and using (16) for ρι
0q

ι gives,

∑

ι

ρι
0

(
∂eι

∂t
− θ

∂ηι

∂t

)

+
∑

ι

Πι

(

eι +
1

2
‖V ι‖2

)

+
∇θ · Qι

θ

+
∑

ι

(

ρι
0

∂

∂t
(V + V ι) − ρι

0g − ∇ · P ι + ∇ (V + V ι)M ι

)

· V ι

−
∑

ι

(

P ι: Ḟ − P ι: ∇V ι + (∇eι − θ∇ηι) · M ι
)

≤ 0 (34)

Equation (34) is the reduced entropy inequality—also referred to as the Clausius-Duhem inequality—for

growth processes.

5 The kinematics of growth

The formulation up to this point has introduced some elements of coupling between mass transport, me-

chanics and thermodynamics. Mass transport and mechanics are further coupled due to the kinematics of

growth. Local volumetric changes take place as species concentrations evolve. As concentration increases,

the material of a species swells, and conversely, shrinks as concentration decreases. This observation has

led to an active field of study within the literature on biological growth (Skalak, 1981; Skalak et al., 1996;

Taber and Humphrey, 2001; Lubarda and Hoger, 2002; Ambrosi and Mollica, 2002). Our treatment follows

in the same vein.
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5.1 The elasto-growth decomposition

Finite strain kinematics treats the total deformation gradient as arising from a geometrically-necessary

elastic deformation accompanying growth, as well as a separate elastic deformation due to an external stress.

The deformation gradient is subject to a split reminiscent of the classical decomposition of multiplicative

plasticity (Bilby et al., 1957; Lee, 1969)

At a continuum point the reference concentration of each species admits the notion of an “original” state

in which the concentration of a species is ρι
org(X). This is a state that may never be attained in a physical

system. However, if attained, the corresponding species would be stress-free in the absence of deformation.

Neglecting other possible kinematics (such as plasticity) and microstructural details, the set of quantities

{ρs
0, . . . , ρ

ω
0 }, and the temperature, θ, fully specify the reference state of the material at a point. As mass

transport alters the reference density to its value ρι
0(X , t), the species swells if ρι

0 > ρι
org, and shrinks if

ρι
0 < ρι

org. Assuming that these volume changes are isotropic leads to the following growth kinematics: For

each species, one can define a “growth deformation gradient tensor”, F gι

:=
ρι

0

ρι
org

1, where 1 is the second-

order isotropic tensor. The tensor F gι

is analogous to the plastic deformation gradient of multiplicative

plasticity. As the ratio ρι
0/ρ

ι
org is a local quantity, F gι

varies pointwise and adjacent neighborhoods will, in

general, be incompatible due to the action of F gι

alone. However, further elastic deformation, F̃
eι

occurs

to ensure compatibility, leading to an internal stress, that can in general be different for each species. Such

kinematics can take place in the absence of external stress. With an external stress, there is further elastic

deformation, F̄
e
, common to all species. This sequence of maps is pictured in Figure 2. The kinematic

relations are:

F = F̄
e
F̃

eι

F gι

, F gι

=
ρι
0

ρι
org

1. (35)

Clearly, the elastic deformation gradients can be combined to write F eι

= F̄
e
F̃

eι

, the “total” elastic defor-

mation gradient of species ι.

6 Restrictions on constitutive relations from the Clausius-Duhem

inequality

As is the practice in field theories of continuum physics, we use the Clausius-Duhem inequality (34) to obtain

restrictions on the constitutive relations. We begin with very general assumptions on the specific internal

energy of each species: eι = êι(F eι

, ηι, ρι
0). Then, applying the chain rule and regrouping some terms, (34)

becomes
∑

ι

(
∂eι

∂F eι − P ιF gιT

)

: Ḟ
eι

+
∑

ι

(
∂eι

∂ηι
− θ

)
∂ηι

∂t

+
∑

ι

(

ρι
0

∂

∂t
(V + V ι) − ρι

0g − ∇ · P ι + ∇ (V + V ι)M ι

)

· V ι

+
∑

ι

(

ρι
0F

−T (∇eι − θ∇ηι)
)

· V ι

+
∑

ι

Πι

(

eι +
1

2
‖V ι‖2

)

+
∇θ · Qι

θ
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Figure 2: The kinematics of growth.

