CLICC: A New Approach to the Compilation of Common Lisp
Programs to C

O. Burkart ~ W. Goerigk H. Knutzen
Institut fir Informatik und Praktische Mathematik
der Christian-Albrechts-Universitat zu Kiel
PreuBlerstr. 1-9, D-2300 Kiel

wg@Qinformatik.uni-kiel.dbp.de, wg@causun.uucp

Abstract

We describe an implementation technique for Common Lisp application programs on
a large variety of small computers. A strict subset of the programming language Common
Lisp, called Common Lispy, is defined, and we describe a compiler from Common Lisp
to C, called CLICC, which we successfully used to build up stand alone Common Lisp
applications of reasonable size and efficiency, including expert system applications and
CLICC itself. Common Lisp; programs are portable on the basis of machine independent
C source code. We propose Common Lisp; as an efficiently implementable strict subset of
Common Lisp. The notion of a Common Lispy application program is proposed in order
to enlarge the compilation units and to make global program optimizations possible.

Contents
1 Introduction 1
2 Definition of Common Lisp; 3
2.1 Syntax and Context Conditions e 4
2.2 Data Types and Standard Functions 5
3 Compilation of Common Lisp; Programs to C 8
3.1 Source Code Transformation e 8
3.2 Global Program Analysis L e 10
3.3 Code Generation e e e e 10
4 Generating Executable Applications 13
5 Portability and Compiler Bootstrapping 14
6 Conclusions 14
7 References 16
A The Syntax of Common Lisp; 17
B Expansion of CL; System Macros 19

1 Introduction

During the past decades the programming language LISP ([McC60], [MAE*62]) has been de-
veloped into a large programming tool supporting different programming paradigms. Among

Version 1.1 January 20, 1992

many other LISP dialects, Common Lisp ([Ste84], [Ste90]) has become a de facto standard
for LISP in industry and science. It is commonly used in artificial intelligence, computer
algebra, compiler construction, and theorem proving. Up to now Common Lisp applications
need large and expensive development or runtime systems on large machines to run. The
major goal of the work described here is to show how the compilation of a strict subset of
Common Lisp to C can be used to run application programs on small machines without a
Common Lisp system. We propose a distinction between the language constructs needed
for application programs and those needed for incremental program development within an
interpreter based Common Lisp system.

CLICC, the compiler from Common Lisp to C, is able to compile a strict subset of
Common Lisp into C source code. We call this subset Common Lisp; (CL;) and assume it
to be the target language of a program development process within a Common Lisp system.
Our approach differs from the usual incremental compilation used in Common Lisp systems.
We call our technique complete compilation of programs because it is based on a complete set
of informations about the entire program.

In addition to restricting programs not to use the whole functionality of the program
development system, we decided not to support Common Lisp’s reflection in order to keep
the compiled code small and to allow global program optimization. Thus, explicit calls of EVAL
as well as language constructs which implicitely cause evaluation of data as code at runtime,
like MACROEXPAND or SYMBOL-FUNCTION, are not allowed in Common Lisp; programs. User
defined macros are syntactically restricted to be expandable at compile time. Moreover,
double declarations and incomplete code, i.e. calls of nondefined functions, are rejected.

The target language for CLICC is C [KR83] which we use as a portable machine oriented
language. Common Lisp; functions are compiled into C functions which play the role of
low level subroutines. Parameter passing is implemented on a LISP stack to enable garbage
collection. C parameters are used to hold linkage information which is needed to correctly
implement both, nested function definitions and higher order functions. Both of them are
not directly supported by the C procedure concept.

CLICC ([Knu91], [Bur91]) has been developed ' at the University of Kiel during the past
two years. It was used as a backend for a compiler from BABYLON? to C using Common
Lisp as an intermediate language. We compiled knowledge bases which have been developed
within the BABYLON workbench into portable stand alone expert system applications.

In section 2 the language Common Lisp; is defined as a strict subset of Common Lisp.
Many of the program constructs of Common Lisp; including system macro calls, are de-
fined in Common Lisp; itself. Thus, the first compilation step is a source to source code
transformation of Common Lisp; into an intermediate or kernel language which we call
Common Lispg (CLg). Global program analysis is performed on an abstract syntax rep-
resentation of Common Lisp, programs to support efficient code generation. The expansion
of system macros and user defined macro calls, the global program analysis, and the code
generation are described in section 3. The complete set of Common Lisp; system macros and
their expansion rules are added as appendix B.

Some Common Lisp; standard functions are handcoded in C, others are implemented in
LISP. Thus, the Common Lisp; runtime system consists of several C source code parts, some
of which are produced by CLICC itself. In order to generate executable application programs,
all of those parts together with the C target code of the original program have to be compiled

!The work was done in a project called “knowledgebase compilation” ([AG87], [AGS88]). The project was
sponsored by the Dr.-Ing. Rudolf Hell GmbH, Kiel.

2BABYLON is the hybrid knowledge representation language of the expert system tool BABYLON, which
was developed as an Al workbench at the GMD, St.Augustin.

Version 1.1 2 January 20, 1992

into object code by the C compiler and linked together with the linker of the target system.
This process is described in section 4.

CLICC is implemented in Common Lisp;. Thus, CLICC is able to compile itself and,
therefore, like any Common Lisp; application program, it is portable on the basis of C source
code. Portablility and the wellknown compiler bootstrap test are the subject of section 5.

2 Definition of Common Lisp,

We call our approach complete compilation of programs. It differs from the usual incremental
approach because the compilation is based on a complete set of informations about the entire
program at compile time. Our major goal is to compile Common Lisp application programs
into efficient C programs which are executable without a Common Lisp system and thus are
portable on the basis of C source code. In order to achieve efficiency and portability the
compiled Common Lisp language has to be restricted. The subset Common Lisp; (CL;) of
Common Lisp which fulfils the intended purpose is defined in this section. CL; is intended
to be our proposal for the programming language Common Lisp. CL; differs from Common
Lisp as follows:

o CL; does not allow interpreter calls at runtime of programs.

