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Abstract. In this work, we study the characteristics of a stably stratified atmospheric boundary
layer using large-eddy simulation (LES). In order to simulate the stable planetary boundary layer, we
developed a modified version of the two-part subgrid-scale model of Sullivan et al. This improved
version of the model is used to simulate a highly cooled yet fairly windy stable boundary layer with
a surface heat flux of 〈wθ〉o =−0.05 m K s−1 and a geostrophic wind speed of Ug = 15 m s−1. Flow
visualization and evaluation of the turbulence statistics from this case reveal the development of a
continuously turbulent boundary layer with small-scale structures. The stability of the boundary layer
coupled with the presence of a strong capping inversion results in the development of a dominant
gravity wave at the top of the stable boundary layer that appears to be related to the most unstable
wave predicted by the Taylor–Goldstein equation. As a result of the decay of turbulence aloft, a
strong-low level jet forms above the boundary layer. The time dependent behaviour of the jet is
compared with Blackadar’s inertial oscillation analysis.
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1. Introduction

While the convective atmospheric boundary layer has historically been studied in
great detail, its nocturnal counterpart, the stable boundary layer (SBL), has been
somewhat neglected. This is due mainly to the difficulties associated with examin-
ing the stable boundary layer observationally, theoretically, and computationally as
the stable boundary layer can range from being fully turbulent to highly intermittent
depending upon the counteracting forces of buoyancy damping and shear produc-
tion. The SBL is also complicated by additional characteristics such as sensitivity
to sloping terrain, the presence of low-level jets, and the development of gravity
waves (Stull, 1988; Mahrt, 1998). All of these factors contribute to the unsteady
and variable nature of the SBL.
However, these complications do not outweigh the importance of studying and

understanding the SBL. In addition to being of fundamental interest, SBL turbu-
lence can have a day to day impact on our lives. For example, the effects of stability
lead to a decrease in turbulent vertical mixing that under normal circumstances
allows dispersion of contaminants injected into the atmosphere. This behaviour
can lead to the development of horizontal layering of pollutants, which can build
up over time if the boundary layer is very stable.
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Numerical simulations have been one of the key components used to study the
atmospheric boundary layer. In particular, large-eddy simulation (LES) has been
successful in studying convective and neutrally stratified boundary layers (Moeng,
1984; Moeng and Sullivan, 1994; Sullivan et al., 1994, 1996). In LES, only the
large-scale structures resolved by the computational grid are directly simulated
while the effects of the small scales that fall below the grid resolution are paramet-
erized by a subgrid-scale (SGS) model. More recently, LES has also been applied
in a number of studies investigating the stable boundary layer.
One of the first LES of the SBLwas performed byMason and Derbyshire (1990)

using a Smagorinsky SGS-based model. This original attempt was important in
demonstrating the feasibility of using LES to simulate the weakly stable boundary
layer. In their work, typical turbulent statistics and profiles were examined and
comparisons were made with the second-order closure model of Brost and Wyn-
gaard (1978), the gradient closure models of Hunt (1985) and the local scaling
theory of Nieuwstadt (1984). The LES results were used by Derbyshire (1990) to
further support and extend the theory of Nieuwstadt (1984), and comparisons of
the results with field measurements of the SBL at several observational sites were
discussed in Derbyshire (1995). Follow up studies to this earlier work improved the
surface-layer profiles of velocity and temperature by adding stochastic backscatter
to the subgrid-scale model (Brown et al., 1994).
The weakly stratified boundary layer with and without a weak capping inversion

imposed above the boundary layer was studied by Andren (1995). In his study,
comparisons between LES using the original SGS model developed in Moeng
(1984) and the later modified version of Sullivan et al. (1994) were made, revealing
that the modified model produced better agreement of the temperature and mean
velocity profiles with Monin–Obukhov similarity relations in the surface layer. The
presence of a weak capping inversion led to the development of wave motions
above the boundary layer whose overall effect on the SBL was small. The LES
results were used to characterize the SBL in terms of local similarity, turbulence
budgets, and quadrant analysis. Recently, the differences and similarities between
different numerical models simulating the SBL were highlighted in a study by
Galmarini et al. (1998), where the profiles of various quantities such as variances,
fluxes, and nondimensional gradients of temperature and velocity from Andren
(1995) were contrasted with those obtained from a LES using a different SGS
model, and from a one-dimensional second-order closure model.
Kosovic and Curry (2000) implemented a newly developed SGS model to per-