+
∑

ι

ρι
0

∂eι

∂ρι
0

∂ρι
0

∂t
−
∑

ι

P ι: (∇V ι + F eι

Ḟ
gι

) ≤ 0. (36)

Inequality (36) represents a fundamental restriction upon physical processes during biological growth. Any

constitutive relations that are prescribed must satisfy this restriction, as is well-known (Truesdell and Noll,

1965). Guided by (36), we prescribe the following constitutive relations in classical form:

P ιF gιT = ρι
0

∂eι

∂F eι (37)

θ =
∂eι

∂ηι
, ∀ ι (38)

ρι
0V

ι =

−
D̃

ι

ρι
0

(

ρι
0

∂V

∂t
− ρι

0g − ∇ · P ι + (∇V )M ι + ρι
0F

−T (∇eι − θ∇ηι)

)

, (39)

where w · D̃
ι
w ≥ 0, ∀w ∈ R

3
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Qι = −Kι
∇θ, w · Kιw ≥ 0, ∀w ∈ R

3 (40)

With the constitutive relations (37–40) ensuring the non-positiveness of certain terms the entropy inequality

is further reduced to

∑

ι

(

ρι
0

∂eι

∂ρι
0

∂ρι
0

∂t
− P ι: (∇V ι + F eι

Ḟ
gι

)

)

+
∑

ι

(

ρι
0V

ι ·

(
∂V ι

∂t
+ (∇V ι)F−1V ι

)

+ Πι

(

eι +
1

2
‖V ι‖2

))

≤ 0. (41)

The left hand-side of (41) is the reduced dissipation, Dred, which must be satisfied if the constitutive relations

(37–40) are to be considered thermodynamically admissible. It is common in continuum physics to a priori

ensure satisfaction of this reduced inequality. While the dependence of eι on ρι
0 remains a matter of debate,

our computations in Section 7 use ∂eι/∂ρι
0 = 0, so that the first term is eliminated. However, of the surviving

terms, V ι is directly related to the flux, M ι, and F gι

is determined by the current value of ρι
0. Therefore

the reduced entropy inequality cannot be further evaluated without solving the initial and boundary value

problem for coupled mass transport and mechanics. We intend to evaluate this inequality a posteriori by

substituting the fields obtained from our numerical solution of the coupled IBVP. The numerical methods we

use are outlined in Section 7. We hope to use this check to guide any improvements to, and enhancements

of, constitutive relations. These investigations will be reported in a separate communication.

Equation (37) specifies a constitutive relation for P ιF gιT

, which is a truly elastic stress. Equation (38)

implies a uniform temperature in each species, and corresponds with the definition usually employed for

temperature in thermal physics. The heat flux in species ι is given by the product of a positive semi-

definite conductivity tensor, Kι and the temperature gradient, which is the Fourier Law of heat conduction.

Equation (39) requires more detailed discussion which appears below.

6.1 Constitutive relations for fluxes

Turning to (39), we first point out that since M ι = ρι
0F

−1V ι, this is an implicit relation for V ι. Rewriting

it as an explicit one for ρι
0V

ι we have,

ρι
0V

ι =

(

1 +
D̃

ι
∇V F−1

ρι
0

)
−1

D̃
ι

ρι
0

·

{

−

(

ρι
0

∂V

∂t
− ρι

0g − ∇ · P ι + ρι
0F

−T (∇eι − θ∇ηι)

)}

. (42)

The constitutive relation for flux, M ι = ρι
0F

−1V ι is then obtained:

M ι = F−1

(

1 +
D̃

ι
∇V F−1

ρι
0

)
−1

D̃
ι

ρι
0

F−T

︸ ︷︷ ︸

Dι
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·







−

(

ρι
0F

T ∂V

∂t
− ρι

0F
Tg − F T

∇ · P ι + ρι
0 (∇eι − θ∇ηι)

)

︸ ︷︷ ︸

Fι







. (43)