For the sake of efficiency we do not support the interpretation of data as programs at
runtime. Therefore all functional objects which might be called within a program, are known
at compile time. Thus, the compiler is enabled to perform global program optimizations.

e Symbols do not have a function cell.

e Double declarations and incomplete code are rejected.

Usually LISP systems use the function cell of a symbol to store the global function defini-
tion named by the symbol. Without the function cell of a symbol and without redefinitions
of functions at runtime the function bindings can be completely determined at compile time.
This allows direct function calls without using the function cell (block compilation [Ste90]).

e User defined macros are completely expanded at compile time.

User defined macro bodies are syntactically restricted to be simple BACKQUOTE-forms as
they are defined below. Runtime macro expansions, which would cause in interpreter calls
at runtime, are not allowed. There is no need of linking macro expansion functions into the
compiled code.

e Forms that have to be evaluated at compile time are restricted to be simple BACKQUOTE-
forms.

The compilation of certain forms involve the interpretation of data as programs at compile
time. Those forms are restricted to be simple BACKQUOTE-forms, i.e. forms which CLICC as
a CL; program is able to evaluate at compile time.

Version 1.1 3 January 20, 1992

2.1 Syntax and Context Conditions

The subject of this section is to give an overview of the syntax of Common Lisp;. We also

describe the context conditions which have to hold for CL; programs in addition to those

adopted from the Common Lisp language definition. The complete syntax definition is given

in appendix A. The set of implemented data types and standard functions is described in

section 2.2. Appendix B defines the implemented system macros and their expansion rules.
We propose the notion of a Common Lisp; application program which is defined by

cly-program ::= { top-level-form }*
where top-level-forms are defined by

top-level-form ::=
(IN-PACKAGE package-name &key :nicknames :use) |
(LOAD file-name) |

(DEFVAR name [initial-value | documentation |]) |

(DEFMACRO name bg-lambda-list [doc-string] bg-form) |
(DEFUN name lambda-list [[{ declaration }* | doc-string || { form }*) |

form.

A Common Lisp; program is defined as a sequence of top level forms which can be devided
into function definitions, declarations, and expressions or statements. Code is generated by
the compiler for function definitions via (DEFUN ...) and top level form’s. Pure declarations
like the special declaration (DEFVAR name) just change the compile time environment, e.g.
(DEFVAR name) globally declares name to denote a dynamically scoped variable. In general,
most of the declarations are top level statements, too, e.g. (DEFVAR name initial-value) means
the pure declaration as well as the top level assignment of the result of initial-value to name.

Declarations are collected as annotations to the abstract representation of the program
or change the compiletime environment, whereas top level expressions and statements make
up the main part of the program.

Redefinitions and redeclarations of functions, macros, types, SETF-methods, and structures
are rejected. Especially system functions must not be redefined.

Global special declarations for a variable must occur before the first binding of the variable
is processed by the compiler.

User defined macros are inserted into the compiler environment. Entries of user defined
macros are used to expand macro calls of the form (name ...) into the resulting bg-form at
compile time. Therefore (DEFMACRO ...) can be seen as a pure declaration in CL; and we do
not have to generate code for macro expansion functions. Init forms in macro parameter lists
as well as the macro body are restricted to be bg-forms:

bg-form ::
bg-call

atom | (QUOTE s-expr) | bg-call
(CONS bg-form bg-form) |
(LIST { bg-form }*) |

(LIST* { bg-form }*) |

(APPEND { bg-form }*) |

Version 1.1 4 January 20, 1992

Macro definitions have to preceed their first use, and variables which occur in a simple BACK-
QUOTE-form have to be bound by the enclosing lambda expression.

Common Lisp system functions like (LOAD ...) or (IN-PACKAGE ...) are defined to be top
level forms in CL;.

IN-PACKAGE causes different actions at compile time and runtime. At compile time it
changes the compiler environment, such that the symbols of the subsequent program text
are included into the package package-name. At runtime it changes the current package to
package-name. IN-PACKAGE forms are restricted to have only constant arguments. Package
qualifiers to symbols are allowed in CL;, but the appropriate (IN-PACKAGE ...) form has to
preceed the first occurance of a qualified symbol. Sideeffects to the symbol packages of the
compiler and runtime system, i.e. CLICC and RUNTIME, are not allowed. Thus, user programs
must not use SHADOW, SHADOWING-IMPORT, (UN)EXPORT, (UN)USE-PACKAGE or IMPORT forms
which influence one of the packages CLICC or RUNTIME.

(LOAD file-name) is replaced by the contents of file-name at compile time. Thus, LOAD and
REQUIRE are restricted to be used only as top level forms which are expanded syntactically.
PROVIDE just changes the compile time environment to record the module provided.

2.2 Data Types and Standard Functions

We have implemented many of the Common Lisp data types and standard functions. Some
of the functions are not yet implemented, others will not be implemented at all since our
approach of complete compilation classifies them to be part of the programming environment
or to cause evaluation of data at runtime. There are some problems to implement bignums
in C portably and efficiently. Moreover, most pathname and time functions are not portably
implementable. But most of the Common Lisp functions we do not support at present are
easily implementable. Up to now only their large number prevented us from doing so.

Data Types

We give an overview of the implemented data types and the corresponding standard functions
in the same order as the data types are described in the chapter “DATA TYPES” in [Ste90].

Numbers

Integers with limited precision (fixnums) are implemented using the C data type long. Over-
flows are not detected, e.g (+ 1 MOST-POSITIVE-FIXNUM) results in MOST-NEGATIVE-FIXNUM.
It is not possible to implement integers with arbitrary precision (bignums) in a portable and
efficient manner in C. All of the functions which deal with integers are implemented. Ratios
and complex numbers are not yet implemented, but there are no difficulties to do so. The four
possible floating-point types of Common Lisp are implemented as one type using the C data
type double. It conforms with the Common Lisp standard to make no differences between
the floating-point types. One could use the C data type float to implement a floating-point
type of different precision. We have implemented only a few of the functions which deal with
floating-point numbers. Input and output of floating-point numbers is incomplete but usable
at present. (E.g. *READ-DEFAULT-FLOAT-FORMAT* is not supported).

