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Maxmin Fair Scheduling in Wireless
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Abstract—We investigate from an algorithmic perspective the
maxmin fair allocation of bandwidth in wireless ad hoc networks.
We formalize the maxmin fair objective under wireless scheduling
constraints, and present a necessary and sufficient condition for
maxmin fairness of a bandwidth allocation. We propose an algo-
rithm that assigns weights to the sessions dynamically such that the
weights depend on the congestion in the neighborhood, and sched-
ules the sessions that constitute a maximum weighted matching.
We prove that this algorithm attains the maxmin fair rates, even
though it does not use any information about the statistics of the
packet arrival process.

Index Terms—Adaptive, algorithms, matching, maxmin fair, on-
line, scheduling, wireless ad hoc networks.

I. INTRODUCTION

WE INVESTIGATE maxmin fair allocation of bandwidth
in wireless ad hoc networks. A bandwidth allocation is

maxmin fair, if it is not possible to increase the bandwidth of
a user without reducing that of another user that has a lower
bandwidth. Maxmin fairness is considered to be a good notion
of fairness, as it guarantees equal bandwidth to sessions that
traverse paths of similar congestion level and generate packets
at equal rates.

In wireless networks, all users within a certain distance from
each other contend for using the transmission medium, even if
they use different links. Thus, the schedulings of different links
are interdependent. Due to the scheduling dependences, the al-
gorithms that intuitively seem to be fair, do not yield a maxmin
fair allocation (Section II). This motivates an investigation of
the problem of maxmin fair allocation from an algorithmic per-
spective. Our contribution is to design a scheduling algorithm
that attains a provably maxmin fair bandwidth allocation. The
algorithm is expected to provide a basis for developing protocols
for fair medium access in different technologies like Bluetooth,
IEEE 802.11, etc. The design of technology specific protocols
is, however, beyond the scope of this paper.
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In Section II, we formulate the problem of allocating maxmin
fair bandwidth in presence of wireless specific scheduling con-
straints, and present necessary and sufficient conditions for
maxmin fairness of a bandwidth allocation. In Section III, we
present a medium access control (MAC) scheduling algorithm
for attaining a maxmin fair bandwidth allocation and describe
its analytical performance guarantees. This algorithm maintains
estimates of the maxmin fair bandwidth of the sessions at the
nodes and decides the scheduling of the sessions based on the
estimates. The estimates at each node are updated based on
the arrival of the packets at the node and the congestion at the
neighboring nodes. The maxmin fair rates need not be com-
puted explicitly, and no knowledge of the statistics of the packet
arrival process is necessary for executing the algorithm. No new
computation is necessary when the topology or the arrival rates
change. The scheme is, therefore, robust. In Section IV, we
describe different features of the algorithm that are pertinent to
the algorithm’s implementation in networks, and show that this
algorithm attains maxmin fair service rate allocation in input
queued switches as well. We present the proofs, which are the
paper’s important contributions, in the Appendix.

We now briefly describe the related work. Fair allocation
of bandwidth has been extensively investigated in wireline
networks [4], [7], etc. The resource allocation constraints in
wireline networks differ from those in wireless networks, e.g.,
in wireline networks, different links can be independently
activated. But, using a different design paradigm, we obtain a
MAC scheduling that has the same effect in ad hoc networks as
fair queueing algorithms, e.g., PGPS [3], [14], have in wireline
networks. Existing MAC protocols like IEEE 802.11 [13],
MACAW [1], and CB-FAIR [12] do not provide any fairness
guarantees. Huang et al. [8] and Fang et al. [5] propose the
following two-step procedure for attaining the maxmin fair
rates in ad hoc networks: 1) compute the maxmin fair rates,
and subsequently 2) schedule the packets so as to attain the
computed rates. These schemes have two main disadvantages.
They require recomputation when the packet arrival rates or
the topology change. Also, neither is guaranteed to attain the
maxmin fair rates. The rate computation algorithm presented by
Huang et al. [8] generates infeasible rates in several topologies.
The scheduling strategy proposed by Fang et al. [5] is not
guaranteed to attain the computed rates. Nandagopal et al. [11]
present a heuristic scheduling strategy for attaining propor-
tionally fair bandwidth allocation in wireless networks. Luo
et al. [10] present a heuristic scheduling strategy to attain an
alternate notion of fairness, where every session is guaranteed a
minimum bandwidth that depends on the predetermined weight
of the session.
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II. NETWORK MODEL AND FAIRNESS OBJECTIVE