As is common in descriptions of mass transport, the tensor delineated as Dι will be referred to as the

mobility tensor of species ι. Recall that in (39) we have taken D̃
ι

to be positive semi-definite6. The flux

is thus written as the product of a mobility tensor and a thermodynamic driving force, Fι. This is the

Nernst-Einstein relation. We proceed now to examine the four separate terms in the thermodynamic driving

force:

F
ι = −ρι

0
F T

∂V

∂t
+ ρι

0
FTg + FT

∇ · P ι
− ρι

0
(∇eι

− θ∇ηι) (44)

The first two terms respectively represent the influences of inertia and body force. The inertial effect is

to drive species ι in the opposite direction to the body’s acceleration. [A water-laden sponge accelerating

through space will tend to ooze water in the opposite direction of its acceleration.] The body force’s influence

is directed along itself. [The water-laden sponge drips water under gravity.] The third term represents the

stress divergence effect. In the case of a non-uniform partial stress, P ι, there exists a thermodynamic driving

force for transport along P ι. We demonstrate this effect for the case of the fluid species in Section 6.2 below,

for which it translates to the more intuitive notion of transport along a fluid pressure gradient.

The fourth term in Fι admits the following interpretation: The Legendre transformation ψι = eι − θηι

allows one to rewrite ∇eι−θ∇ηι as ∇ψι|θ (at uniform temperature), where ψι is the mass-specific Helmholtz

free energy. An assumption inherent in the development that began in Section 2 is that any mass entering

or leaving Ω0 at a point X on the boundary, ∂Ω0, has the field values ρι
0, e

ι, ηι, θ, and ψι corresponding to

X. Likewise, the incremental mass of species ι created or absorbed via the source/sink Πι at X has the

field values of that point. Consider a sufficiently small neighborhood of a point, say N(X) ⊂ Ω0. Changing

the mass of species ι in N(X) by δmι units causes a change in the Helmholtz free energy of ι in N(X) by

δΨι = ψιδmι. By definition therefore, ψι = ∂Ψι/∂m
ι. This derivative gives the chemical potential, µι, of the

transported species, ι. Thus, we have µι = eι − θηι, and ∇eι − θ∇ηι = ∇µι|θ. This last term in Fι thus

represents the thermodynamic driving force due to a chemical potential gradient.

It has recently come to our attention that the constitutive relation for flux (43) is precisely the result

arrived at by de Groot and Mazur (1984), including the identification of the chemical potential gradient

term. However, their approach involves a slightly different application of the Second Law, and a less detailed

treatment of the mechanics.

The gradient of internal energy in (44) leads to a strain gradient-dependent term. A concentration

gradient-driven term arises from the gradient of mixing entropy. Together with the other terms that were

remarked upon above, they represent a complete thermodynamic formulation of coupled mass transport and

mechanics. This is the central result of our paper.

6.2 Transport of the fluid species: The example of an ideal fluid

Consider the stress divergence term F T
∇ · P ι. An elementary calculation gives

F T
∇ · P ι = ∇ ·

(

F TP ι
)

− ∇F T: P ι. (45)

6If ‖D̃
ι

∇V F
−1/ρι

0‖ << 1, we have D
ι ≈ F

−1(D̃
ι

/ρι

0)F−T.
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In indicial form, where lower/upper case indices are for components of quantities in the current/reference

configuration respectively, this relation is

FiKP
ι
iJ,J = (FiKP

ι
iJ ),J − FiK,JP

ι
iJ .

For an ideal fluid, supporting only an isotropic Cauchy stress, p1, we have P f = det(F )pF−T, where p is

positive in tension. The arguments that follow assume this case. (The more general case of a non-ideal,

viscous fluid will merely have additional terms from the viscous Cauchy stress.) The stress divergence term

is

F T
∇ · P f = ∇ (det(F )p) − ∇F T: F−Tdet(F )p, (46)

demonstrating the appearance of a hydrostatic stress-driven contribution to Ff . This is Darcy’s Law for

transport of a fluid down a pressure gradient.