Characters
Standard-characters and semi-standard characters are supported. Non-standard characters
and character attributes are not implemented. Character attributes are optional in [Ste84]

Version 1.1 5 January 20, 1992

and removed in [Ste90]. All character functions which do not access character attributes are
implemented.

Symbols
Symbols are completely implemented but they do not have a function cell. Therefore SYMBOL-FUNCTION,
FBOUNDP, FMAKUNBOUND, SPECIAL-FORM-P are not implemented.

Lists and Conses
Lists and Conses are completely implemented.

Arrays

Arrays are implemented and we support specialized arrays for characters, fixnums and floats.
Specialized arrays of bits are not yet implemented and therefore the data type bit-vector is
not supported. Arrays with fill pointers, displaced arrays and adjustable arrays as well as
the corresponding functions are implemented.

Hash-Tables
Hash-tables are not yet implemented.

Readtables

Readtables are completely implemented. It is possible to define macro characters. We have
implemented the function SET-SYNTAX-FROM-CHAR to be applicable to macro characters too,
which causes some problems in other LISP implementations. We have not yet implemented
all of the predefined read macros.

Packages

Packages are implemented as described in [Ste84]. We did not consider changes and extensions
of [Ste90] yet. The package functions are implemented too, but only IN-PACKAGE is recognized
by CLICC as a toplevel declaration during the compilation process.

Pathnames

Pathnames are not yet implemented. It is not possible to implement them in a portable way,
because the corresponding functions are highly operating system dependent. At present we
use strings instead of pathnames in functions like OPEN.

Streams

Only character streams are implemented at the moment. The stream *TERMINAL-IO0* and
the streams which are generated by the function OPEN are links to file descriptors of the
underlying operating system. We use only functions of the C standard library to implement
streams and stream functions, hence we can generate portable code which is independent of
the operating system.

Random-States
Random-states are not yet implemented.

Structures

Structures are implemented to a great extent. The type specifications of slots are not checked.
The structure definition options :TYPE and :INITIAL-OFFSET and BOA constructors (By
Order of Arguments) are not supported yet.

Functions

FUNCTION is the only special form which yields functions. Symbols and lambda lists are not
of type function and in CL; there is no possibilty to convert them into a function. All data
objects of type function are compiled functions. All the standard functions which are defined
on the type function (e.g. APPLY) will abort with an error message, if they are called with a

Version 1.1 6 January 20, 1992

symbol or lambda list instead of a functional object as argument.

Other Standard Functions

The following gives a description of the functions which are not or only partially implemented
and which are not related to data types. The functions are ordered corresponding to the chap-
ters of [Ste90].

Type Specifiers
The function COERCE is implemented only partially. The function TYPE-0F is not implemented.

Predicates

The function TYPEP is expanded at compile time if possible. The runtime version of TYPEP
is restricted to be applicable to simple type specifiers like FIXNUM or CHARACTER etc.. The
function SUBTYPEP is implemented only for a few types. Most of the other predicates are
implemented if the corresponding data types are implemented.

Control Structure
The functions GET-SETF-METHOD and GET-SETF-METHOD-MULTIPLE-VALUE are not and will
not be implemented because all SETF forms have to be expanded at compile time.

Macros

The functions MACRO-FUNCTION, MACROEXPAND and MACROEXPAND-1 are not implemented be-
cause macros are expanded at compile time. These functions will not be implemented in the
future.

Sequences
Most of the sequence functions are implemented. We left out some complex functions like
SORT which may be added without problems.

The Evaluator
The function EVAL is not implemented.

Input/Output
All of the input/output functions are implemented, but most of them do not have their full
functionality. E.g. the function FORMAT does not accept all of the possible control directives.

File System Interface

The functions OPEN, PROBE-FILE, FILE-POSITION and FILE-LENGTH are implemented. The
function LOAD is expanded at compile time and may not be used at runtime because we do
not support incremental compilation and dynamic loading. All other functions which are
described in that chapter are not implemented.

Errors
Only the functions ERROR and WARN are implemented. The functions CERROR and BREAK
cannot be used, because we do not support break loops.

Miscellaneous Features

Only the function IDENTITY is implemented. The functions dealing with the compiler or the
debugging tools cannot be used. The functions for environment inquiries could be imple-
mented in the future, but there are problems to implement time functions portably.

Version 1.1 7 January 20, 1992

3 Compilation of Common Lisp; Programs to C

CLICC is a multi pass compiler. The frontend uses different passes to compile CL; pro-
grams into an abstract representation of an intermediate or kernel language which we call
Common Lispg (ClLg). In a first pass user defined macro calls and system macro calls are
expanded using a source to source code transformation. An example is given in section 3.1.

Declarations are collected into compile time data structures which are part of the abstract
representation of the program. This second pass is not decribed here. We refer to [Bur91]
for more details. In section 3.2 we describe global program analysis. In a final pass C code
is generated. The code generation is subject of section 3.3.

3.1 Source Code Transformation

We will demonstrate the expansion of system macro calls according to the expansion rules
given in appendix B by the following example. This small part of a CL; program iterates over
an input list list, searching for occurances of the object search, and prints their indices, if

found.
(DO ((index 0 (1+ index))
(tmp-1list list (cdr tmp-list))
)
((null tmp-list))
(WHEN (eq (car tmp-list) search)
(print index)
(RETURN))
)

The expansion of DO results in:

(PROG ((index 0)
(tmp-1list list)
)
g001 ;; 8001 is a new generated symbol to prevent name clashes
(WHEN (null tmp-list) (RETURN (PROGN)))
(WHEN (eq (car tmp-list) search)
(print index)
(RETURN))
(PSETQ index (1+ index) tmp-list (cdr tmp-list))
)

The expansion of PROG yields:

(BLOCK nil
(LET ((index 0)
(tmp-1list list)
)
(TAGBODY
g001

(WHEN (null tmp-list) (RETURN (PROGN)))
(WHEN (eq (car tmp-list) search)

Version 1.1 8 January 20, 1992

(print index)
(RETURN))
(PSETQ index (1+ index) tmp-list (cdr tmp-1list))

)

A LET special form is transformed into the corresponding LAMBDA application. The WHEN
macro calls are expanded into equivalent IF forms.

