
CLICC: A New Approach to the Compilation of Common LispPrograms to CO. Burkart W. Goerigk H. KnutzenInstitut f�ur Informatik und Praktische Mathematikder Christian-Albrechts-Universit�at zu KielPreu�erstr. 1-9, D-2300 Kielwg@informatik.uni-kiel.dbp.de, wg@causun.uucpAbstractWe describe an implementation technique for Common Lisp application programs ona large variety of small computers. A strict subset of the programming language CommonLisp, called Common Lisp1, is de�ned, and we describe a compiler from Common Lisp1to C, called CLICC, which we successfully used to build up stand alone Common Lispapplications of reasonable size and e�ciency, including expert system applications andCLICC itself. Common Lisp1 programs are portable on the basis of machine independentC source code. We propose Common Lisp1 as an e�ciently implementable strict subset ofCommon Lisp. The notion of a Common Lisp1 application program is proposed in orderto enlarge the compilation units and to make global program optimizations possible.Contents1 Introduction 12 De�nition of Common Lisp1 32.1 Syntax and Context Conditions : 42.2 Data Types and Standard Functions : 53 Compilation of Common Lisp1 Programs to C 83.1 Source Code Transformation : 83.2 Global Program Analysis : 103.3 Code Generation : 104 Generating Executable Applications 135 Portability and Compiler Bootstrapping 146 Conclusions 147 References 16A The Syntax of Common Lisp1 17B Expansion of CL1 System Macros 191 IntroductionDuring the past decades the programming language LISP ([McC60], [MAE+62]) has been de-veloped into a large programming tool supporting di�erent programming paradigms. AmongVersion 1.1 January 20, 1992

many other LISP dialects, Common Lisp ([Ste84], [Ste90]) has become a de facto standardfor LISP in industry and science. It is commonly used in arti�cial intelligence, computeralgebra, compiler construction, and theorem proving. Up to now Common Lisp applicationsneed large and expensive development or runtime systems on large machines to run. Themajor goal of the work described here is to show how the compilation of a strict subset ofCommon Lisp to C can be used to run application programs on small machines without aCommon Lisp system. We propose a distinction between the language constructs neededfor application programs and those needed for incremental program development within aninterpreter based Common Lisp system.CLICC, the compiler from Common Lisp to C, is able to compile a strict subset ofCommon Lisp into C source code. We call this subset Common Lisp1 (CL1) and assume itto be the target language of a program development process within a Common Lisp system.Our approach di�ers from the usual incremental compilation used in Common Lisp systems.We call our technique complete compilation of programs because it is based on a complete setof informations about the entire program.In addition to restricting programs not to use the whole functionality of the programdevelopment system, we decided not to support Common Lisp's re
ection in order to keepthe compiled code small and to allow global program optimization. Thus, explicit calls of EVALas well as language constructs which implicitely cause evaluation of data as code at runtime,like MACROEXPAND or SYMBOL-FUNCTION, are not allowed in Common Lisp1 programs. Userde�ned macros are syntactically restricted to be expandable at compile time. Moreover,double declarations and incomplete code, i.e. calls of nonde�ned functions, are rejected.The target language for CLICC is C [KR83] which we use as a portable machine orientedlanguage. Common Lisp1 functions are compiled into C functions which play the role oflow level subroutines. Parameter passing is implemented on a LISP stack to enable garbagecollection. C parameters are used to hold linkage information which is needed to correctlyimplement both, nested function de�nitions and higher order functions. Both of them arenot directly supported by the C procedure concept.CLICC ([Knu91], [Bur91]) has been developed 1 at the University of Kiel during the pasttwo years. It was used as a backend for a compiler from BABYLON2 to C using CommonLisp as an intermediate language. We compiled knowledge bases which have been developedwithin the BABYLON workbench into portable stand alone expert system applications.In section 2 the language Common Lisp1 is de�ned as a strict subset of Common Lisp.Many of the program constructs of Common Lisp1 including system macro calls, are de-�ned in Common Lisp1 itself. Thus, the �rst compilation step is a source to source codetransformation of Common Lisp1 into an intermediate or kernel language which we callCommon Lisp0 (CL0). Global program analysis is performed on an abstract syntax rep-resentation of Common Lisp0 programs to support e�cient code generation. The expansionof system macros and user de�ned macro calls, the global program analysis, and the codegeneration are described in section 3. The complete set of Common Lisp1 system macros andtheir expansion rules are added as appendix B.Some Common Lisp1 standard functions are handcoded in C, others are implemented inLISP. Thus, the Common Lisp1 runtime system consists of several C source code parts, someof which are produced by CLICC itself. In order to generate executable application programs,all of those parts together with the C target code of the original program have to be compiled1The work was done in a project called \knowledgebase compilation" ([AG87], [AGS88]). The project wassponsored by the Dr.-Ing. Rudolf Hell GmbH, Kiel.2BABYLON is the hybrid knowledge representation language of the expert system tool BABYLON, whichwas developed as an AI workbench at the GMD, St.Augustin.Version 1.1 2 January 20, 1992