form a LES of a quasi-steady state SBL in the Arctic circle area (latitude: φ = 73◦)
where the SBL can persist for long periods of time. The computation was per-
formed over 24 hours of physical time, which revealed a quasi-steady state of the
SBL after about 10 hours. During this time, a low-level maximum in the mean
wind profile associated with a damped inertial oscillation and the development of
an elevated inversion were observed. A number of computations were performed
comparing the effects of varying parameters such as geostrophic wind speed, cool-
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ing rate, and latitude. From these simulations, theoretical formulae for predicting
the boundary-layer height and models for the SBL were tested.
The SBL problem has also been studied using direct numerical simulation

(DNS) of a stable Ekman layer at low Reynolds number (Coleman et al., 1992).
In their study, turbulent statistics were evaluated, and closure models and local
scaling theories were tested. They observed general agreement with some of the
LES results of Mason and Derbyshire (1990). In particular, their results showed
a tendency to support the local scaling theory of Nieuwstadt (1984) and gradient
closure models of Hunt et al. (1995). However, other comparisons with closure
models such as Brost and Wyngaard (1978) showed good agreement only when
the data were adjusted for low Reynolds number effects.
One of the difficulties associated with LES of the SBL is that, as stability in-

creases, the dominant eddies become smaller. This places the burden of simulating
the flow field on the SGS model and, consequently, the results can be sensitive
to the type of parameterization used to represent the effects of the subgrid scales.
Thus, the majority of previous studies have focused on modelling weakly stable
boundary layers, i.e., boundary layers with continuous turbulence and little inter-
mittency (Mahrt, 1998). This involves applying a small cooling rate,

(
∂〈θ〉
∂t

)
o
, or

small negative heat flux, 〈wθ〉o, at the surface and/or imposing a high geostrophic
velocity, Ug. This problem can be partially alleviated by using computational
meshes with higher resolution than those used for convective or neutral boundary
layers, and as a result smaller computational domain sizes have been typically used
in previous LES studies.
An original goal of this work was to test the limits of the two part SGS model

of Sullivan et al. (1994) to simulate a very stable boundary layer that is highly
intermittent. The objective was to ultimately simulate the layering or fanning ef-
fect (Stull, 1988) that can develop in the SBL, causing pollutants to spread out
horizontally. Furthermore, we were interested in studying the formation of the low-
level jet, which in the very stable boundary layer may produce turbulence aloft that
is detached from the surface (Mahrt, 1998). However, we found that the first goal
was unattainable using the existing SGS model and a revision of the model was
required. Using this modified SGS model (Section 2), we simulate a SBL that is
continuously turbulent with a strong geostrophic wind (Ug = 15 m s−1) and stability
that is weak-to-moderate; the stability index characterizing the SBL is h

L
= 2.3,

where h is the SBL height and L is the Obukhov length. For this SBL, we examine
some of the turbulent statistics of the flow and perform detailed flow visualization
and quadrant analysis. In addition, we examine the development of a strong low-
level jet that develops at the top of the SBL and compare its development with the
predictions from Blackadar’s (1957) model.
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2. Procedure

The LES code originally outlined in Moeng (1984) and modified later in Sullivan
et al. (1994, 1996) is implemented in this study. As noted in the introduction and
detailed in the next section, the SGS model was further modified for the highly
cooled SBL. The LES equations are integrated in time using an explicit multi-
stage third-order Runge-Kutta scheme. Spatially, the equations are discretized by a
pseudo-spectral method with Fourier transforms in the homogeneous directions,
x and y, and second-order finite differences in the vertical direction (z). The
boundary conditions at the surface are constructed using Monin–Obukhov (M–
O) similarity theory, while a radiation condition (Klemp and Durran, 1983) is
applied at the upper boundary in order to allow gravity waves to propagate out
of the computational domain without reflection.