(BLOCK nil
((LAMBDA (index tmp-list)
(TAGBODY
g001
(IF (null tmp-list)
(PROGN (RETURN (PROGN)))
nil)
(IF (eq (car tmp-list) search)
(PROGN (print index)
(RETURN))
nil)
(PSETQ index (1+ index) tmp-list (cdr tmp-list))
)
0 list)
)

After expansion of RETURN and PSETQ and some optimizations this yields the following
final result form:

(BLOCK nil
((LAMBDA (index tmp-list)
(TAGBODY
g001
(IF (null tmp-list)
(RETURN-FROM nil nil)
nil)
(IF (eq (car tmp-list) search)
(PROGN (print index)
(RETURN-FROM nil nil))
nil)
(SETQ index
((LAMBDA (g002) ;3 g002 is a new generated symbol
(SETQ tmp-list (cdr tmp-list))
g002)
(1+ index)))
)
0 list)
)

Version 1.1 9 January 20, 1992

3.2 Global Program Analysis

The complete compilation of programs enables the compiler to perform global program anal-
ysis. The goal of such an analysis is to get informations about the behaviour of the program
that allow the generation of more efficient code. Up to now there are two global analysis
methods implemented in our compiler.

The first concerns the check of passing a correct number of arguments to a function. In
general LISP systems have to perform this check at runtime because the arity of a function
may change in the development process. In our case the arities of all used functions are known.
This fact enables us to perform a partial check of correct parameter passing at compile time.
Parameter passing can only be checked partially at compile time since the complex mechanism
of Common Lisp parameter lists (e.g. &key parameters) allow the definition of functions with
a varying number of arguments. These functions still need a runtime check.

The other implemented analysis method infers information about the number of values a
form returns. This kind of information is called multiple value information. It is used in the
code generation pass to generate code that handles multiple values efficiently.

To determine how many values a function may return, all forms in the body of the function
which eventually produce the result, have to be analysed. These can be variables, special
forms (in this case the analysis has to step through the subforms), or function calls.

The analysis method is implemented as a two stage algorithm. In the first stage for each
function we associate the multiple value information infered by some rules describing the
behaviour of LISP forms w.r.t. the passing of multiple values. Together with that information
each function f is associated with all functions called in the body of f which yield the result
values of f.

The second stage of the algorithm solves the dependencies of the multiple value informa-
tions using a fixpoint iteration.

Example:

(defun even-fac (acc n)
(if (zerop n) acc (odd-fac (* acc n) (1- n))))

(defun odd-fac (acc n)
(even-fac (* acc n) (1- n)))
Figure 1:

The function definitions of figure 1 leads to the following multiple value information in
the first stage of the algorithm:

even-fac: returns one value (acc) and calls odd-fac.
odd-fac : calls even-fac.

The second stage of the algorithm resolves this system of dependencies and as the final
result it yields the information that both functions deliver exactly one value.

3.3 Code Generation

The target language for CLICC is C as it is described in [KR83]. We do not use ANSI-
C, because today it is not widely used as a standard. C serves as a portable high level

Version 1.1 10 January 20, 1992

machine language. There is no direct correspondence between the language constructs of CL;
and those of C. Most of the constructs of CL; have to be compiled into simpler constructs
in C. Common Lisp; functions are compiled into C functions which play the role of low
level subroutines. In C there are only global functions using the same global environment.
The function concept of CL; includes nested function definitions, functional arguments and
functional results (closures). Common Lisp; has a complex parameter passing mechanism.
The order of evaluation of the parameters is specified as ’left to right’. In general, variables
are statically scoped but they can be declared as dynamically scoped. We have to manage
free local variables of local functions. Local Variables are allocated in the heap, if they occur
free in closures, otherwise they are allocated in the LISP stack. We don’t use the C runtime
stack but a seperate LISP stack for parameter passing and the allocation of local variables.
This allows us to determine the order of evaluation of parameters and the garbage collector
has access to local variables when it needs to find all the references to data objects in the
heap. The language constructs of CL; for non local control transfer allow non local function
exits. They are implemented using the setjmp and longjmp constructs of C.

An Example

The following example shows a very simple CL; program and the generated C source code.
(in-package "USER" :use °’("LISP"))

(defun list-copy (x)
(cond
((null x) nil)
(T (cons (car x) (list-copy (cdr x))))))

(print (list-copy (list 1 *x* "string")))

The generated code consists of two C functions. The first is the compilation of 1ist-copy,
the second is the compilation of the main part of the original CL; program, which consists
of the code for (in-package "USER" :use ’("LISP")) and (print (list-copy (list 1
x "string") in our example. The header files <c_decl.h> and <fun_decl.h> contain
type definitions, macro definitions and function declarations used by the generated code.
The included file "list-copy.h'" is described below.

The C main function is part of the CLICC runtime library. It initializes the runtime
system and calles the function Flisp main.

#include <c_decl.h>
#include <fun_decl.h>
#include "list-copy.h"

U1_LIST_COPY(base)
CL_FORM *base;
{
if(!'(base[0].tag !'= CL_NIL))
{
base[0] .tag = CL_NIL;
base[0] .val.form = (CL_FORM *)&symbols[0];

Version 1.1 11 January 20, 1992

else

{
base[1] = base[0];
Fcar(&base[1]);
base[2] = base[0];
Fcdr(&base[2]);
U1_LIST_COPY(&base[2]);
Fcons(&base[1]);
base[0] = base[1];

Flisp_main(base)

CL_FORM *base;

{
base[0].tag = CL_SMSTR;
base[0] .val.form = (CL_FORM *)&const_forms[0];
base[1] .tag = CL_SYMBOL;
base[1] .val.form = (CL_FORM *)&symbols[SYMSIZE * 69];
base[2].tag = CL_CONS;
base[2] .val.form = (CL_FORM *)&const_forms[4];
Fin_package(&base[0], 3);
base[0] .tag = CL_FIXNUM;
base[0] .val.i = 1;
base[1] (CL_FORM *)&symbols[SYM_SIZE * 223 + OFF_SYM_VALUE];
base[2].tag = CL_SMSTR;
base[2] .val.form = (CL_FORM *)&const_forms[6]);
Flist(&base[0], 3);
U1_LIST_COPY(&base[0]);
Fprint(&base[0], 1);

¥

LISP functions are translated into C functions. The identifiers of LISP functions cannot
be transformed directly into C identifiers. The identifier 1ist-copy gets the prefix Ul_ (first
user defined function). This prevents name conflicts even if the C compiler recognizes only
the first few characters of an identifier.