into object code by the C compiler and linked together with the linker of the target system.This process is described in section 4.CLICC is implemented in Common Lisp1. Thus, CLICC is able to compile itself and,therefore, like any Common Lisp1 application program, it is portable on the basis of C sourcecode. Portablility and the wellknown compiler bootstrap test are the subject of section 5.2 De�nition of Common Lisp1We call our approach complete compilation of programs. It di�ers from the usual incrementalapproach because the compilation is based on a complete set of informations about the entireprogram at compile time. Our major goal is to compile Common Lisp application programsinto e�cient C programs which are executable without a Common Lisp system and thus areportable on the basis of C source code. In order to achieve e�ciency and portability thecompiled Common Lisp language has to be restricted. The subset Common Lisp1 (CL1) ofCommon Lisp which ful�ls the intended purpose is de�ned in this section. CL1 is intendedto be our proposal for the programming language Common Lisp. CL1 di�ers from CommonLisp as follows:� CL1 does not allow interpreter calls at runtime of programs.For the sake of e�ciency we do not support the interpretation of data as programs atruntime. Therefore all functional objects which might be called within a program, are knownat compile time. Thus, the compiler is enabled to perform global program optimizations.� Symbols do not have a function cell.� Double declarations and incomplete code are rejected.Usually LISP systems use the function cell of a symbol to store the global function de�ni-tion named by the symbol. Without the function cell of a symbol and without rede�nitionsof functions at runtime the function bindings can be completely determined at compile time.This allows direct function calls without using the function cell (block compilation [Ste90]).� User de�ned macros are completely expanded at compile time.User de�ned macro bodies are syntactically restricted to be simple BACKQUOTE-forms asthey are de�ned below. Runtime macro expansions, which would cause in interpreter callsat runtime, are not allowed. There is no need of linking macro expansion functions into thecompiled code.� Forms that have to be evaluated at compile time are restricted to be simple BACKQUOTE-forms.The compilation of certain forms involve the interpretation of data as programs at compiletime. Those forms are restricted to be simple BACKQUOTE-forms, i.e. forms which CLICC asa CL1 program is able to evaluate at compile time.Version 1.1 3 January 20, 1992

2.1 Syntax and Context ConditionsThe subject of this section is to give an overview of the syntax of Common Lisp1. We alsodescribe the context conditions which have to hold for CL1 programs in addition to thoseadopted from the Common Lisp language de�nition. The complete syntax de�nition is givenin appendix A. The set of implemented data types and standard functions is described insection 2.2. Appendix B de�nes the implemented system macros and their expansion rules.We propose the notion of a Common Lisp1 application program which is de�ned bycl1-program ::= f top-level-form g�where top-level-forms are de�ned bytop-level-form ::=(IN-PACKAGE package-name &key :nicknames :use) j(LOAD �le-name) j: : :(DEFVAR name [initial-value [documentation]]) j: : :(DEFMACRO name bq-lambda-list [doc-string] bq-form) j(DEFUN name lambda-list [[fdeclaration g� j doc-string]] f form g�) j: : :form.A Common Lisp1 program is de�ned as a sequence of top level forms which can be devidedinto function de�nitions, declarations, and expressions or statements. Code is generated bythe compiler for function de�nitions via (DEFUN : : :) and top level form's. Pure declarationslike the special declaration (DEFVAR name) just change the compile time environment, e.g.(DEFVAR name) globally declares name to denote a dynamically scoped variable. In general,most of the declarations are top level statements, too, e.g. (DEFVAR name initial-value) meansthe pure declaration as well as the top level assignment of the result of initial-value to name.Declarations are collected as annotations to the abstract representation of the programor change the compiletime environment, whereas top level expressions and statements makeup the main part of the program.Rede�nitions and redeclarations of functions, macros, types, SETF-methods, and structuresare rejected. Especially system functions must not be rede�ned.Global special declarations for a variable must occur before the �rst binding of the variableis processed by the compiler.User de�ned macros are inserted into the compiler environment. Entries of user de�nedmacros are used to expand macro calls of the form (name : : :) into the resulting bq-form atcompile time. Therefore (DEFMACRO : : :) can be seen as a pure declaration in CL1 and we donot have to generate code for macro expansion functions. Init forms in macro parameter listsas well as the macro body are restricted to be bq-forms:bq-form ::= atom j (QUOTE s-expr) j bq-callbq-call ::= (CONS bq-form bq-form) j(LIST f bq-form g�) j(LIST* f bq-form g�) j(APPEND f bq-form g�) jVersion 1.1 4 January 20, 1992

Macro de�nitions have to preceed their �rst use, and variables which occur in a simple BACK-QUOTE-form have to be bound by the enclosing lambda expression.Common Lisp system functions like (LOAD : : :) or (IN-PACKAGE : : :) are de�ned to be toplevel forms in CL1.IN-PACKAGE causes di�erent actions at compile time and runtime. At compile time itchanges the compiler environment, such that the symbols of the subsequent program textare included into the package package-name. At runtime it changes the current package topackage-name. IN-PACKAGE forms are restricted to have only constant arguments. Packagequali�ers to symbols are allowed in CL1, but the appropriate (IN-PACKAGE : : :) form has topreceed the �rst occurance of a quali�ed symbol. Sidee�ects to the symbol packages of thecompiler and runtime system, i.e. CLICC and RUNTIME, are not allowed. Thus, user programsmust not use SHADOW, SHADOWING-IMPORT, (UN)EXPORT, (UN)USE-PACKAGE or IMPORT formswhich in
uence one of the packages CLICC or RUNTIME.(LOAD �le-name) is replaced by the contents of �le-name at compile time. Thus, LOAD andREQUIRE are restricted to be used only as top level forms which are expanded syntactically.PROVIDE just changes the compile time environment to record the module provided.2.2 Data Types and Standard FunctionsWe have implemented many of the Common Lisp data types and standard functions. Someof the functions are not yet implemented, others will not be implemented at all since ourapproach of complete compilation classi�es them to be part of the programming environmentor to cause evaluation of data at runtime. There are some problems to implement bignumsin C portably and e�ciently. Moreover, most pathname and time functions are not portablyimplementable. But most of the Common Lisp functions we do not support at present areeasily implementable. Up to now only their large number prevented us from doing so.Data TypesWe give an overview of the implemented data types and the corresponding standard functionsin the same order as the data types are described in the chapter \DATA TYPES" in [Ste90].NumbersIntegers with limited precision (�xnums) are implemented using the C data type long. Over-
ows are not detected, e.g (+ 1 MOST-POSITIVE-FIXNUM) results in MOST-NEGATIVE-FIXNUM.It is not possible to implement integers with arbitrary precision (bignums) in a portable ande�cient manner in C. All of the functions which deal with integers are implemented. Ratiosand complex numbers are not yet implemented, but there are no di�culties to do so. The fourpossible
oating-point types of Common Lisp are implemented as one type using the C datatype double. It conforms with the Common Lisp standard to make no di�erences betweenthe
oating-point types. One could use the C data type float to implement a
oating-pointtype of di�erent precision. We have implemented only a few of the functions which deal with
oating-point numbers. Input and output of
oating-point numbers is incomplete but usableat present. (E.g. *READ-DEFAULT-FLOAT-FORMAT* is not supported).CharactersStandard-characters and semi-standard characters are supported. Non-standard charactersand character attributes are not implemented. Character attributes are optional in [Ste84]Version 1.1 5 January 20, 1992