We consider scheduling at the MAC layer of a wireless ad hoc
network with nodes, links, and sessions. At the MAC
layer, each session traverses only one link. We introduce the
notion of a topology graph. The topology graph is an undirected
graph where a vertex corresponds to a node in the network, and
an edge between two vertices represents a session between the
corresponding nodes.

Time is slotted. Every packet has length 1 slot. Every node has
one radio. Thus, in a slot, a node can either transmit one packet,
or receive one packet, or remain idle. Every node has a lo-
cally unique frequency or a transmission code. Thus, transmis-
sions that do not have a common node can simultaneously pro-
ceed without any interference. Hence, the sessions that transmit
packets in any slot must constitute a matching1 in the topology
graph. For example, a Bluetooth network satisfies the above as-
sumptions [6]. The first step is to design an algorithm that at-
tains maxmin fairness in the presence of the wireless specific
scheduling constraints. Another important distinction between
wireless and wireline networks is the presence of location de-
pendent, bursty channel errors in the former. We do not consider
channel errors; nevertheless, our rigorous analytical results pro-
vide the first step in solving the challenging problem of attaining
maxmin fairness in wireless networks, and should facilitate the
design of algorithms for the general case with channel errors.

Definition 1: An -dimensional vector of nonnegative real
numbers is a feasible bandwidth allocation if the
sessions can be scheduled for packet transmission such that ses-
sion attains bandwidth , for each .

We first formulate the conditions for feasibility of bandwidth
allocations. First, assume that a session always has a packet to
transmit. Since a node can be involved in a single transmission in
a slot, a necessary condition for feasibility of a bandwidth allo-
cation is that the sum of the bandwidth of all sessions traversing
a node must be less than or equal to 1. This condition is suffi-
cient for feasibility if the topology graph is bipartite2 [9], but not
otherwise (Fig. 1).

For nonbipartite topology graphs, the following condition is
both necessary and sufficient for feasibility of any bandwidth al-
location [9]. For any arbitrary subset of nodes, , with odd car-
dinality (i.e., odd ), the sum of the bandwidth of all sessions
that have both source and destination in is upper bounded
by [9]. Determination of whether a bandwidth al-
location satisfies the above condition is computationally com-
plex, as there are exponential number of odd subsets of nodes.
A computationally simple sufficient condition for feasibility of
a bandwidth allocation in any topology graph is that the sum of
the bandwidth of all sessions traversing a node is less than
[9]. Note that this condition is not necessary, but only sufficient.
(Refer to [9] for other sufficent conditions.) No practical band-
width allocation scheme, however, utilizes the entire capacity
of a link or a node; full utilization causes huge queueing delay

1Matching is a set of edges such that no two of them have any common vertex.
2A graph is bipartite if the set of vertices can be partitioned in two subsets

such that there is no edge between vertices in the same subset.

Fig. 1. Session i traverses link i. Bandwidth allocation (1=2; 1=2;1=2)
satisfies the inequalities r + r � 1; r + r � 1, and r + r � 1, where
r is session i’s bandwidth. But, (1=2;1=2;1=2) is not a feasible bandwidth
allocation. This is because in this network, only one session can transmit a
packet in a slot and, hence, if all sessions get equal bandwidth, a session’s
bandwidth can at most be 1=3.

Fig. 2. Example of wireless network.

and buffer overflow during transients. We, thus, assume that a
bandwidth allocation is feasible if

node capacity constraint

(1)

where , the node utilization factor, depends on the desired
bandwidth utilization and whether the topology graph is bipar-
tite. For bipartite topology graphs and for nonbipartite
topology graphs .