We have to introduce a seperate LISP stack for parameter passing and local variables.
Every translated LISP function gets a parameter base, which contains a pointer to the start
of the activation record of the function. Activation records are subsequently allocated in the
LISP stack if a function is called and they are deallocated if the execution of the function
terminates. The result of a function call is stored into the first entry of the activation record.

The number of actual parameters is checked at compile time, if possible. Functions which
allow a variable number of parameters get an additional C parameter, which describes the
number of actual parameters. See for instance the function calls of Flist and Fprint in
Flispmain.

The constants "USER", > ("LISP") and "string" are translated into initialisation code for
the C array const_forms. The symbols, i.e NIL, and global variables, i.e. *x*, are translated
into the initialisation code for the C array symbols. The definitions of these arrays are put
into the file "1ist-copy.h" which is not shown here. The array symbols contains all of the

Version 1.1 12 January 20, 1992

symbols defined by the compiled program and the runtime system. The in-package top level
form is compiled into the first seven lines of Flisp main.

LISP data objects are translated into C data objects of the type CL_FORM, which contain
value and type information. Thus, for example, the assignment of NIL to the result position
of U1_LIST_COPY in the first if clause is performed by assigning CL_NIL to the tag field and
the appropriate value to the val.form field.

We rely on the optimizations performed by the C compiler. It should for instance remove
the duplicate negation in the condition part of the if statement in function U1_LIST _COPY.

4 Generating Executable Applications

(Program]
(LISP-Code)
CLICC fl\

Program
(C-Code)

AN

C-Compiler l

CLICC-Lib I
(LISP-Code)

|
l

[CLICC-Lib1 J [CLICC—Lib II]
(C-Code) (C-Code)
) |

Program CLICC-Lib I CLICC-Lib IT
(Object-Code) (Object-Code) (Object-Code)
Linker l l
Executable
Program

Figure 2:

Executable applications are generated in three steps. CLICC translates a CL; source file into
a C file as described in figure 2. This file is translated by the C compiler to the machine
language of the target machine and we get an object file. This file is not executable, because
there are unresolved references to system functions of the LISP and C runtime library. These
references are resolved by the linker, which generates an executable file. It contains all the
referenced functions of the runtime libraries.

The LISP system functions are handcode in C or implemented in CL;. The basic functions
are written in C (e.g. CAR, CDR, WRITE-CHAR, Garbage Collector). More complex functions
are written in LISP (e.g. PRINT, READ, package functions, most of the sequence functions).
We use CLICC to translate those functions to C. The system functions are collected in two
library files, which are used by the linker to generate the executable file.

Now let us take a closer look to the linking process. The generated executable files should
be small, compared with the size of LISP-systems or saved images of LISP-programs which
are loaded into LISP-systems. We use the linking mechanism of C to generate executable
files of reasonable size.

If a C program is linked, all needed system functions of the C runtime library are included
into the generated executable file. The system functions which do not occur in the translated

Version 1.1 13 January 20, 1992

C program are not included.

We want to achieve this behaviour for LISP system functions, too. They are seperately
compiled and put into an archive file, the CLICC runtime library. See figure 3. In full Com-
mon Lisp it is unknown at link time, which functions are to be included into the executable
file because symbols may be transformed into functions at runtime. This is impossible in
CL;. Thus, we do know all the names of those system functions we have to link into the
executable file and we are allowed to use the linker of the target system to perform this job.

LISP-Code
LISP-
1

Runtime-Library
CLICC
l C-Code Function 1
Function 2
C-Compiler > Function 3
’ Function 4
Object-Code

Linker >

Function N

Executable
Code

Figure 3:

The CL;-coded system functions often call many other system functions. Thus, a large
number of system functions is linked into the executable files even if the source file only uses
a few of them.

5 Portability and Compiler Bootstrapping

Since CLICC is written in CLy, it may be compiled by itself. CL; is a strict subset of Common
Lisp and therefore we are able to run CLICC within a usual Common Lisp system to compile
itself to C. Whether or not CLICC is able to reproduce itself is known to be a good test for
a compiling algorithm, usually called the bootstrap test. It is shown in the figure 4.

We performed this test on a SUN SPARC1 workstation, compiling CLICC to C using the
original CL;-program within Lucid Common Lisp to produce the first CLICC in C, and it’s
output compiled with the system’s C compiler to generate the second. Both of the former
C programs were successfully compared with the UNIX diff command to be syntactically
equal.

The portability of CL; programs on the basis of the generated C code is demonstrated in
figure 5 where it is shown for CLICC, which, of course, is only one example program. Our
approach yields the portablility for every application program written in CL;.

6 Conclusions

We have defined an efficiently implementable strict subset Common Lisp; of Common Lisp,
and a compiler CLICC from this subset to C source code.

The compilation is divided into several passes producing different intermediate program
representations, i.e. Common Lispg, the abstract representation of Common Lisp, with anno-

Version 1.1 14 January 20, 1992

Take Compiler as Input

CLo|CLoe — C C cC — M| M

CLo ! M)

CLo N P

Description:

L1 — L2 A Compiler from Language L1 into Language L2,
implemented in L3

L3
CLo An Interpreter for CL o,
M implemented in the Machine Language of M
Figure 4:
CL: — C CL: — C CL1 — C
CL: |CL:1 — C C C — M: | M:
CL: M,
CL1 .
CL: — C CL: — C
M
C C — M:| M:
Description: M:
L1 — 12
A Compiler from Language L1 into Language L2,
L3 implemented in Language L3
CL: An Interpreter for CL 1,
implemented in the Machine Language M
M
M: M: Machine Languages of different Machines

Figure 5:

tations produced by the global program analysis, and C code. Common Lispg is a “minimal”
kernal language to implement Common Lisp;.