and removed in [Ste90]. All character functions which do not access character attributes areimplemented.SymbolsSymbols are completely implemented but they do not have a function cell. Therefore SYMBOL-FUNCTION,FBOUNDP, FMAKUNBOUND, SPECIAL-FORM-P are not implemented.Lists and ConsesLists and Conses are completely implemented.ArraysArrays are implemented and we support specialized arrays for characters, �xnums and
oats.Specialized arrays of bits are not yet implemented and therefore the data type bit-vector isnot supported. Arrays with �ll pointers, displaced arrays and adjustable arrays as well asthe corresponding functions are implemented.Hash-TablesHash-tables are not yet implemented.ReadtablesReadtables are completely implemented. It is possible to de�ne macro characters. We haveimplemented the function SET-SYNTAX-FROM-CHAR to be applicable to macro characters too,which causes some problems in other LISP implementations. We have not yet implementedall of the prede�ned read macros.PackagesPackages are implemented as described in [Ste84]. We did not consider changes and extensionsof [Ste90] yet. The package functions are implemented too, but only IN-PACKAGE is recognizedby CLICC as a toplevel declaration during the compilation process.PathnamesPathnames are not yet implemented. It is not possible to implement them in a portable way,because the corresponding functions are highly operating system dependent. At present weuse strings instead of pathnames in functions like OPEN.StreamsOnly character streams are implemented at the moment. The stream *TERMINAL-IO* andthe streams which are generated by the function OPEN are links to �le descriptors of theunderlying operating system. We use only functions of the C standard library to implementstreams and stream functions, hence we can generate portable code which is independent ofthe operating system.Random-StatesRandom-states are not yet implemented.StructuresStructures are implemented to a great extent. The type speci�cations of slots are not checked.The structure de�nition options :TYPE and :INITIAL-OFFSET and BOA constructors (ByOrder of Arguments) are not supported yet.FunctionsFUNCTION is the only special form which yields functions. Symbols and lambda lists are notof type function and in CL1 there is no possibilty to convert them into a function. All dataobjects of type function are compiled functions. All the standard functions which are de�nedon the type function (e.g. APPLY) will abort with an error message, if they are called with aVersion 1.1 6 January 20, 1992

symbol or lambda list instead of a functional object as argument.Other Standard FunctionsThe following gives a description of the functions which are not or only partially implementedand which are not related to data types. The functions are ordered corresponding to the chap-ters of [Ste90].Type Speci�ersThe function COERCE is implemented only partially. The function TYPE-OF is not implemented.PredicatesThe function TYPEP is expanded at compile time if possible. The runtime version of TYPEPis restricted to be applicable to simple type speci�ers like FIXNUM or CHARACTER etc.. Thefunction SUBTYPEP is implemented only for a few types. Most of the other predicates areimplemented if the corresponding data types are implemented.Control StructureThe functions GET-SETF-METHOD and GET-SETF-METHOD-MULTIPLE-VALUE are not and willnot be implemented because all SETF forms have to be expanded at compile time.MacrosThe functions MACRO-FUNCTION, MACROEXPAND and MACROEXPAND-1 are not implemented be-cause macros are expanded at compile time. These functions will not be implemented in thefuture.SequencesMost of the sequence functions are implemented. We left out some complex functions likeSORT which may be added without problems.The EvaluatorThe function EVAL is not implemented.Input/OutputAll of the input/output functions are implemented, but most of them do not have their fullfunctionality. E.g. the function FORMAT does not accept all of the possible control directives.File System InterfaceThe functions OPEN, PROBE-FILE, FILE-POSITION and FILE-LENGTH are implemented. Thefunction LOAD is expanded at compile time and may not be used at runtime because we donot support incremental compilation and dynamic loading. All other functions which aredescribed in that chapter are not implemented.ErrorsOnly the functions ERROR and WARN are implemented. The functions CERROR and BREAKcannot be used, because we do not support break loops.Miscellaneous FeaturesOnly the function IDENTITY is implemented. The functions dealing with the compiler or thedebugging tools cannot be used. The functions for environment inquiries could be imple-mented in the future, but there are problems to implement time functions portably.Version 1.1 7 January 20, 1992

3 Compilation of Common Lisp1 Programs to CCLICC is a multi pass compiler. The frontend uses di�erent passes to compile CL1 pro-grams into an abstract representation of an intermediate or kernel language which we callCommon Lisp0 (CL0). In a �rst pass user de�ned macro calls and system macro calls areexpanded using a source to source code transformation. An example is given in section 3.1.Declarations are collected into compile time data structures which are part of the abstractrepresentation of the program. This second pass is not decribed here. We refer to [Bur91]for more details. In section 3.2 we describe global program analysis. In a �nal pass C codeis generated. The code generation is subject of section 3.3.3.1 Source Code TransformationWe will demonstrate the expansion of system macro calls according to the expansion rulesgiven in appendix B by the following example. This small part of a CL1 program iterates overan input list list, searching for occurances of the object search, and prints their indices, iffound. (DO ((index 0 (1+ index))(tmp-list list (cdr tmp-list)))((null tmp-list))(WHEN (eq (car tmp-list) search)(print index)(RETURN)))The expansion of DO results in:(PROG ((index 0)(tmp-list list))g001 ;; g001 is a new generated symbol to prevent name clashes(WHEN (null tmp-list) (RETURN (PROGN)))(WHEN (eq (car tmp-list) search)(print index)(RETURN))(PSETQ index (1+ index) tmp-list (cdr tmp-list)))The expansion of PROG yields:(BLOCK nil(LET ((index 0)(tmp-list list))(TAGBODYg001(WHEN (null tmp-list) (RETURN (PROGN)))(WHEN (eq (car tmp-list) search)Version 1.1 8 January 20, 1992