A session may not always have a packet to transmit. Let be
session ’s packet arrival rate. Then

session demand constraint (2)

An -dimensional vector of nonnegative real numbers
is a feasible bandwidth allocation if and only if it

satisfies the node capacity [(1)] and demand [(2)] constraints.
For example, in Fig. 2, a bandwidth allocation

is feasible if and only if it satisfies the following constraints:
, and .

Here, as the topology graph is bipartite.
Definition 2: A feasible bandwidth allocation is maxmin

fair if it satisfies the following property with respect to any other
feasible bandwidth allocation : if there exists such that the
th component of is strictly greater than that of ,

then there exists such that the th component of is less
than or equal to the th component of , and the
th component of is strictly less than the th component

of .
Consider the algorithm that schedules the matching that con-

sists of the largest number of sessions among those that have
received the least service so far, and subject to this the largest
number of sessions among those that have received the second
minimum service so far, and so on. The algorithm gives abso-
lute priority to sessions that have received the least service and,
therefore, should intuitively be maxmin fair. The counterex-
ample in Fig. 3, however, shows that this intuition is misleading,
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Fig. 3. Every link has a single session. Every session has packets for
transmission in every slot. Initially, none of the sessions have transmitted
any packet. Thus, the sessions that constitute a maximum size matching,
e.g., fL ;L ; and L g are scheduled for service. In slot 2, the links
fL ;L ; and L g that constitute a maximum size matching among the
sessions that have not transmitted any packet are scheduled for service. In
slot 3, the links fL and L g that constitute a maximum size matching
among the sessions that have not transmitted any packet are scheduled for
service. Note that no other session can transmit simultaneously with those in
fL ;L ; and L g, and fL and L g. Now, all sessions have transmitted one
packet each. Hence, repeating the same procedure, the same sequence will be
selected successively. Thus, every session transmits once in every three slots
and receives 1=3 units of bandwidth, but, an algorithm that schedules sessions
in L ;L ; and L in one slot, sessions in L ;L ; and L in the second slot,
and sessions in L ;L ; and L in the third slot, allocates bandwidth 2=3
to the session in link L and 1=3 to each of the other sessions. Hence, the
bandwidth allocation of 1=3 to each session is not maxmin fair. The maxmin
fair allocation is (1=3;1=3;1=3;1=2;1=2;1=3;1=3; and 1=3).

even when sessions always have packets for transmission and
the topology graph is bipartite. This indicates that innovative
techniques will be required for designing an algorithm that at-
tains the maxmin fair rates in presence of the wireless specific
scheduling constraints.

We first present a necessary and sufficient condition for
maxmin fairness of a bandwidth allocation in wireless net-
works, which is computationally simple to evaluate.

Definition 3: A session is bottlenecked at a node it tra-
verses, if the sum of the bandwidth of all sessions traversing
equals , and has the maximum bandwidth among all sessions
traversing .

Again, in Fig. 2, for a bandwidth allocation of
and , sessions 3 and 4 are bottlenecked at

and , respectively. However, is not a bottleneck node for
any session in Fig. 2 as the only session (session 4) traversing

has bandwidth less than the node-utilization 1.
Theorem 1: A feasible bandwidth allocation is maxmin fair

if and only if every session satisfies at least one of the following
conditions: 1) the session has at least one bottleneck node and
2) the session’s bandwidth equals its packet arrival rate.

There exists a similar necessary and sufficient condition for
maxmin fairness in wireline networks [2].

III. MAXMIN FAIR SCHEDULING ALGORITHM

We first describe the algorithm for the special case that
every session always has a packet to transmit, and subsequently
present the intuition behind the design. We next motivate the
changes required for the general case when all sessions may
not always have packets to transmit. In Fig. 4, we describe the
algorithm in this general case. In Table III, we illustrate the
algorithm using the network in Fig. 2. At the end of the section,
we present the performance guarantees.

We now describe the algorithm for the special case that every
session always has a packet to transmit.

1) Each node allocates service tokens to the sessions
traversing the node in a round-robin-like fashion. We
later describe the token allocation procedure.

2) Weight of an edge in the topology graph in a slot is the
minimum of the number of tokens of the corresponding
session at the session’s source and destination. Recall
that each session corresponds to an edge in the topology
graph.

3) In each slot, the sessions that constitute a maximum
weighted matching3 in the topology graph are scheduled
for service.