Further work has to be done on global analysis and optimization of programs. Type
inference would be extremely useful not only to optimize user programs but also to increase
the efficiency of the LISP-coded runtime system functions. Moreover, the compilation of
LISP standard function calls into less generic runtime system function calls will reduce the
code length of compiled and linked executable applications.

C is used as a machine oriented and portable target language. Although, of course,
machine code generation for special machine architectures can produce more efficient code
than portable C code ever can be, the price we actually have to pay for the sake of portablility
is not yet clear. Of course, C code generation directly benefits from C compiler improvements.

Version 1.1 15 January 20, 1992

7 References

[AGST7]

[AGSSS]

[Bur91]

[CAVS9]

[Knu91]

[KRS3]

[MAE*62]

[McC60]

[Ste84]

[Ste90]

[TMS6]

Version 1.1

D. Ackermann and W. Goerigk. Das Projekt: Ubersetzung von Wissensbasen. In
Workshop der Fachgruppe 2.1.4. ,Alternative Konzepte fiir Sprachen und Rech-
ner® der Gesellschaft fiir Informatik, Bad Honnef, 1987.

D. Ackermann, W. Goerigk, and F. Simon. Kompilation von Wissensreprisen-
tationssprachen am Beispiel von BABYLON. Institutsbericht Nr. 8810, Institut
fiir Informatik und Prakt. Math. der Christian-Albrechts Universitit, Kiel, 1988.
Also published as chapter 8 in [CdV89].

O. Burkart. Das Frontend eines Compilers von Common Lisp nach C. Master’s
thesis, Institut fiir Informatik und Prakt. Math. der Christian-Albrechts Univer-
sitdt, Kiel, 1991.

Th. Christaller, F. diPrimio, and A. Vof}, editors. Die KI-Werkbank BABYLON.
Addison—Wesley, Bonn, 1989.

H. Knutzen. Codegenerierung und Laufzeitsystem eines Compilers von Com-
mon Lisp nach C. Master’s thesis, Institut fiir Informatik und Prakt. Math. der
Christian-Albrechts Universitat, Kiel, 1991.

B.W. Kernighan and D.M. Ritchie. Programmieren in €. Hanser Verlag,
Miinchen, Wien, 1983.

J. McCarthy, P.W. Abrahams, D.J. Edwards, T.P. Hart, and M.I. Levin. LISP
1.5 Programmer’s Manual. The MIT Press, Cambridge, MA, 1962.

J. McCarthy. Recursive Functions of Symbolic Expressions and their Computa-
tion by Machine, Part I. In Communications of the ACM, number 4 in Vol. 3,
1960.

G.L. Steele. Common Lisp: The Language. Digital Press, Burlington, 1984.

G.L. Steele. Common Lisp: The Language. Second Fdition. Digital Press, Bedford,
MA. 1990.

Y. Taiichi and H. Masami. Kyoto Common Lisp Report. Technical report, Rese-
arch Institute for Mathematical Science, Kyoto University, 1986.

16 January 20, 1992

A The Syntax of Common Lisp;

The Syntax of Common Lisp; programs is defined by the following grammar:

cly-program ::= { top-level-form }*

top-level-form ::=
(IN-PACKAGE package-name &key :nicknames :use) |
(PROVIDE module-name) |
(REQUIRE module-name) |
(LOAD file-name) |
(PROCLAIM decl-spec-form) |
(DEFVAR name [initial-value [documentation |]) |
(DEFPARAMETER name initial-value [documentation |) |
(DEFCONSTANT name initial-value | documentation) |
(DEFTYPE name bg-lambda-list [doc-string] bg-form) |
(DEFSETF access-fn { update-fn | doc-string | |
bg-lambda-list (store-variable)
[doc-string] bg-form }) |
(DEFSTRUCT name-and-options | doc-string | { slot-description }*) |
(DEFMACRO name bg-lambda-list [doc-string] bg-form) |
(DEFUN name lambda-list [[{ declaration }* | doc-string || { form }*) |
(PROGN { top-level-form }*) |

form
form = atom | call
atom = self-evaluating-form | symbol
call ::= special-form | macro-call | fn-call

bg-form ::= atom | (QUOTE s-expr) | bg-call
bg-call ::= (CONS bg-form bg-form) |
(LIST { bg-form }*) |
(LIST* { bg-form }*) |
(APPEND { bg-form }*) |

special-form 1=

(QUOTE s-expr) |

(FUNCTION fn) |

(SETQ var form) |

(PROGN { form }*) |
(LET ({ var | (var [value])}*) { declaration }* { form }*) |
(LET* ({var | (var [value])}*) {declaration }* { form }*) |
(PROGY symbols values { form }*) |
(

LABELS ({ (name lambda-list [[{ declaration }* | doc-string |] { form }*) }*)

{declaration }* { form }*) |

(FLET ({ (name lambda-list [[{ declaration }* | doc-string || { form }*) }*)

{declaration }* { form }*) |
(IF test then else) |
(BLOCK name { form }*) |
(RETURN-FROM name result) |
(TAGBODY {tag | statement }*) |

Version 1.1 17

January 20, 1992

(GO tag) |

(MULTIPLE-VALUE-CALL function { form }*) |
(MULTIPLE-VALUE-PROGL form { form }*) |