(print index)(RETURN))(PSETQ index (1+ index) tmp-list (cdr tmp-list)))))A LET special form is transformed into the corresponding LAMBDA application. The WHENmacro calls are expanded into equivalent IF forms.(BLOCK nil((LAMBDA (index tmp-list)(TAGBODYg001(IF (null tmp-list)(PROGN (RETURN (PROGN)))nil)(IF (eq (car tmp-list) search)(PROGN (print index)(RETURN))nil)(PSETQ index (1+ index) tmp-list (cdr tmp-list))))0 list))After expansion of RETURN and PSETQ and some optimizations this yields the following�nal result form:(BLOCK nil((LAMBDA (index tmp-list)(TAGBODYg001(IF (null tmp-list)(RETURN-FROM nil nil)nil)(IF (eq (car tmp-list) search)(PROGN (print index)(RETURN-FROM nil nil))nil)(SETQ index((LAMBDA (g002) ;; g002 is a new generated symbol(SETQ tmp-list (cdr tmp-list))g002)(1+ index)))))0 list))Version 1.1 9 January 20, 1992

3.2 Global Program AnalysisThe complete compilation of programs enables the compiler to perform global program anal-ysis. The goal of such an analysis is to get informations about the behaviour of the programthat allow the generation of more e�cient code. Up to now there are two global analysismethods implemented in our compiler.The �rst concerns the check of passing a correct number of arguments to a function. Ingeneral LISP systems have to perform this check at runtime because the arity of a functionmay change in the development process. In our case the arities of all used functions are known.This fact enables us to perform a partial check of correct parameter passing at compile time.Parameter passing can only be checked partially at compile time since the complex mechanismof Common Lisp parameter lists (e.g. &key parameters) allow the de�nition of functions witha varying number of arguments. These functions still need a runtime check.The other implemented analysis method infers information about the number of values aform returns. This kind of information is called multiple value information. It is used in thecode generation pass to generate code that handles multiple values e�ciently.To determine how many values a function may return, all forms in the body of the functionwhich eventually produce the result, have to be analysed. These can be variables, specialforms (in this case the analysis has to step through the subforms), or function calls.The analysis method is implemented as a two stage algorithm. In the �rst stage for eachfunction we associate the multiple value information infered by some rules describing thebehaviour of LISP forms w.r.t. the passing of multiple values. Together with that informationeach function f is associated with all functions called in the body of f which yield the resultvalues of f .The second stage of the algorithm solves the dependencies of the multiple value informa-tions using a �xpoint iteration.Example:(defun even-fac (acc n)(if (zerop n) acc (odd-fac (* acc n) (1- n))))(defun odd-fac (acc n)(even-fac (* acc n) (1- n)))Figure 1:The function de�nitions of �gure 1 leads to the following multiple value information inthe �rst stage of the algorithm:even-fac : returns one value (acc) and calls odd-fac.odd-fac : calls even-fac.The second stage of the algorithm resolves this system of dependencies and as the �nalresult it yields the information that both functions deliver exactly one value.3.3 Code GenerationThe target language for CLICC is C as it is described in [KR83]. We do not use ANSI-C, because today it is not widely used as a standard. C serves as a portable high levelVersion 1.1 10 January 20, 1992

machine language. There is no direct correspondence between the language constructs of CL1and those of C. Most of the constructs of CL1 have to be compiled into simpler constructsin C. Common Lisp1 functions are compiled into C functions which play the role of lowlevel subroutines. In C there are only global functions using the same global environment.The function concept of CL1 includes nested function de�nitions, functional arguments andfunctional results (closures). Common Lisp1 has a complex parameter passing mechanism.The order of evaluation of the parameters is speci�ed as 'left to right'. In general, variablesare statically scoped but they can be declared as dynamically scoped. We have to managefree local variables of local functions. Local Variables are allocated in the heap, if they occurfree in closures, otherwise they are allocated in the LISP stack. We don't use the C runtimestack but a seperate LISP stack for parameter passing and the allocation of local variables.This allows us to determine the order of evaluation of parameters and the garbage collectorhas access to local variables when it needs to �nd all the references to data objects in theheap. The language constructs of CL1 for non local control transfer allow non local functionexits. They are implemented using the setjmp and longjmp constructs of C.An ExampleThe following example shows a very simple CL1 program and the generated C source code.(in-package "USER" :use '("LISP"))(defun list-copy (x)(cond((null x) nil)(T (cons (car x) (list-copy (cdr x))))))(print (list-copy (list 1 *x* "string")))The generated code consists of two C functions. The �rst is the compilation of list-copy,the second is the compilation of the main part of the original CL1 program, which consistsof the code for (in-package "USER" :use '("LISP")) and (print (list-copy (list 1*x* "string") in our example. The header �les <c decl.h> and <fun decl.h> containtype de�nitions, macro de�nitions and function declarations used by the generated code.The included �le "list-copy.h" is described below.The C main function is part of the CLICC runtime library. It initializes the runtimesystem and calles the function Flisp main.#include <c_decl.h>#include <fun_decl.h>#include "list-copy.h"U1_LIST_COPY(base)CL_FORM *base;{ if(!(base[0].tag != CL_NIL)){ base[0].tag = CL_NIL;base[0].val.form = (CL_FORM *)&symbols[0];}Version 1.1 11 January 20, 1992