4) Whenever a session is served, a token is removed from
both its source and destination.

Now, we describe the service token allocation procedure.

1) In slot , a session with end nodes , is eligible to
receive a service token at node if the number of tokens
for at does not exceed that at by or more, where

is a parameter of the algorithm.
2) Each node allocates a service token to the first eligible

session in a round-robin order.

Note that a session may be eligible for receiving tokens at one
of its end nodes and ineligible at the other.

We will show that a session receives tokens at each of its end
nodes at a rate that equals the session’s maxmin fair rate. Note
that the weight of an edge in the topology graph is the difference
between the number of tokens generated for the corresponding
session at one end node of the session and the number of packets
transmitted for the session. Thus, the weight is a measure of how
much the service received by the session lags behind the ses-
sion’s maxmin fair rate. A maximum weighted matching gives
priority to sessions that correspond to edges with large weights,
but not absolute priority though. For example, if scheduling a
session with the maximum weight prevents the scheduling of
two sessions with lower weights such that the total weight
of exceed ’s weight, then and are preferred to . The
scheduling, thus, reduces the difference between the sums of the
service rates received by all sessions and the maxmin fair rates
of the sessions; this attains the maxmin fair rates.

We now explain why each session receives tokens at each
of its end nodes at a rate that equals the session’s maxmin fair
rate. Since the objective is to attain the maxmin fair allocation,
each node must first try to allocate equal bandwidth to all
sessions. If a session cannot utilize the allocated share at on
account of constraints at the other node, then must distribute
the residual bandwidth among the uncongested sessions. Tokens
are generated according to a similar principle. A node generates
tokens to sessions in a round-robin manner, excluding only the
sessions that have a small number of tokens at the other node. If
a session has a small number of tokens at a node, then the node
is congested; thus, the session’s transmission opportunities at its
other end node should be distributed among other sessions.

3Weight of a matching is the sum of the weights of the edges included in the
matching. A maximum weighted matching is the matching with the maximum
weight.
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Fig. 4. Pseudocode for scheduling algorithm.

Consider Fig. 2. Let all sessions always have packets to
transmit. The maxmin fair rates of sessions 1, 2, 3, and 4 are

and , respectively. As Table I(A) shows,
samples sessions 1, 2, and 3 at rate each. Initially, node

generates tokens to sessions 3 and 4 at rate each, but,
from slot 15 onwards, it cannot generate tokens to session 3
because session 3 receives tokens from node at the rate of
only , and the number of tokens of session 3 accumulated at

and cannot differ by more than the constant . So,
generates tokens for session 4 in these residual slots. Node
samples session 4 every slot, and generates tokens to session
4 whenever the number of tokens of session 4 at is greater
than that at minus . So, sessions 3 and 4 receive tokens at
rates and , respectively, from both ends. Note that these
are the maxmin fair rates of these sessions. Similarly, sessions
1 and 2 also receive tokens at their maxmin fair rates from both
end points.

The token generation for a session at the session’s source
must be modified when sessions do not always have packets to
transmit. The rest of the algorithm remains the same. When a
session’s packet is generated at its source, the packet is consid-
ered “unmatched.” A session receives a token in round-robin

order at its source if it has an unmatched packet, and if its
number of tokens at its destination is not too few. When a session
receives a token at its source, one unmatched packet becomes
matched. The modification ensures that a session that generates
packets at a low rate, receives tokens at a low rate as well and,
thus, few transmission opportunities. Thus, the residual band-
width can be distributed among sessions that generate packets
at high rates.