(CATCH tag-form { form }*) |

(UNWIND-PROTECT protected-form { cleanup-form }*) |
(THROW tag-form result) |

(THE value-type form)

macro-call ::= (name { s-expr}*)

fn-call w=(fn {form}*)
fn = symbol | lambda-expr
lambda-expr ::= (LAMBDA lambda-list [[{ declaration }* | doc-string || { form }*)

lambda-list ::= ({var }*
[&optional {war | (var [initform [svar]])}*]
[&rest var]
[&key {var | ({var| (keyword var)} [initform [svar]])}*
[allow-other-keys]]
[&aux { var | (var [initform])}*])

bg-lambda-list ::= ({var }*
[%optional {var | (var [bg-form [svar]])}”]
[&rest var]
[&key {var | ({var| (keyword var)}}
[allow-other-keys]]
[&aux {var | (var [bg-form])}*])

declaration ::= (DECLARE { decl-spec }*)

decl-spec-form ::= (QUOTE decl-spec)

decl-spec := (SPECIAL {wvar }*) | (INLINE { name }*) | (NOT-INLINE { name }*) |
(IGNORE { var }*)

name-and-options ::= name | (name { struct-option }*)
struct-option ::= :CONC-NAME | (:CONC-NAME {NIL | generalized-string}) |
:CONSTRUCTOR | (: CONSTRUCTOR symbol) |
:PREDICATE | (:PREDICATE symbol) |
:COPIER | (:COPIER symbol) |
: INCLUDE | (: INCLUDE name { slot-description }*) |
:PRINT-FUNCTION | (:PRINT-FUNCTION fn)
slot-description = name | (name [initial-value { slot-option }*])
slot-option = (:TYPE type) | (:READ-ONLY form)
s-expr = atom | (s-expr . s-expr)
doc-string, documentation, file-name ::= string
package-name, module-name ::= generalized-string
name, var, svar, access-fn, update-fn, store-variable ::= symbol

Version 1.1 18 January 20, 1992

initial-value, tnit form, value
symbols, values

test, then, else

result

function, tag-form
protected-form, cleanup-form

== form

statement 1= call

generalized-string ::= (QUOTE symbol) | string | character

value-type and type are Common Lisp datatypes.

self-evaluating-form is a LISP value, which is neither a symbol nor a list.
The following non-terminals represent data objects of the specified datatype:

symbol € SYMBOL,
keyword € KEYWORD,
character € CHARACTER,
string € STRING and

tag € INTEGER U SYMBOL.

B Expansion of CL; System Macros

The expansion of the predefined system macros is decribed in terms of source to source code

transformations.

(AND) =T

(AND form) = form

(AND form . more-forms) = (IF form (AND . more-forms) NIL)
(OR) = NIL

(OR form) form

(IF atom atom (OR . more-forms))
(LET ((newsym call))
(IF newsym newsym (OR . more-forms))

(OR atom . more-forms)
(OR call . more-forms)

(PSETQ) = NIL
(PSETQ var form) = (PROGN (SETQ war form) NIL)
(PSETQ var form = (PROGN

more-var-form-pairs) (SETQ wvar
(PROG1 form
(PSETQ . more-var-form-pairs))
NIL)

(PROG1 first (LET ((newsym first))
formy ... form,) formy ... form, mewsym)

(PROG2 first second (PROGN first
more-forms) (PROG1 second . more-forms))

(WHEN test . more-forms) (IF test (PROGN . more-forms) NIL)

Version 1.1 19 January 20, 1992

(UNLESS test . more-forms) = (IF (NOT test) (PROGN . more-forms) NIL)

(COND) = NIL
(COND = (IF antecedent
(antecedent . more-forms) (PROGN . more-forms)
more-clauses) (COND . more-clauses))
(COND (antecedent) = (OR antecedent
more-clauses) (COND . more-clauses))
(COND (antecedent)) = (VALUES antecedent)
(CASE atom = (COND
(key, . formsy) (test; . formsy)
(key, . forms,) (test, . forms,)
where test; = T, if key; = T or
key; = OTHERWISE
test; = (OR), if key; = O
test; = (EQL key; atom), if key; atomic
test; = (OR (EQL key;; atom)
(EQL kew;,, atom)), if key; = (keyn ... key;n,)
(CASE call = (LET ((newsym call))
. clauses) (CASE newsym
. clauses)
(TYPECASE atom = (COND
(type; . forms;) (test; . formsy)
(type, . forms,) (test, . forms,)
where test; = T, if key; = T or

key; = OTHERWISE
(TYPEP atom (QUOTE key;)), otherwise

(LET ((newsym call))

test;

(TYPECASE call

. clauses) (TYPECASE newsym
. clauses)
(RETURN) = (RETURN-FROM NIL NIL)

(RETURN result)

(RETURN-FROM NIL result)

(LOOP . forms) (BLOCK NIL
(TAGBODY newsym
(PROGN . forms)

(GO newsym)))

(D0 ({ war [init [step]] }*)

(PROG ({ war [init] }*)

(end-test . result-forms) {declaration }*
{ declaration }* newsym
{tag | statement }* (WHEN end-test
) (RETURN (PROGN . result-forms))

Version 1.1 20 January 20, 1992

(Do* ({war [init [step]] }*)
(end-test . result-forms)
{ declaration }*

{tag | statement }*

(DOLIST (war listform
Lresult form])
{ declaration }*

{tag | statement }*

(DOTIMES (war countform =
Lresult form])
{ declaration }*

{tag| statement }

*

(PROG { (war [init]) }*
{ declaration }*
{tag| statement }

*

)

(PROG* { (war [init]) }* =
{ declaration }*
{tag| statement }

*

)

(MULTIPLE-VALUE-LIST form) =

(MULTIPLE-VALUE-BIND =
{var }*) values-form
{ declaration }*

{ form }*

Version 1.1

{tag | statement }*
(PSETQ { [var step] }*)
(GO newsym))

(PROG* ({ war [init] }*)
{declaration }*
newsym
(WHEN end-test

(RETURN (PROGN .
{tag | statement }*
(SETQ { [var step] }*)
(GO newsym))

result-forms))

(D0 (war

(newsym (THE (LIST (VALUES listform)))

(CDR newsym))
)
((ATOM newsym)
(SETQ war NIL) [resultform])
{declaration }*
(SETQ war (CAR mnewsym))
{tag | statement }*)

(DO ((newsym countform)

(var 0 (1+ war))

)

((>= var newsym) Lresultform])
(DECLARE (FIXNUM war newsym))
{declaration }*

{tag | statement }*)