else{ base[1] = base[0];Fcar(&base[1]);base[2] = base[0];Fcdr(&base[2]);U1_LIST_COPY(&base[2]);Fcons(&base[1]);base[0] = base[1];}}Flisp_main(base)CL_FORM *base;{ base[0].tag = CL_SMSTR;base[0].val.form = (CL_FORM *)&const_forms[0];base[1].tag = CL_SYMBOL;base[1].val.form = (CL_FORM *)&symbols[SYMSIZE * 69];base[2].tag = CL_CONS;base[2].val.form = (CL_FORM *)&const_forms[4];Fin_package(&base[0], 3);base[0].tag = CL_FIXNUM;base[0].val.i = 1;base[1] = (CL_FORM *)&symbols[SYM_SIZE * 223 + OFF_SYM_VALUE];base[2].tag = CL_SMSTR;base[2].val.form = (CL_FORM *)&const_forms[6]);Flist(&base[0], 3);U1_LIST_COPY(&base[0]);Fprint(&base[0], 1);}LISP functions are translated into C functions. The identi�ers of LISP functions cannotbe transformed directly into C identi�ers. The identi�er list-copy gets the pre�x U1 (�rstuser de�ned function). This prevents name con
icts even if the C compiler recognizes onlythe �rst few characters of an identi�er.We have to introduce a seperate LISP stack for parameter passing and local variables.Every translated LISP function gets a parameter base, which contains a pointer to the startof the activation record of the function. Activation records are subsequently allocated in theLISP stack if a function is called and they are deallocated if the execution of the functionterminates. The result of a function call is stored into the �rst entry of the activation record.The number of actual parameters is checked at compile time, if possible. Functions whichallow a variable number of parameters get an additional C parameter, which describes thenumber of actual parameters. See for instance the function calls of Flist and Fprint inFlisp main.The constants "USER", '("LISP") and "string" are translated into initialisation code forthe C array const forms. The symbols, i.e NIL, and global variables, i.e. *x*, are translatedinto the initialisation code for the C array symbols. The de�nitions of these arrays are putinto the �le "list-copy.h" which is not shown here. The array symbols contains all of theVersion 1.1 12 January 20, 1992

symbols de�ned by the compiled program and the runtime system. The in-package top levelform is compiled into the �rst seven lines of Flisp main.LISP data objects are translated into C data objects of the type CL FORM, which containvalue and type information. Thus, for example, the assignment of NIL to the result positionof U1 LIST COPY in the �rst if clause is performed by assigning CL NIL to the tag �eld andthe appropriate value to the val.form �eld.We rely on the optimizations performed by the C compiler. It should for instance removethe duplicate negation in the condition part of the if statement in function U1 LIST COPY.4 Generating Executable Applications
Program

(Object-Code)

CLICC-Lib I

(Object-Code)

CLICC-Lib II

(Object-Code)

CLICC-Lib I

(LISP-Code)

CLICC-Lib I

(C-Code)

Executable

Program

CLICC-Lib II

(C-Code)

Program

(C-Code)

Program

(LISP-Code)

CLICC

C-Compiler

Linker Figure 2:Executable applications are generated in three steps. CLICC translates a CL1 source �le intoa C �le as described in �gure 2. This �le is translated by the C compiler to the machinelanguage of the target machine and we get an object �le. This �le is not executable, becausethere are unresolved references to system functions of the LISP and C runtime library. Thesereferences are resolved by the linker, which generates an executable �le. It contains all thereferenced functions of the runtime libraries.The LISP system functions are handcode in C or implemented in CL1. The basic functionsare written in C (e.g. CAR, CDR, WRITE-CHAR, Garbage Collector). More complex functionsare written in LISP (e.g. PRINT, READ, package functions, most of the sequence functions).We use CLICC to translate those functions to C. The system functions are collected in twolibrary �les, which are used by the linker to generate the executable �le.Now let us take a closer look to the linking process. The generated executable �les shouldbe small, compared with the size of LISP-systems or saved images of LISP-programs whichare loaded into LISP-systems. We use the linking mechanism of C to generate executable�les of reasonable size.If a C program is linked, all needed system functions of the C runtime library are includedinto the generated executable �le. The system functions which do not occur in the translatedVersion 1.1 13 January 20, 1992

C program are not included.We want to achieve this behaviour for LISP system functions, too. They are seperatelycompiled and put into an archive �le, the CLICC runtime library. See �gure 3. In full Com-mon Lisp it is unknown at link time, which functions are to be included into the executable�le because symbols may be transformed into functions at runtime. This is impossible inCL1. Thus, we do know all the names of those system functions we have to link into theexecutable �le and we are allowed to use the linker of the target system to perform this job.
LISP-Code

C-Code

Object-Code

Executable

Code

CLICC

C-Compiler

Function 1

Function 2

Function 3

Function 4

Function N

Linker

LISP-
Runtime-Library

Figure 3:The CL1-coded system functions often call many other system functions. Thus, a largenumber of system functions is linked into the executable �les even if the source �le only usesa few of them.5 Portability and Compiler BootstrappingSince CLICC is written in CL1, it may be compiled by itself. CL1 is a strict subset of CommonLisp and therefore we are able to run CLICC within a usual Common Lisp system to compileitself to C. Whether or not CLICC is able to reproduce itself is known to be a good test fora compiling algorithm, usually called the bootstrap test. It is shown in the �gure 4.We performed this test on a SUN SPARC1 workstation, compiling CLICC to C using theoriginal CL1-program within Lucid Common Lisp to produce the �rst CLICC in C, and it'soutput compiled with the system's C compiler to generate the second. Both of the formerC programs were successfully compared with the UNIX diff command to be syntacticallyequal.The portability of CL1 programs on the basis of the generated C code is demonstrated in�gure 5 where it is shown for CLICC, which, of course, is only one example program. Ourapproach yields the portablility for every application program written in CL1.6 ConclusionsWe have de�ned an e�ciently implementable strict subset Common Lisp1 of Common Lisp,and a compiler CLICC from this subset to C source code.The compilation is divided into several passes producing di�erent intermediate programrepresentations, i.e. Common Lisp0, the abstract representation of Common Lisp0 with anno-Version 1.1 14 January 20, 1992

An Interpreter for CL ,
implemented in the Machine Language of M

C

C C

C

C

M

M M

C

C

Take Compiler as Input

Description:

A Compiler from Language L1 into Language L2,
implemented in L3

CL0

CL0 CL0

CL0

CL0 CL0

CL0

CL0

CL0

CL0

M

= ?