2.1. SUBGRID-SCALE MODEL

Preliminary computations of highly cooled SBLs using the original two part SGS
model developed by Sullivan et al. (1994) led to the development of unphysical pro-
files in various turbulent quantities, which occurred due to the collapse of the SGS
vertical heat flux, τθ3, to zero near the surface. This behaviour occurred contrary to
the assumptions associated with LES in the atmosphere where it is expected that the
majority of turbulent motions near the surface are subgrid-scale such that the SGS
fluxes cannot fall to zero there. This assumption can be observed by examining the
total horizontally averaged vertical heat flux as a function of height (z) for LES,
which is composed of the resolved flux, wθ , and the subgrid-scale flux, τθ3, i.e.,

(wθ)total(z) = wθ(z) + τθ3(z). (1)

At the surface (z = 0 m), a boundary condition in the form of a horizontally
averaged negative heat flux, 〈wθ〉o, is applied in order to cool the boundary layer
such that (wθ)total(z = 0) = 〈wθ〉o. The boundary conditions on vertical velocity,
w, at the surface further requires that wθ(z = 0) decreases to zero, leaving τθ3
to represent the bulk of the heat flux near the ground. Note that at the lowest grid
point where z = 0 m, τθ3 is imposed directly using the boundary condition defined
in Moeng (1984), while τθ3 at the grid points above z = 0 m is determined by the
SGS model outlined below.
The observed decrease in τθ3 near the surface in our earlier computations can

be attributed to the SGS model, which relates τθ3 to the SGS kinetic energy, e, and
the length scale, l,

τθ3 = −νθ

∂θ

∂z
(2)

where

νθ =
(
1+ 2l

&

)
νt , (3)
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and

νt = Ckle
1
2 . (4)

The SGS energy, e is determined using the equation

∂e

∂t
+ uj

∂e

∂xj

= −τij Sij + g

θo

τθ3 − ε + ∂

∂xi

(
2νt

∂e

∂xi

)
, (5)

where the SGS dissipation, ε, is

ε = Cε

e
3
2

l
. (6)

The coefficients in the above equations are specified as Cε = (0.19 + 0.74 l
&

) and
Ck = 0.1, where & is an average grid spacing. The length scale is defined as either
l = & for neutral or convectively unstable regions, or as

l = 0.76
(

e
1
2

N

)
(7)

for stably stratified regions (Deardorff, 1980; Moeng, 1984). Here, N is the Brunt-
Väisälä frequency defined by N2 = g

θo

∂〈θ〉
∂z

, where g
θo
is the buoyancy coefficient.

From the above relations, it can be observed that with increasing stratification,
N increases (especially near the surface where the boundary layer is very stable)
and l will decrease. In addition, the SGS energy for the SBL will decrease with
increasing stability as the buoyancy destruction term in Equation (5) increases
relative to the shear term. With both e and l falling to zero near the surface, the
eddy coefficients in Equations 3 and 4 decrease to zero and as a result the SGS heat
flux (Equation 2) becomes zero as well. Although this model was used in the work
of Andren (1995), the above behaviour was not observed as the boundary layer was
only weakly cooled with a small surface flux of 〈wθ〉o = −0.005 m K s−1.
Note that, although the SGSmomentum flux, τij , depends on l and e in a similar

manner, the two part nature of the model for τij does not allow it to fall to zero near
the surface. From Sullivan et al. (1994),

τij = −2νtγ Sij − 2νT 〈Sij 〉, (8)

where Sij is the rate of strain tensor,

Sij =
(

∂ui

∂xj

+ ∂uj

∂xi

)
, (9)

νt is defined as in Equation (4), and the mean eddy viscosity, νT , is
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νT = ν∗
T

kz1

u∗φm(z1)

√
2〈SijSij 〉 if z &= z1

= ν∗
T if z = z1. (10)

In these equations, k is the von Kármán constant, u∗ is the friction velocity, z1 is
the location of the first grid point above the surface, φm(z) is the M–O stability
function for velocity (Businger et al., 1971),

dU

dz
= u∗φm(z)

kz
, (11)

and the near surface mean eddy viscosity is

ν∗
T = u∗kz1

φm(z1)
− 〈νtγ 〉 − kz1

u∗φm(z1)
[〈uw〉2z=z1

+ 〈vw〉2z=z1
] 12 . (12)

The isotropy factor, γ , is used to account for anisotropic effects near the surface and
to shift the SGS model from a LES type of parameterization for the subgrid-scales,
to an ensemble average type that models all small scales. In the above relations,
〈〉 denotes horizontal averages. This two part model was developed in order to
improve the velocity and temperature profiles in the surface layer in comparison
with Monin–Obukhov similarity forms.
As noted above, the form of the model in Equation (8) keeps τij from going to

zero near the surface. This feature led us to consider applying a similar two part
model to represent τθ3, i.e.,