Let the arrival rate for session 3 in Fig. 2 be . The
other sessions always have packets to transmit. The maxmin
fair allocation is and . As Table I(B)
shows, session 3’s source samples session 3 at the rate

, but can generate tokens at the rate only, because it
does not find sufficient unmatched packets. The number of
tokens accumulated at session 3’s destination can be at
most more than that at . Hence, although samples
session 3 at the rate , it generates tokens at rate only.
Thus, session 3 receives tokens at the rate of from both
end-points. Both and generate tokens to other sessions
in the residual slots. For example, generates tokens at the
rate to sessions 1 and 2 each, and generates tokens at
the rate to session 4.
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TABLE I
WE DEMONSTRATE THE TOKEN GENERATION AND THE SERVICE PROCESS IN THE NETWORK OF FIG. 2. HERE, T REPRESENTS THE NUMBER OF SLOTS

AND W = 3. (A) ALL SESSIONS ALWAYS HAVE PACKETS TO TRANSMIT. (B) SESSION 3 GENERATES PACKETS IN SLOTS 1; 7; 13; . . .,
BUT OTHER SESSIONS ALWAYS HAVE PACKETS TO TRANSMIT

Note that the number of packets waiting for transmission for
a session is greater than or equal to the number of tokens of
the session at the session’s source. Thus, when a session does
not have a packet to transmit, the weight of the corresponding
edge in the topology graph is 0 and, therefore, the session is not
scheduled for service.

We present performance guarantees that hold for the fol-
lowing arrival process. The number of packets generated for
session in any interval of length differs from by at most

, where is ’s packet arrival rate and is ’s burstiness. A
session always has a packet to transmit if and .
Assume that a session’s source node has infinite buffer.

Theorem 2: Let be the maxmin fair bandwidth
allocation. If , then the number of tokens generated at
each end node of a session in any interval of length differs
from by at most a constant . Here, constants and do
not depend on .

Theorem 3: Let be the maxmin fair bandwidth
allocation. If , the number of packets served in any
interval of length for any session differs from by at most
a constant . Here, constants and do not depend on .

The constants , and depend on the topology and
traffic parameters. We formulate in Appendix B and
in Appendix C, respectively.

We now examine simulations using 1) the time required for
convergence of the token generation rates to the maxmin fair
rates and 2) how the convergence depends on the choice of the
window parameter . Note that we do not have a tight analyt-
ical bound on the convergence time. The lower bound on
needed to guarantee the convergence results in Theorems 2 and
3, and can be computed only with explicit knowledge of the net-
work topology. This motivates an investigation of the impact of
different choices of on the convergence of the token genera-
tion rates to the maxmin fair values.
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Fig. 5. The first figure shows the topology with 16 nodes and 14 sessions that
is used in the simulations. There are 2 sessions in links (1, 2), (4, 5), (6, 7),
(7, 8), and (12, 16), and one session in (2, 3), (9, 10), (13, 14), and (11, 15).
(a) Demonstrates the convergence of the token generation rates to the maxmin
fair rates when all the sessions are saturated. The maxmin fair allocation is (0.33,
0.33, 0.5, 0.5, 0.25, 0.25, 0.25, 0.25, 0.5, 0.5, 0.33, 1.0, 1.0, 1.0) in this case.
(b) Demonstrates the convergence of the token generation rates to the maxmin
fair rates when the first session in (1, 2) receives packets at the rate 0.1 per unit
time, and other sessions are saturated. The maxmin fair allocation is (0.1, 0.45,
0.5, 0.5, 0.25, 0.25, 0.25, 0.25, 0.5, 0.5, 0.45, 1.0, 1.0, 1.0) in this case.

We present simulation results for a network of 16 nodes and
14 sessions that is shown in Fig. 5. Here, . We simu-
late the token generation procedure in C. We do not simulate
the maximum difference in backlog scheduling, as it has been
known to attain any feasible rate if the packet arrival process is

feasible [17]. We consider the relative difference between the
long-term token generation rate for each session at its source

and the maxmin fair rate . The relative differ-
ence, which we call relative error, at time for session is

. We plot the maximum and average relative
errors over all sessions as a function of in Fig. 5.

We observe the following from Fig. 5. The average relative
error decays fast, e.g., it is less than 0.05 within 100 slots. The
maximum relative error decays slower indicating that a few
sessions experience slower convergence. The token generation
rates converge to the maxmin fair rates even though ; the
lower bound for guaranteed convergence exceeds 13 ! We
observed similar trends for several other topologies. We con-
clude that on an average, the token generation rate converges
rapidly to the maxmin fair bandwidth. Also, in practice, conver-
gence is not sensitive to the choice of and moderate values
of , e.g., , ensure convergence. Thus, small window
sizes can be used to control the delay and buffer requirements.