C

C

CL0

M

L1 L2

L3

0Figure 4:
CL1

M

Description:

A Compiler from Language L1 into Language L2,
implemented in Language L3

An Interpreter for CL ,
implemented in the Machine Language M

Machine Languages of different Machines

M 2

C

C C

CCL1

CL1 CL1

CL1

CL1

CL1

M

CCL1

M 1

M 1

C

CCL1 CCL1

M 1

M 2

C

C

M 2

1

M 1 M 2

L1 L2

L3 Figure 5:tations produced by the global program analysis, and C code. Common Lisp0 is a \minimal"kernal language to implement Common Lisp1.Further work has to be done on global analysis and optimization of programs. Typeinference would be extremely useful not only to optimize user programs but also to increasethe e�ciency of the LISP-coded runtime system functions. Moreover, the compilation ofLISP standard function calls into less generic runtime system function calls will reduce thecode length of compiled and linked executable applications.C is used as a machine oriented and portable target language. Although, of course,machine code generation for special machine architectures can produce more e�cient codethan portable C code ever can be, the price we actually have to pay for the sake of portablilityis not yet clear. Of course, C code generation directly bene�ts from C compiler improvements.Version 1.1 15 January 20, 1992

7 References[AG87] D. Ackermann and W. Goerigk. Das Projekt: �Ubersetzung von Wissensbasen. InWorkshop der Fachgruppe 2.1.4. "Alternative Konzepte f�ur Sprachen und Rech-ner\ der Gesellschaft f�ur Informatik, Bad Honnef, 1987.[AGS88] D. Ackermann, W. Goerigk, and F. Simon. Kompilation von Wissensrepr�asen-tationssprachen am Beispiel von BABYLON. Institutsbericht Nr. 8810, Institutf�ur Informatik und Prakt. Math. der Christian-Albrechts Universit�at, Kiel, 1988.Also published as chapter 8 in [CdV89].[Bur91] O. Burkart. Das Frontend eines Compilers von Common Lisp nach C. Master'sthesis, Institut f�ur Informatik und Prakt. Math. der Christian-Albrechts Univer-sit�at, Kiel, 1991.[CdV89] Th. Christaller, F. diPrimio, and A. Vo�, editors. Die KI{Werkbank BABYLON.Addison{Wesley, Bonn, 1989.[Knu91] H. Knutzen. Codegenerierung und Laufzeitsystem eines Compilers von Com-mon Lisp nach C. Master's thesis, Institut f�ur Informatik und Prakt. Math. derChristian-Albrechts Universit�at, Kiel, 1991.[KR83] B.W. Kernighan and D.M. Ritchie. Programmieren in C. Hanser Verlag,M�unchen, Wien, 1983.[MAE+62] J. McCarthy, P.W. Abrahams, D.J. Edwards, T.P. Hart, and M.I. Levin. LISP1.5 Programmer's Manual. The MIT Press, Cambridge, MA, 1962.[McC60] J. McCarthy. Recursive Functions of Symbolic Expressions and their Computa-tion by Machine, Part I. In Communications of the ACM, number 4 in Vol. 3,1960.[Ste84] G.L. Steele. Common Lisp: The Language. Digital Press, Burlington, 1984.[Ste90] G.L. Steele. Common Lisp: The Language. Second Edition. Digital Press, Bedford,MA, 1990.[TM86] Y. Taiichi and H. Masami. Kyoto Common Lisp Report. Technical report, Rese-arch Institute for Mathematical Science, Kyoto University, 1986.
Version 1.1 16 January 20, 1992

A The Syntax of Common Lisp1The Syntax of Common Lisp1 programs is de�ned by the following grammar:cl1-program ::= f top-level-form g�top-level-form ::=(IN-PACKAGE package-name &key :nicknames :use) j(PROVIDE module-name) j(REQUIRE module-name) j(LOAD �le-name) j(PROCLAIM decl-spec-form) j(DEFVAR name [initial-value [documentation]]) j(DEFPARAMETER name initial-value [documentation]) j(DEFCONSTANT name initial-value [documentation]) j(DEFTYPE name bq-lambda-list [doc-string] bq-form) j(DEFSETF access-fn f update-fn [doc-string] jbq-lambda-list (store-variable)[doc-string] bq-form g) j(DEFSTRUCT name-and-options [doc-string] f slot-description g�) j(DEFMACRO name bq-lambda-list [doc-string] bq-form) j(DEFUN name lambda-list [[fdeclaration g� j doc-string]] f form g�) j(PROGN f top-level-form g�) jformform ::= atom j callatom ::= self-evaluating-form j symbolcall ::= special-form j macro-call j fn-callbq-form ::= atom j (QUOTE s-expr) j bq-callbq-call ::= (CONS bq-form bq-form) j(LIST f bq-form g�) j(LIST* f bq-form g�) j(APPEND f bq-form g�) jspecial-form ::=(QUOTE s-expr) j(FUNCTION fn) j(SETQ var form) j(PROGN f form g�) j(LET (f var j (var [value])g�) fdeclaration g� f form g�) j(LET* (fvar j (var [value])g�) fdeclaration g� f form g�) j(PROGV symbols values f form g�) j(LABELS (f (name lambda-list [[fdeclaration g� j doc-string]] f form g�) g�)fdeclaration g� f form g�) j(FLET (f (name lambda-list [[fdeclaration g� j doc-string]] f form g�) g�)fdeclaration g� f form g�) j(IF test then else) j(BLOCK name f form g�) j(RETURN-FROM name result) j(TAGBODY f tag j statement g�) jVersion 1.1 17 January 20, 1992