τθ3 = −νθγ
∂θ

∂z
− ν)

∂〈θ〉
∂z

. (13)

The mean eddy diffusivity, ν), is determined by matching the computed temperat-
ure derivatives at the first grid point, z1 = &z, with the Monin–Obukhov similarity
forms. The M–O relationship for temperature is (Businger et al., 1971)

d〈θ〉
dz

= θ∗φh(z)

kz
, (14)

where φh(z) is the M–O stability function for temperature and θ∗ = −〈wθ〉o
u∗

is the
surface-layer temperature scale.
First, a Prandtl number relationship between ν) and the mean eddy viscosity,

νT , is assumed,

ν) = cθ νT , (15)
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where cθ can be considered to be a ‘mean turbulent’ Prandtl number. Next, a ‘con-
stant flux’ condition below z = z1 is imposed such that the sum of the resolved and
SGS heat fluxes equals the surface heat flux, and from Equation (1) we obtain

〈wθ〉o = 〈wθ〉z=z1 + 〈τθ3〉z=z1 . (16)

Next, we approximate the horizontal average of Equation (13) at z = z1 as,

〈τθ3〉z=z1 = −(〈νθγ 〉 + ν))
∂〈θ〉
∂z

∣∣∣∣
z=z1

(17)

by neglecting the fluctuating component of temperature in comparison with the
mean temperature. The substitution of Equation (17) and Equation (14) into Equa-
tion (16) results in an expression for the near surface mean-field eddy diffusivity,
ν∗

), at z = z1, i.e.,

ν∗
) = kz1

θ∗φh(z1)
(〈wθ〉z=z1 − 〈wθ〉o) − 〈νθγ 〉. (18)

The coefficient ν) can then be found at all other levels where z &= z1 using Equation
(15),

ν) = ν∗
)

ν∗
T

νT , (19)

such that the ‘mean turbulent’ Prandtl number is

cθ = ν∗
)

ν∗
T

. (20)

As will be shown later, this two part model for τθ3 successfully prevents the SGS
part of the vertical heat flux from falling to zero near the surface.

2.2. CONDITIONS OF THE COMPUTATION

The computations were performed on a one kilometre square domain with 96 ×
96 × 96 evenly spaced grid points. The initial conditions consisted of a convect-
ive boundary layer (CBL) with a geostrophic wind of (Ug, Vg) = (15, 0) m s−1
driven by a positive heat flux of 〈wθ〉o = 0.05 m K s−1 applied at the surface.
The surface roughness was zo = 0.1 m. The initial mean potential temperature
profile imposed a steep capping inversion at z = 500 m where the temperature
increased 8 K over twelve &z levels (0.06 K m−1). Above the capping inversion
the temperature increased at a lapse rate of 0.003 K m−1. The capping inversion
was included to limit the growth of the boundary layer. Initially, there was no strong
capping inversion and the turbulence in the boundary layer grew to a height of z =
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800 m near the top of the domain. As a result, when the boundary layer was cooled,
a nocturnal jet formed at this high level. Thus, the capping inversion was imposed
to ‘contain’ the turbulence and bring the jet down to a level closer to the surface.
The inversion is also physically based since after strong convection during the day
a strong overlying inversion will develop.
After an hour of physical time, the heat flux was set to zero and a neutral bound-

ary layer was simulated for two hours. This was followed by cooling the boundary
layer with a negative heat flux. Besides problems associated with the SGS model
itself (which were remedied by the two part SGS model), other difficulties arose
when we attempted to cool the boundary layer too quickly, i.e., suddenly applied
a large negative temperature flux (〈wθ〉o = −0.05 m K s−1) at the ground to the
neutral boundary layer. The vertical subgrid stress and temperature flux profiles
would develop kinks at the second grid point above the ground. This behaviour
was avoided by applying a monotone scheme for discretizing the vertical temper-
ature advection terms and by gradually cooling the boundary layer to its highest
level, 〈wθ〉o = −0.05 m K s−1, over a time period of six hours starting from
〈wθ〉o = −0.02 m K s−1.
A theoretical expression placing limits on the maximum heat flux that can be

sustained in a stable boundary layer was derived by Derbyshire (1990)