(BLOCK NIL
(LET ({ (war [init]) }*)
{ declaration }*
(TAGBODY {tag | statement }*)))

(BLOCK NIL
(LET* ({ (var [init]) }*)
{ declaration }*
(TAGBODY {tag | statement }*)))

(MULTIPLE-VALUE-CALL #’LIST form)

(MULTIPLE-VALUE-CALL
#’ (LAMBDA (%O0PTIONAL {var }*
&REST newsym)

(DECLARE (IGNORE newsym))

{ declaration }*

{ form })

values-form)

21

January 20, 1992

(MULTIPLE-VALUE-SETQ = (MULTIPLE-VALUE-BIND (newsym; ...newsym,)
(vary ...var,) form) form
(SETQ war, newsym; ... var, NEWSYMi,)
newsym,)

(LOCALLY {declaration }*
{ form }*)

((LAMBDA () {declaration}* { form}*))

(DO-SYMBOLS = (BLOCK NIL
(var [package [result]]) (rt::DO-SYMBOLS-ITERATOR
{ declaration }* #’ (LAMBDA (war)
{tag | statement }* {declaration }*
) (TAGBODY {tag | statement}*))
[package])

(LET ((var NIL))
{declaration }* [result]))

(DO-EXTERNAL-SYMBOLS = (BLOCK NIL
(var [package [result]]) (rt::DO-EXTERNAL-SYMBOLS-ITERATOR
{ declaration }* #’ (LAMBDA (war)
{tag | statement }* {declaration }*
) (TAGBODY {tag | statement}*))
[package])

(LET ((var NIL))
{declaration }* [result]))

(DD-ALL-SYMBOLS = (BLOCK NIL
(var [result]) (rt::D0-ALL-SYMBOLS-ITERATOR
{ declaration }* #’ (LAMBDA (war)
{tag | statement }* {declaration }*
) (TAGBODY {tag | statement }*)))

(LET ((var NIL))
{declaration }* [result]))

(WITH-OPEN-STREAM (LET ((var stream))

(var stream) {declaration }*

{ declaration }* (UNWIND-PROTECT

{ form }* (PROGN { form }*)
) (CLOSE wvar)))
(WITH-INPUT-FROM-STRING = (WITH-OPEN-STREAM

(var string (var (MAKE-STRING-INPUT-STREAM

&key index (start 0) end) string start end))

{ declaration }* {declaration }*

{ form }* (MULTIPLE-VALUE-PROG1
) (PROGN { form }*)

[(SETF index (FILE-POSITION var))]))

(WITH-OUTPUT-TO-STRING = (WITH-OPEN-STREAM

(var [string]) (var (MAKE-STRING-OUTPUT-STREAM [string])

{ declaration }* {declaration }*

Version 1.1 22 January 20, 1992

{ form }* { form }*

) [(GET-OUTPUT-STREAM-STRING var)])
(WITH-OPEN-FILE = (LET ((stream (OPEN filename {option}*))
(stream filename {option }*) (newsym T))
{ declaration }* {declaration }*
{ form }* (UNWIND-PROTECT
) (MULTIPLE-VALUE-PROG1

(PROGN { form }*)
(SETQ newsym NIL))
(WHEN (STREAMP stream)
(CLOSE stream :ABORT mewsym))))

The following expansion rules are used for the macros which allow the access to generalized
variables, where

place
access-form

(access-fnarg; ... arg,),
(access-fntmp; ... tmp,), and

store-form = (SETF access-form store-var),
or

place = var,

access-form = var, and

store-form

(SETQ var store-var).

(PSETF place; newvalue,

(LET* ((tmpyy argir) ... Gmpim, argim,)
.. (store-var, newvaluey)
place, newvalue,)
(tmpyy argn,) ... @Mpup, argpm,)
(store-var, newvalue,)

)

store-form, ... store-form, NIL)

(SHIFT place; ... place,

(LET* ((tmpyy argir) ... Gmpim, argim,)
newvalue) (tmp-shifted-out access-form,)
(mps1 args) ... @mps,, argsm.,)
(store-var, access-forms))

(tmpnl argnl) (tmpnmn argnmn)
(store-var, newvalue)
)
store-form, ... store-form,,

tmp-shifted-out)

(ROTATEF) = NIL

(ROTATEF place) = (PROGN place NIL)

(ROTATEF place; ... placey,) = (LET* ((mpy argi) ... Gmpim, argim,)
(store-var,, access-form;)
(mps1 args) ... @mps,, argsm.,)

(store-var, access-forms))

Version 1.1 23 January 20, 1992

(tmpnl argnl) (tmpnmn argnmn)
(store-var,_, access-form,)
)

store-form, ... store-form, NIL)

(INCF place)
(INCF place delta)

(INCF place 1)
(LET* ((tmp, arg,) ... Ump, arg,)
(store-var (+ access-form delta)

)

store-form)

(DECF place)
(DECF place delta)

(DECF place 1)
(LET* ((tmp, arg,) ... Ump, arg,)
(store-var (- access-form delta)
)

store-form)

(PUSH item wvar)

(SETQ wvar (CONS ttem wvar))

(PUSH = (LET* ((tmpy arg,) ... (Gmp, arg,)
item (store-var (CONS item access-form))
(access-fn arg, ... arg,)))

store-form)

(PUSHNEW ¢tem var = (SETQ wvar
. key-value-pairs) (ADJOIN item wvar . key-value-pairs))
(PUSHNEW = (LET* ((tmpy arg,) ... (Gmp, arg,)
item (store-var (ADJOIN ttem access-form
Caccess-fn arg, ... arg,) . key-value-pairs))
. key-value-pairs))
store-form)
(POP var) = (PROG1 (FIRST war)

(SETQ var (REST war)))

(POP (access-fn arg, ...arg,)) = (LET*x ((tmp, arg,) ... Ump, arg,)
(store-var access-form)
)
(PROG1 (FIRST store-var)
(SETQ store-var (REST store-var))
store-form))

Version 1.1 24 January 20, 1992