For the special case of a compressible, ideal fluid we have ef = ēf(ηf , ρ̄f); i.e., the fluid stores strain

energy as a function of its current, intrinsic density. Fluid saturation conditions hold in biological tissue,

for which case the fluid volume fraction, f f , is simply the pore volume fraction. Recall from Section 2

that the individual species deform with the common deformation gradient F . Therefore the pores deform

homogeneously with the surrounding solid phase. Physically this corresponds to the pore size being smaller

than the scale at which the homogenization assumption of a continuum theory holds. Momentarily ignoring

changes in reference concentration of the fluid, we have F ef = F . Then, since ρf
0 = ρ̄f

0f
f , we can write

êf(F , ηf , ρf
0) = êf(F , ηf , ρ̄f

0f
f) = ēf(ηf , ρ̄f

0/detF ) = ēf(ηf , ρ̄f). In this case a simple calculation shows that the

hydrostatic pressure is

p = −
ρ̄f

det(F )

∂ēf

∂ρ̄f
,

and the stress divergence term is

F T
∇ · P f = −∇

(

ρ̄f ∂ē
f

∂ρ̄f

)

+ ∇F T: F−Tρ̄f ∂ē
f

∂ρ̄f
.

6.3 The Eshelby stress as a thermodynamic driving force

Combining the stress divergence and chemical potential gradient contributions to the driving force for any

species, and using the mass-specific Helmholtz free energy, ψι, we write,

F T
∇ · P ι − ρι

0 (∇eι − θ∇ηι) = ∇ ·
(

F TP ι
)

− ∇F T: P ι − ρι
0∇ψι|θ. (47)

Regrouping terms this expression is

− ∇ ·
(

ρι
0ψ

ι|θ1− F TP ι
)

︸ ︷︷ ︸

Eshelby stress, Ξι

+ (∇ρι
0)ψ

ι
0|θ − ∇F T: P ι. (48)

Thus, the divergence of the well-known Eshelby stress tensor is also among the driving forces for mass

transport. Also observe the presence of a strain gradient-dependent driving force, −∇F T: P ι in the devel-

opments of Sections 6.2 and 6.3, independent of the pressure gradient term for the fluid species.
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Remark 1: The final version of the dissipation inequality, Equation (41), can be manipulated to restrict

the mathematical form of the mass source. It is common to make the mass source depend upon the strain

energy density (Harrigan and Hamilton, 1993) while respecting the restriction imposed by the dissipation

inequality. This form is often used while modelling hard tissue. Such an approach leads to strain-mediated

mass transport. The stress- and strain-mediated flux described in this paper highlight the fact that there are

other origins for the influence of mechanics on mass transport. Mechanics influences mass transport even in

the absence of a source term.

Remark 2: Since soft biological tissues usually demonstrate rate-dependent response, it has been common

to employ a solid viscoelastic constitutive model for them. This approach fits within our framework, with

a modification of the internal energy to include its dependence upon internal variables that represent the

viscoelastic stress-like parameters. However, a more physiologically-valid model may be one with a purely

hyperelastic solid phase, and a viscous fluid. In such a composite model the rate-dependent behavior would

arise from the fluid.

Remark 3: The constitutive relations (37) and (43) respectively specify the partial stress, P ι, and flux, M ι,

of a species. The flux also implies the relative velocity, V ι. The velocity of the solid phase, V is obtained

from the local form of the balance of linear momentum for the system (11). With all these quantities known,

the individual interaction forces between species, ρι
0q

ι, can be obtained from (16). They are, however, not

needed while solving for the balance of linear momentum of the system.

7 A numerical example

The theory developed in Sections 2–6 has been implemented in a computational formulation, retaining

much of the complexity of the coupled balance laws and constitutive relations. For realistic soft tissue

material parameters, the contribution of the fluxes to the balance of linear momentum of the composite

tissue is negligible. This simplification has been used. As a preliminary demonstration of the theory7, we

present a computation of the coupled physics in the early stages of uniaxial extension of a cylindrical soft

tissue specimen. The motivation for this model problem comes from our experimental model of engineered,

functional tendon constructs grown in vitro, having the same cylindrical geometry. The experimental aspects

of our broad-based project on soft tissue growth are described elsewhere (Calve et al., 2003). In addition to

engineering scaffold-less tendon constructs from neonatal rat fibroblast cells, we have the ability to impose

a range of mechanical, chemical, nutritional and electrical stimuli on them and study the tissue’s response.