(〈wθ〉o)max = θoRf

g
√
3

U 2
g |f |, (21)

where Rf = 0.25 is the critical flux Richardson number, f is the Coriolis para-
meter, g is the gravitational acceleration, and | | denotes the absolute value. This
expression with θo = 300 K and Ug = 15 m s−1 gives a maximum absolute
value of (〈wθ〉o)max = 0.1 m K s−1, which lies well above the highest heat flux
(|〈wθ〉o| = 0.05 m K s−1) applied in the current simulation. Based upon the fact
that the conditions in our simulations do not exceed this theoretical limit, we would
expect to be able to simulate a stable boundary layer that can support the cooling
heat flux imposed at the surface.
After this period of gradual cooling, the stable boundary layer was then cooled

further at 〈wθ〉o = −0.05 m K s−1 for another five hours. During this period of
time the boundary layer appeared to reach a quasi-steady state despite the high
cooling flux, as the boundary layer was fairly windy allowing for continuous pro-
duction of turbulence. The total amount of time that the boundary layer was cooled
was about eleven hours at a latitude of φ = 45◦. Data at eighty second intervals
were saved over the last 1.25 hours of the computation equivalent to nearly five
eddy turnover times, τ = h

u∗
≈ 880 s. Here, h is the height of the boundary layer

based upon an estimate of the location where the horizontal stresses decreased to
zero. It should be noted that, in essence, this case is the same as the neutral case
studied in Moeng and Sullivan (1994) with the exception that the boundary layer
is cooled and hence stably stratified.
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TABLE I
Bulk parameters. u∗ is the shear velocity, L is
the Obukhov length at the surface, h is the height
of the boundary layer, and α is the ageostrophic
angle.

u∗ (m s−1) L (m) h (m) h
L α (deg)

0.5 193.4 442.5 2.3 31.1

3. Results

3.1. BULK QUANTITIES

The bulk parameters typically examined in boundary layer studies are presented
in Table I. For the stability ratio, h

L
, the Obukhov length at the surface is defined

as L = − u3∗
k

g
θo

〈wθ〉o . In comparison with previous LES of the SBL, both u∗, and h

obtained from the current simulation are higher, however this is due in part to the
higher geostrophic velocity (Ug = 15 m s−1) applied in the current simulations.
The gradual cooling of the boundary layer aids in preventing a sudden collapse
of the turbulence such that turbulence is produced continuously even during the
period when the highest cooling heat flux is applied. We found that in cases where
large cooling fluxes were suddenly imposed, there was a dramatic reduction in
turbulence production aloft and hence in the height of the boundary layer. The
height of the boundary layer can also be influenced by the low-level jet which
develops above the SBL as the shear on the underside of the jet is a source for
turbulence production. This issue will be discussed further in a subsequent section.
The combined effect of the applied geostrophic velocity and cooling flux results

in a stability parameter, h
L
, of 2.3, which is higher than the cases investigated by

Andren (1995) and falls in the middle of the cases examined by Brown (1994) and
Kosovic and Curry (2000). The ageostrophic angle, α, also falls within the values
measured from these earlier LES studies.

3.2. FIRST-ORDER STATISTICS

The effect of the two part SGS model can be observed in Figure 1 where horizon-
tally averaged total, SGS, and resolved vertical heat flux profiles, time averaged
over the last 1.25 hours of the simulation, are presented. The SGS part does not
decrease to zero near the surface, but increases smoothly towards the prescribed
surface heat flux value of 〈wθ〉o = −0.05 m K s−1 in accordance with the design
of Equation (13). The total heat flux profile is nearly linear indicating that the flow
field has reached a quasi-steady state (although the evolution of various quantities
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Figure 1.Vertical profiles of heat flux, 〈wθ〉. Dashed line, resolved; dashed-dotted line, subgrid; solid
line, total. In this and the following figures, all vertical profiles have been horizontally averaged at
each level over the whole computational domain and time averaged over the last 1.25 hours of the
simulation.