(GO tag) j(MULTIPLE-VALUE-CALL function f form g�) j(MULTIPLE-VALUE-PROG1 form f form g�) j(CATCH tag-form f form g�) j(UNWIND-PROTECT protected-form f cleanup-form g�) j(THROW tag-form result) j(THE value-type form)macro-call ::= (name f s-expr g�)fn-call ::= (fn f form g�)fn ::= symbol j lambda-exprlambda-expr ::= (LAMBDA lambda-list [[fdeclaration g� j doc-string]] f form g�)lambda-list ::= (f var g�[&optional f var j (var [initform [svar]])g�][&rest var][&key f var j (fvar j (keyword var)g [initform [svar]])g�[&allow-other-keys]][&aux f var j (var [initform]) g�])bq-lambda-list ::= (f var g�[&optional f var j (var [bq-form [svar]])g�][&rest var][&key f var j (fvar j (keyword var)gg�[&allow-other-keys]][&aux f var j (var [bq-form]) g�])declaration ::= (DECLARE f decl-specg�)decl-spec-form ::= (QUOTE decl-spec)decl-spec ::= (SPECIAL f var g�) j (INLINE fname g�) j (NOT-INLINE fname g�) j(IGNORE f var g�)name-and-options ::= name j (name f struct-option g�)struct-option ::= :CONC-NAME j (:CONC-NAME fNIL j generalized-stringg) j:CONSTRUCTOR j (:CONSTRUCTOR symbol) j:PREDICATE j (:PREDICATE symbol) j:COPIER j (:COPIER symbol) j:INCLUDE j (:INCLUDE name f slot-description g�) j:PRINT-FUNCTION j (:PRINT-FUNCTION fn)slot-description ::= name j (name [initial-value f slot-option g�])slot-option ::= (:TYPE type) j (:READ-ONLY form)s-expr ::= atom j (s-expr . s-expr)doc-string, documentation, �le-name ::= stringpackage-name, module-name ::= generalized-stringname, var, svar, access-fn, update-fn, store-variable ::= symbolVersion 1.1 18 January 20, 1992

initial-value; initform; valuesymbols; valuestest; then; elseresultfunction; tag-formprotected-form; cleanup-form 9>>>>>>>=>>>>>>>; ::= formstatement ::= callgeneralized-string ::= (QUOTE symbol) j string j charactervalue-type and type are Common Lisp datatypes.self-evaluating-form is a LISP value, which is neither a symbol nor a list.The following non-terminals represent data objects of the speci�ed datatype:symbol 2 SYMBOL,keyword 2 KEYWORD,character 2 CHARACTER,string 2 STRING andtag 2 INTEGER [SYMBOL.B Expansion of CL1 System MacrosThe expansion of the prede�ned system macros is decribed in terms of source to source codetransformations.(AND) � T(AND form) � form(AND form . more-forms) � (IF form (AND . more-forms) NIL)(OR) � NIL(OR form) � form(OR atom . more-forms) � (IF atom atom (OR . more-forms))(OR call . more-forms) � (LET ((newsym call))(IF newsym newsym (OR . more-forms))(PSETQ) � NIL(PSETQ var form) � (PROGN (SETQ var form) NIL)(PSETQ var form � (PROGN. more-var-form-pairs) (SETQ var(PROG1 form(PSETQ . more-var-form-pairs))NIL)(PROG1 first � (LET ((newsym first))form1 : : : formn) form1 : : : formn newsym)(PROG2 first second � (PROGN first. more-forms) (PROG1 second . more-forms))(WHEN test . more-forms) � (IF test (PROGN . more-forms) NIL)Version 1.1 19 January 20, 1992

(UNLESS test . more-forms) � (IF (NOT test) (PROGN . more-forms) NIL)(COND) � NIL(COND � (IF antecedent(antecedent . more-forms) (PROGN . more-forms). more-clauses) (COND . more-clauses))(COND (antecedent) � (OR antecedent. more-clauses) (COND . more-clauses))(COND (antecedent)) � (VALUES antecedent)(CASE atom � (COND(key1 . forms1) (test1 . forms1)� � � � � �(keyn . formsn) (testn . formsn)where testi = T, if keyi = T orkeyi = OTHERWISEtesti = (OR), if keyi = ()testi = (EQL keyi atom), if keyi atomictesti = (OR (EQL keyi1 atom): : :(EQL keyim atom)), if keyi = (keyi1 : : : keyim)(CASE call � (LET ((newsym call)). clauses) (CASE newsym. clauses)(TYPECASE atom � (COND(type1 . forms1) (test1 . forms1)� � � � � �(typen . formsn) (testn . formsn)where testi = T, if keyi = T orkeyi = OTHERWISEtesti = (TYPEP atom (QUOTE keyi)), otherwise(TYPECASE call � (LET ((newsym call)). clauses) (TYPECASE newsym. clauses)(RETURN) � (RETURN-FROM NIL NIL)(RETURN result) � (RETURN-FROM NIL result)(LOOP . forms) � (BLOCK NIL(TAGBODY newsym(PROGN . forms)(GO newsym)))(DO (f var [init [step]] g�) � (PROG (f var [init] g�)(end-test . result-forms) fdeclaration g�f declaration g� newsymf tag j statement g� (WHEN end-test) (RETURN (PROGN . result-forms))Version 1.1 20 January 20, 1992

f tag j statement g�(PSETQ f[var step] g�)(GO newsym))(DO* (f var [init [step]] g�) � (PROG* (f var [init] g�)(end-test . result-forms) fdeclaration g�f declaration g� newsymf tag j statement g� (WHEN end-test) (RETURN (PROGN . result-forms))f tag j statement g�(SETQ f [var step] g�)(GO newsym))(DOLIST (var listform � (DO (var[resultform]) (newsym (THE (LIST (VALUES listform)))f declaration g� (CDR newsym))f tag j statement g�)) ((ATOM newsym)(SETQ var NIL) [resultform])fdeclaration g�(SETQ var (CAR newsym))f tag j statement g�)(DOTIMES (var countform � (DO ((newsym countform)[resultform]) (var 0 (1+ var))f declaration g�)f tag j statement g� ((>= var newsym) [resultform])) (DECLARE (FIXNUM var newsym))fdeclaration g�f tag j statement g�)(PROG f (var [init]) g� � (BLOCK NILf declaration g� (LET (f (var [init]) g�)f tag j statement g� f declaration g�) (TAGBODY f tag j statement g�)))(PROG* f (var [init]) g� � (BLOCK NILf declaration g� (LET* (f(var [init]) g�)f tag j statement g� f declaration g�) (TAGBODY f tag j statement g�)))(MULTIPLE-VALUE-LIST form) � (MULTIPLE-VALUE-CALL #'LIST form)(MULTIPLE-VALUE-BIND � (MULTIPLE-VALUE-CALL(f var g�) values-form #'(LAMBDA (&OPTIONAL f var g�f declaration g� &REST newsym)f form g� (DECLARE (IGNORE newsym))) f declaration g�f form g�)values-form)Version 1.1 21 January 20, 1992