Besides modelling these experiments, the mathematical formulation described here presents researchers with

a vehicle for testing scenarios and framing hypotheses that can be experimentally-validated in our laboratory,

thereby driving the experimental studies.

7.1 Material models and parameters

The engineered tendon construct is 12 mm in length and 1 mm2 in area. Mature tendons contain nearly

75% collagen by mass. This is the solid phase. The internal energy density for the solid phase is obtained

by applying the worm-like chain model to collagen fibrils. The reader is directed to Rief et al. (1997) and

7This numerical section has been included mainly for completeness of this theoretical paper. A separate paper, currently in

preparation, will present the computational formulation and contain a detailed examination of a number of initial and boundary

value problems for growth.
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Bustamante et al. (2003) where the one-dimensional version of this model has been applied to long chain

molecules. It has been described and implemented into an anisotropic representative volume element by

Bischoff et al. (2002), and is summarized here. The internal energy density of a single constituent chain of

an eight-chain model (Figure 3) is,

ρ̄s
0ê

s(F es , ρs
0, η

s) =
Nkθ

4A

(
r2

2L
+

L

4(1 − r/L)
−
r

4

)

−
Nkθ

4
√

2L/A

(√

2A

L
+

1

4(1 −
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2A/L)
−

1

4

)

log(λa2

1 λb2

2 λ
c2

3 )

+
γ

β
(Jes−2β

− 1) + 2γ1: Ees (49)

Here, N is the density of chains, k is the Boltzmann constant, r is the end-to-end length of a chain, L is the

fully-extended length, and A is the persistence length that measures the degree to which the chain departs

from a straight line. The preferred orientation of collagen fibrils is described by an anisotropic unit cell with

sides a, b and c—see Figure 3. All lengths in this model have been rendered non-dimensional (Table 1) by

dividing by the link length in a chain.

a

b

c

Figure 3: Worm-like chains grouped into an initially anisotropic eight-chain model.

.

The elastic stretches along the unit cell axes are respectively denoted λe
1, λ

e
2 and λe

3, and Ees = 1
2
(Ces−1)

is the elastic Lagrange strain. The factors γ and β control bulk compressibility. The end-to-end length is

given by

r =
1

2

√

a2λe2

1 + b2λe2

2 + c2λe2

3 , λe
I =

√

N I · CeN I , (50)

where N I is a unit vector along the corresponding unit cell axis.

Preliminary mechanical tests of the engineered tendon have been carried out in our laboratory but, at

this stage, the worm-like chain model has not been calibrated to these tests. Instead, published data for the

worm-like chain, obtained by calibrating against rat cardiac tissue (Bischoff et al., 2002), has been employed.

The fluid phase was modelled as an ideal, nearly-incompressible fluid:

ρ̄f
0ê

f(F ef , ρf
0, η

f) =
1

2
κ(det(F ef ) − 1)2, (51)

20



where κ is the fluid bulk modulus.

Only a solid and a fluid phase were included for the tissue. Low values were chosen for the mobilities of

the fluid (Swartz et al., 1999) with respect to the solid phase (see Table 1). In order to demonstrate growth,

the solid phase must have a source term, Πs (Section 2), and the only other phase, the fluid, must have

Πf = −Πs. Therefore, contrary to the case made in Section 2, a non-zero value of the fluid source, Πf , was

assumed. A form motivated by first-order reactions was used:

Πf = −kf(ρf
0 − ρf

0ini
), Πs = −Πf , (52)

where kf is the reaction rate, and ρf
0ini

is the initial fluid concentration. This term acts as a source for the

solid when ρf
0 > ρf

0ini
, and a sink when ρf

0 < ρf
0ini

.

In a very simple approximation, the fluid’s mixing entropy was written as

ηf
mix = −

k

Mf
log

ρf
0

ρ0

. (53)

Recall that in the notation of Section 2, Mf is the fluid’s molecular weight.