IV. DISCUSSION AND CONCLUSION

Our contribution is primarily theoretical since the scheduling
policy we propose is the first, and till date the only provably
maxmin fair in ad hoc networks. We now discuss several aspects
that make the algorithm amenable for implementation in ad hoc
networks. Future research is, however, necessary to realize this
promise.

The algorithm is adaptive as it does not need any information
about the network and the statistics of the arrival process, but
the lower bound on the threshold needed to guarantee
Theorems 2 and 3 depends on the topology. Simulation results
however indicate that the bandwidth attained by the algorithm
converges to the maxmin fair bandwidth even if is below .

The token generations and the packet transmissions operate
in parallel.

For deciding whether to generate a token to a session, a node
needs to know the number of tokens of the session at the ses-
sion’s other node. Nodes can communicate the number of to-
kens in the headers of data and acknowledgment packets. The
convergence results in Theorems 2 and 3 hold even if a node
uses a delayed estimate of the number of tokens at other nodes
in the token generation process, as long as the delay is finite. We
have shown in [16] that in wireline networks the rates obtained
by a similar algorithm converges to the maxmin fair rates irre-
spective of the feedback delay.

The computation of the weights of the edges and the token
generation can be executed at the nodes with local information.
We assume that a centralized processor computes the maximum
weighted matching and broadcasts the results. Each maximum
weighted matching computation has complexity . The-
orems 2 and 3 hold even if the matching is computed at regular
intervals, rather than every slot, as long as the intervals are
finite. Also, the computation in each interval can use weights
of the edges in a previous slot; the convergence is still guar-
anteed if the delays are finite. The algorithm becomes fully
distributed if the maximum weighted matching is computed
in a distributed manner. We plan to investigate the design of
distributed algorithm for computing an approximate maximum
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weighted matching. Randomized scheduling algorithms may
be useful in this context [19].

The scheduling problem in an input queued switch is mathe-
matically equivalent to that in wireless networks. The nodes and
links in an input queued switch form a bipartite graph, and the
links scheduled must constitute a matching. Let the switch have

input nodes, output nodes, and links. A vector of
nonnegative real numbers is a feasible service rate
allocation for links if it satisfies inequality (1) with .
Our algorithm attains maxmin fairness of service rate allocation
in any system, where the scheduled links must be a matching
and the feasible set of rate allocations is defined by inequality
(1). Therefore, the algorithm attains maxmin fairness in input
queued switches.

We believe that the scheduling policy can be generalized
to attain other notions of fairness, e.g., proportional fairness
[15], if the tokens generation procedure is modified. Radunovic
et al. [15] have argued that proportional fairness attains a better
tradeoff between fairness and throughput optimization than
maxmin fairness. Their conclusion is primarily based on their
observation that maxmin fairness allocates equal rates to all
sessions in the network. However, this happens because they
assume that a node can transmit simultaneously on multiple
links, which several current day transceivers cannot do. When
this capability is not assumed, maxmin fairness may allocate
different rates to different sessions (Fig. 3).

We have considered fair allocation of bandwidth to MAC
layer sessions. At the MAC layer every session spans only one
link, whereas sessions at higher layers traverse multiple links.
Fair allocation of end-to-end bandwidth will require cross-layer
optimizations involving the network and MAC layers, or the
transport, network, and MAC layers. Radunovic et al. [15] have
considered this optimization in the setting described above. In
our case, this remains an open problem. The network we con-
sider is however multihop as all nodes need not be in each others
transmission range.

APPENDIX

A. Proof of Theorem 1

We first show that if a feasible bandwidth allocation satisfies
condition 1) or 2), then it is maxmin fair. Consider any session
. If satisfies condition 2), then its bandwidth cannot be in-

creased while maintaining feasibility. Let satisfy condition 1),
and be its bottleneck node. If ’s bandwidth is increased, then
to maintain feasibility, the bandwidth of some other session
that traverses must be decreased, as the total bandwidth of
all sessions traversing equals . Bandwidth of any session
traversing is either less than or equal to that of . Thus, any
increase in ’s bandwidth will decrease the bandwidth of some
session that has bandwidth less than or equal to ’s bandwidth.
Thus, the bandwidth allocation is maxmin fair.