(MULTIPLE-VALUE-SETQ � (MULTIPLE-VALUE-BIND (newsym1 : : : newsymn)(var1 : : : varn) form) form(SETQ var1 newsym1 : : : varn newsymn)newsym1)(LOCALLY fdeclaration g� � ((LAMBDA () fdeclaration g� f form g�))f form g�)(DO-SYMBOLS � (BLOCK NIL(var [package [result]]) (rt::DO-SYMBOLS-ITERATORf declaration g� #'(LAMBDA (var)f tag j statement g� fdeclaration g�) (TAGBODY f tag j statement g�))[package])(LET ((var NIL))f declaration g� [result]))(DO-EXTERNAL-SYMBOLS � (BLOCK NIL(var [package [result]]) (rt::DO-EXTERNAL-SYMBOLS-ITERATORf declaration g� #'(LAMBDA (var)f tag j statement g� fdeclaration g�) (TAGBODY f tag j statement g�))[package])(LET ((var NIL))f declaration g� [result]))(DO-ALL-SYMBOLS � (BLOCK NIL(var [result]) (rt::DO-ALL-SYMBOLS-ITERATORf declaration g� #'(LAMBDA (var)f tag j statement g� fdeclaration g�) (TAGBODY f tag j statement g�)))(LET ((var NIL))f declaration g� [result]))(WITH-OPEN-STREAM � (LET ((var stream))(var stream) fdeclaration g�f declaration g� (UNWIND-PROTECTf form g� (PROGN f form g�)) (CLOSE var)))(WITH-INPUT-FROM-STRING � (WITH-OPEN-STREAM(var string (var (MAKE-STRING-INPUT-STREAM&key index (start 0) end) string start end))f declaration g� fdeclaration g�f form g� (MULTIPLE-VALUE-PROG1) (PROGN f form g�)[(SETF index (FILE-POSITION var))]))(WITH-OUTPUT-TO-STRING � (WITH-OPEN-STREAM(var [string]) (var (MAKE-STRING-OUTPUT-STREAM [string])f declaration g� fdeclaration g�Version 1.1 22 January 20, 1992

f form g� f form g�) [(GET-OUTPUT-STREAM-STRING var)])(WITH-OPEN-FILE � (LET ((stream (OPEN filename f option g�))(stream filename f option g�) (newsym T))f declaration g� fdeclaration g�f form g� (UNWIND-PROTECT) (MULTIPLE-VALUE-PROG1(PROGN f form g�)(SETQ newsym NIL))(WHEN (STREAMP stream)(CLOSE stream :ABORT newsym))))The following expansion rules are used for the macros which allow the access to generalizedvariables, whereplace � (access-fn arg1 : : : argn),access-form � (access-fn tmp1 : : : tmpn), andstore-form � (SETF access-form store-var),or place � var,access-form � var, andstore-form � (SETQ var store-var).(PSETF place1 newvalue1 � (LET* ((tmp11 arg11) : : : (tmp1m1 arg1m1): : : (store-var1 newvalue1)placen newvaluen) : : :(tmpn1 argn1) : : : (tmpnmn argnmn)(store-varn newvaluen))store-form1 : : : store-formn NIL)(SHIFT place1 : : : placen � (LET* ((tmp11 arg11) : : : (tmp1m1 arg1m1)newvalue) (tmp-shifted-out access-form1)(tmp21 arg21) : : : (tmp2m2 arg2m2)(store-var1 access-form2)): : :(tmpn1 argn1) : : : (tmpnmn argnmn)(store-varn newvalue))store-form1 : : : store-formntmp-shifted-out)(ROTATEF) � NIL(ROTATEF place) � (PROGN place NIL)(ROTATEF place1 : : : placen) � (LET* ((tmp11 arg11) : : : (tmp1m1 arg1m1)(store-varn access-form1)(tmp21 arg21) : : : (tmp2m2 arg2m2)(store-var1 access-form2))Version 1.1 23 January 20, 1992

: : :(tmpn1 argn1) : : : (tmpnmn argnmn)(store-varn�1 access-formn))store-form1 : : : store-formn NIL)(INCF place) � (INCF place 1)(INCF place delta) � (LET* ((tmp1 arg1) : : : (tmpn argn)(store-var (+ access-form delta))store-form)(DECF place) � (DECF place 1)(DECF place delta) � (LET* ((tmp1 arg1) : : : (tmpn argn)(store-var (- access-form delta))store-form)(PUSH item var) � (SETQ var (CONS item var))(PUSH � (LET* ((tmp1 arg1) : : : (tmpn argn)item (store-var (CONS item access-form))(access-fn arg1 : : : argn)))store-form)(PUSHNEW item var � (SETQ var. key-value-pairs) (ADJOIN item var . key-value-pairs))(PUSHNEW � (LET* ((tmp1 arg1) : : : (tmpn argn)item (store-var (ADJOIN item access-form(access-fn arg1 : : : argn) . key-value-pairs)). key-value-pairs))store-form)(POP var) � (PROG1 (FIRST var)(SETQ var (REST var)))(POP (access-fn arg1 : : : argn)) � (LET* ((tmp1 arg1) : : : (tmpn argn)(store-var access-form))(PROG1 (FIRST store-var)(SETQ store-var (REST store-var))store-form))
Version 1.1 24 January 20, 1992