Table 1: Material parameters used in the analysis

Parameter Symbol Value Units

Chain density N 7 × 1021 m−3

Temperature θ 310.0 K

Persistence length A 1.3775 –

Fully-stretched length L 25.277 –

Unit cell axes a, b, c 9.3, 12.4, 6.2 –

Bulk compressibility factors γ, β 1000, 4.5 –

Fluid bulk modulus κ 1 GPa

Fluid mobility tensor (isotropic) Dij = Dδij 1 × 10−8 m−2sec

Fluid conversion reac. rate kf −1.× 10−7 sec−1

Gravitational acceleration g 9.81 m.sec−2

Fluid mol. wt. Mf 2.9885× 10−23 kg

7.2 Boundary and initial conditions; coupled solution method

Boundary conditions for mass transport consisted of the specified fluid concentration at all external surfaces

of the cylinder. This value was fixed at 500 kg.m−3. With these boundary conditions the fluid flux normal

to surfaces of the specimen is determined by solving the initial and boundary value problem. The bottom

planar surface was fixed in the e3 direction and a displacement was applied at the top surface, also in the e3

direction, to give a nominal strain rate of 0.05 sec−1 in the e3 direction. This is the only mechanical load on

the problem. Initial conditions were ρf
0(X, 0) = 500 kg.m−3, ρs

0(X, 0) = 500 kg.m−3, and for the mechanical

problem, u(X, 0) = 0, V (X , 0) = 0.

The coupled problem was solved by a staggered scheme based upon operator splits (Armero, 1999;

Garikipati et al., 2001). The details will be presented in a future communication that will focus upon com-

putational aspects and numerical examples. Here we only mention that the staggered scheme consists of

21



identifying the displacement and species concentrations as primitive variables associated with the mechani-

cal and mass transport problems. The mechanical problem is solved holding the concentrations fixed. The

resulting displacement field is then held constant to solve the mass transport problem. The transient so-

lution is obtained for mechanics using energy-momentum conserving schemes (Simo and Tarnow, 1992a,b;

Gonzalez, 1996), and for mass transport using the Backward Euler Method. Hexahedral elements are em-

ployed, combined with nonlinear projection methods (Simo et al., 1985) to treat the near-incompressibility

imposed by the fluid. The numerical formulation has been implemented within the nonlinear finite element

program, FEAP (Taylor, 1999).

7.3 Evolution of stress and flux

The following contour plots represent the stress, and various contributions to the total flux in the early stages

of loading of the model problem. Symmetry has been employed to model a single quadrant of the cylinder.

The longitudinal stress, σ33 in Figure 4 arises from the stretch and the evolution in concentration.
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Figure 4: Longitudinal Cauchy stress, σ33

(Pa) at 1 nanosec. after the beginning of

loading.
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Figure 5: Stress gradient-driven flux

(kg.m−2sec) in the e3 direction at 1 nanosec.

after the beginning of loading. The positive

values indicate an upward flux correspond-

ing to a tensile σ33 wave travelling down-

wards.

The flux contributions in Figures 5–10 can be summarized as follows: The fluid flux is dominated by

the contribution from the gravity-driven term in the e3 direction. The largest competing term is the stress

gradient-driven contribution. The latter arises as the stress (σ33) wave of tension travels down the cylinder

in the first few microseconds after application of the load (the time taken to travel the length of the cylinder

is 12µsec). Additionally, as the fluid concentration changes due to the flux, it causes a further change in

the stress (Section 6). Other flux terms are qualitatively sensible; i.e., their directions are consistent with

the physics of the problem, as argued in each of the figure captions8. There is some loss of axial symmetry

in Figures 9 and 10 due to the coarseness of the finite element mesh for this example. It appears that

8In order to compare the flux contributions, they have all been plotted on the same scale: −1×10−4—- −1×10−4 kg.m−2sec.

However the plots also show the maximum and minimum field values at the top and bottom of the legend bars. These values

represent a better comparison of the relative flux magnitudes.
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Figure 6: Internal energy gradient-driven

flux, (kg.m−2sec) in the e3 direction at

1 nanosec. after the beginning of loading.

The positive values indicate an upward flux.

This corresponds to a lower energy near the

top of the cylinder as the tensile stress (σ33)

wave travels downward and relaxes some of

the strain energy of contraction.
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Figure 7: Gravity-driven flux (kg.m−2sec)

in the e3 direction at 1 nanosec. after the

beginning of loading. The negative values

indicate a downward flux, due to the action

of gravity.

spatial oscillations in the solution lead to a further loss of symmetry in these figures. These oscillations arise

due to large and dominant advective terms, and need to be remedied by stabilized finite element methods.