Now, assume that the bandwidth allocation is maxmin fair.
We show that each session satisfies condition 1) or 2). Sup-
pose session does not satisfy conditions 1) and 2). Thus, ’s
bandwidth is less than its arrival rate. Also, at each node in
’s path, either there exists a session that has bandwidth greater

than that of , or the total bandwidth of all sessions traversing
is less than . In both cases, ’s bandwidth can be increased

without decreasing the bandwidth of any other session that has
bandwidth less than or equal to ’s bandwidth and without vio-
lating the feasibility conditions. This contradicts the definition
of maxmin fairness.

B. Proof of Theorem 2

We prove Theorem 2 for the case that all sessions have
packets for transmission at all times. We first introduce some
terminologies. Let be the number of tokens generated
at end node of session during interval be the
number of sessions traversing a node , and . Let

, where and are relatively prime integers.
Theorem 4: Let be the maxmin fair bandwidth

allocation. Let

node is in sessions s path

but is not s bottleneck node

traverses

Let . Then, there exists a constant , such that in any
interval , for each session

.
Theorem 2 follows from Theorem 4 with

.
1) Proof of Theorem 4: We first state the lemmas that we

use in proving Theorem 4. Let be the number of to-
kens generated at end node of session during interval .
Note that differs from the number of tokens of at

in slot , since the number of tokens decrease with
packet transmission. Also, equal number of tokens are removed
from both end nodes of and . Thus,

. Thus

(3)

Lemma 1: Let in interval , session be sampled at
each end node at least times. Let

. Then

(4)

(5)

Lemma 2: Let in any interval a session
be sampled at least times at its end node .
Let at ’s other end node . Let
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. Then, there exists such that in any interval

The proof of Theorem 4 follows.
Without loss of generality, assume that for all .
We first prove the following. For each session , there exists

a time such that , and the following hold in
any interval in .

1a) Session is sampled at least times at both
its end points.

b) Let session traverse node , but is not ’s bottleneck
node. Node samples session at least
times.

2) For any node in ’s path, .
3) For any node in ’s path, .

Theorem 4 follows from statements 2 and 3, with
.

Let . Clearly,
. Using induction, we prove the above state-

ments progressively for .
Base Case: We prove statements for .

Statement 1:

a) Every node samples each session traversing the node at
least times in any interval .
Recall that sessions traverse node . The result follows
since and .

b) If session traverses node , but is not bottlenecked at ,
then . Thus, . Statement 1b) follows.

Statement 2: We have shown that in any interval , ses-
sion is sampled at least times at each of its end
nodes. Also, . Now, statement 2 follows from Lemma 1.

Statement 3: Let be a bottleneck node of session . Let
traverses . Clearly, .

Since .

From statement 2, . Thus

(6)

The last inequality follows since as is
’s bottleneck node. Thus, statement 3 follows in this case. Let

be a nonbottleneck node of session . From statement 1b),
samples at least times in any interval and

. Thus, statement 3 follows from (6) and Lemma 2.
Induction Hypothesis: Let statements 1, 2, and 3 hold for all

sessions in . We now prove statements 1,
2, and 3 for session .

Statement 1: Let be a node in session ’s path.

a) Let traverses and
traverses . Let be the number of

times session is sampled at node in interval .
Since every node samples sessions in round-robin order

The last step follows since samples the sessions in
in each slot in which sessions in do not receive tokens.
Clearly, . Now, we use state-
ment 3 of the induction hypothesis for upper bounding

.

(7)

The last step follows since for all . State-
ment 1a) follows from (7).

b) Now, we prove statement 1b). Let not be a bottleneck
node of session . Statement 1b) follows.

Statement 2: Since , statement 2 follows
from Lemma 1 and statement 1a).

Statement 3: Let be a bottleneck node of session . Let
traverses . Note that traverses , if

.

From statement 2, . Thus

(8)

The last inequality follows since , as is
’s bottleneck node.
Let be a nonbottleneck node of . From statement 1b),

samples at least times in an interval and
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. Thus, statement 3 follows from (8) and Lemma 2. Note
that .

2) Proof of Lemma 1: Consider a time interval . If
, then

. Thus, in interval re-
ceives a token at each end node every time it is sampled at the
end node; therefore, (4) and (5) follow from the lower bound on
the sampling rates.

Now, let for some .
Let be the smallest time in at which

. Without loss of generality, let
. First, assume that for

some . Consider the slots in which
in the following arbitrary sample path. Here,

the symbol at a time denotes

In interval receives a token at every time it is sam-
pled at , since . Thus

(9)

(10)

(11)

In interval receives a token at every time it is sam-
pled at , since . Thus

(12)

From (10)–(12)

(13)

Adding (9) and (13)

(14)

Similarly

(15)

(16)
...

Let be the greatest time in at which

(17)

Note that in . Thus

(18)

Adding (14) to (18)

(19)

where is the number of times sequences are followed by
sequences. Since

(20)

Now, (5) follows from (20).
We now prove (4)

from (9)

from (3)

(21)

In the sample path under consideration, in each interval
, a sequence of symbols follows

a sequence of symbols. In , a sequence of symbols
follows a sequence of symbols. Using similar arguments as
in the proof of the lower bound of , we can
show that

(22)

(23)
...

Let be the greatest time in at which
. Thus

(24)

Note that in . Thus

(25)

Adding (21) to (25)

where is the number of times sequences follow
sequences.

Since

(26)

Thus, (4) follows from (26).
3) Proof of Lemma 2: We will show that in any interval

. First assume that there exists a time
, s.t.

(27)

Consider an interval .

Thus, from (27)

The theorem follows.
We now show (27). We first show that

infinitely often in . Let there exist
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s.t., . Con-
sider a . Thus,

. Thus, in
receives a token at every time it is sampled at .

Thus

Since .
Thus

Since

Since

This contradicts the fact that
. Thus,

infinitely often in .
We now show (27), with being the smallest in

s.t., . We next show that
for all . Consider

a . Let .
Then, . Thus, is a nonempty interval. There exists

s.t., . Let be the largest
s.t., . Thus, for all

. Thus, in , receives a
token at every time it is sampled at .

Thus

(28)

Also

(29)

From (28) and (29)

Thus

Since can receive at most 1 token at any node in each slot,
. Since is

the number of tokens generated for at in
.

Thus

(30)

This contradicts the assumption that
. Thus, (27) holds.

C. Proof of Theorem 3

Consider session . Let edge in the topology graph corre-
spond to session . In a slot , the weight of edge is the dif-
ference between the number of tokens generated for at one of
’s end node in interval , and the number of packets trans-

mitted for in interval . We will show that ’s weight is
bounded by a constant . Since , from Theorem 2, the
number of tokens generated at each end node of in any interval
of length differs from by at most a constant . The theorem
follows with .

Now, we show that the weight of any edge is upper bounded
by a constant . Consider a fictitious network that has the same
topology graph as the actual network. The fictitious and the ac-
tual networks schedule the same sessions every slot. A session
generates a packet in the fictitious network when the weight
of the corresponding edge in the topology graph of the actual
network increases. The weight of any edge increases when the
corresponding session receives a token at one of its end nodes.
Since , from Theorem 2, the number of tokens gener-
ated at each end node of in any interval of length differs from

by at most a constant . It follows that the increase in the
weight of the edge corresponding to differs from by at most
a constant . Thus, the number of packets generated by in the
fictitious network, in any interval of length differs from by
at most and, therefore, the arrival rates in the fictitious net-
work satisfy inequality (1). Also, the number of packets waiting
for transmission for a session in the fictitious network equals the
weight of the corresponding edge in the topology graph of the
actual network. Therefore, the fictitious network schedules the
sessions that correspond to the edges in a maximum weighted
matching in its topology graph, where the weight of an edge
is the number of packets waiting for transmission in the corre-
sponding session. From results in [17] and [18], the fictitious
network is stable, and a session in the fictitious network has at
most packets waiting for transmission in any slot, where de-
pends on the topology. Thus, the weight of any edge is upper
bounded by a constant .
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