Here, we only aim to demonstrate that various driving forces for mass transport are in agreement with their

theoretical underpinnings in the paper. The resorption of the solid phase is shown indirectly in Figure 11. A

positive fluid source, Πf , means that Πs < 0. Since Πs is the only term balancing ∂ρs
0/∂t [see (1)], it follows

that ∂ρs
0/∂t < 0.

8 Discussion and conclusions

A general framework for growth of biological tissue has been presented in this paper. While simplified

models were used for source terms, (Πι), they can be formulated on the basis of the kinetics of chemical

reactions in order to develop more realistic growth laws. This approach, we believe, is fundamental to

a proper treatment of mass transport in tissue. Results are obtained that differ fundamentally from the

classical setting of continuum mechanics. Most notable among these differences are the mass fluxes driven

by gradients in stress, strain, energy and entropy, in addition to body force and inertia. Importantly, though

our treatment differs from classical mixture theory, the two are fully consistent as established at several points

in this paper. The balance laws in Section 2 and 3 introduce a degree of coupling between the phenomena

of mass transport and mechanics. This is visible most transparently in the balance of linear momentum (16)

that includes mass fluxes, M ι. The balance of mass, described by Equation (3), is also dependent upon

the mechanics as the discussion in Section 6.1 makes clear. Notably, this ensures mechanics-mediated mass

transport even with a mass source that is independent of strain/stress, as the discussion at the end of Section

6.3 establishes. The discussion in Sections 6.1–6.3 provides many insights into the nature of this coupling.

The mechanics problem also has a constitutive dependence upon mass concentration, via (37) and the fact
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Figure 8: Inertia-driven flux (kg.m−2sec) in

the e3 direction at 1 nanosec. after the begin-

ning of loading. The negative values indicate

a downward flux as the tissue accelerates up-

ward.
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Figure 9: Concentration gradient-driven flux

(kg.m−2sec) in the e3 direction at 1 nanosec.

after the beginning of loading. Note that the

maximum and minimum values are many or-

ders of magnitude lower than for the other

flux contributions reported above. This is a

demonstration of mechanics influences dom-

inating diffusion over the classical concentra-

tion gradient contribution.

that the growth deformation gradient tensor, F gι

is determined by the concentration. The viscoelastic nature

of the composite tissue would emerge naturally from a model incorporating a hyperelastic solid and viscous

fluid.

We have formally allowed all species to be load bearing and develop a stress. At the scales that are

of interest in a tissue, the only relevant load bearing species are the solid and fluid phases. Nevertheless,

inasmuch as a transported species such as a nutrient has a molecular structure that can be subject to loads

at the scale of pico-newtons, it is not inconsistent to speak of the partial stress of this species. Since the

constitutive relation (37) indicates that the partial stresses are scaled by concentrations, the contribution to

total stress from any species besides the solid and fluid phases will be negligible.

The numerical example presented in Section 7 demonstrates the coupling of mass transport and mechan-

ics. The domain represents our tendon constructs in the initial stages of uniaxial loading. These results,

while only preliminary, serve to illustrate the physics described in the paper, and appear to confirm the

soundness of the formulation.

We have chosen to leave remodelling out of our formulation in this communication, to focus upon the

above issues. Remodelling includes any evolution in properties, state of stress or material symmetry brought

about by microstructural changes. In the development of biological tissue, growth and remodelling occur

simultaneously. As concentrations change due to growth, the material also remodels by microstructural evo-

lution within the neighborhood of each point. A rigorous treatment of this phenomenon has been presented

in the continuum mechanical setting in a companion paper (Garikipati et al., 2003).
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Figure 10: Total flux (kg.m−2sec) in the e3

direction at 1 nanosec. after the beginning of

loading. The positive values indicate an up-

ward flux, dominated by the stress gradient

driven contribution.
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Figure 11: Rate of fluid production,

Πf (kg.m−3.sec−1), at 1 nanosec. and

100 nanosec. after the beginning of loading.

The positive values indicate that the local

fluid concentrations have fallen below their

initial values.
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