related to the low-level jet are still varying slowly in time, Figures 12 and 13). The
strong capping inversion imposed in the initial condition is still present near z =
500 m, and consequently, as shown in the next section, gravity waves develop at
this level. In addition, the height where the heat flux goes to zero is higher than the
level where the momentum fluxes reach zero. This feature is the main reason why
we chose to define the height of the boundary layer based upon an estimation of the
location where the horizontal shear stresses would fall to zero. Following Kosovic
and Curry (2000), we determine the height where the horizontal shear stress falls to
5% of the surface value and linearly extrapolate to the level where the stress would
be zero assuming a linear stress profile. In reality, the horizontal stress profiles
follow the 3

2 power law as predicted by the theory for stationary stable boundary
layers (Nieuwstadt, 1984), however the assumption of a linear stress profile near
the top of the boundary layer to determine the height of the boundary layer gives
a reasonable estimate of the top of the boundary layer. This can be observed in
the 〈uw〉 and 〈vw〉 profiles in Figures 2a, b where the curves reach zero near the
estimated value of h = 442.5 m.
Distributions of the gradient (Rig) and flux (Rif ) Richardson numbers computed

from horizontally averaged velocity and temperature reveal the relative effects of
shear and buoyancy on the boundary layer in Figure 3. The gradient Richardson
number increases upward from the surface until z ≈ 200 m, at which point it
remains fairly constant at Rig = 0.2 until near the top of the boundary layer where
it reaches the critical Richardson number, (Rig)c = 0.25, at z = h = 442.5 m. It
continues to increase above the SBL due to the effect of the large temperature
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Figure 2.Vertical profiles of horizontal stresses, 〈uw〉 and 〈vw〉. Dashed line, resolved; dashed-dotted
line, subgrid; solid line, total.

gradient imposed by the strong inversion interacting with the velocity gradient,
∂U
∂z

, associated with the upper side of the low-level jet.
The flux Richardson number is slightly higher than Rig throughout the bound-

ary layer as it continuously increases all the way up to the top of the SBL. The
definition of the flux Richardson number

Rif =
g
θo

〈wθ〉
〈uw〉 ∂U

∂z
+ 〈vw〉 ∂V

∂z

(22)
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Figure 3. Vertical profiles of Richardson number. Dashed line, Rif ; solid line, Rig.

shows that the increase in Rif corresponds to the more rapid decrease of the hori-
zontal shear with height in comparison with the heat flux as shown in Figures 1 and
2. Above the boundary layer, both quantities are small such that Rif is ill defined.
As discussed in the previous section, the original aim of the two part SGSmodel

developed by Sullivan et al. (1994) was to improve the near surface profiles of
the mean wind and temperature profiles in comparison with the M–O similarity
relations. Sullivan et al. (1994) were able to improve both wind and temperat-
ure profiles by only adding the second part to the SGS momentum flux relations
(Equation (8)). The application of this model in the weakly-stable boundary-layer
computations of Andren (1995) also produced improved surface-layer profiles. The
modification of the model in the current study by adding a second term to the
SGS heat flux (Equation (13)) did not degrade the improvement of the near surface
profiles. This can be observed in Figures 4a, b where profiles of the nondimensional
gradients of velocity and temperature (Equations (11) and (14)) extracted from the
LES are compared with the relations developed by Businger et al. (1971). The
velocity gradient curve (φm) agrees with Businger’s equation fairly well, while the
temperature gradient falls below the experimental curve in a manner similar to
the LES results of Brown (1994). We conclude from these plots that the modified
two part version of the SGS model by Sullivan et al. (1994) continues to produce
reasonable mean velocity and temperature profiles in the surface layer for the SBL.

3.3. FLOW VISUALIZATION

Some of the flow features of the SBL are presented in Figure 5 where instantaneous
contours (after about eleven hours of cooling) of fluctuating horizontal and vertical
velocity (u and w), resolved momentum flux (uw), fluctuating virtual temperature
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Figure 4. Profiles of nondimensional gradients. Solid line, LES results; dashed line Businger et al.
(1971).

(θ), and resolved vertical heat flux in the x-z plane at y = 625 m are plotted. These
figures reveal that smaller sized structures develop in the SBL, unlike in the CBL
where large plumes which span the height of the boundary layer dominate the flow
field. However, an updraft/downdraft pair of small eddy structures centered around
x = 400 m appears in Figure 5 in a manner similar to those observed in a purely
shear driven boundary layer (Moeng and Sullivan, 1994). The shear boundary-layer
layer calculations of Moeng and Sullivan (1994) further revealed that the eddies
were roughly circular and tended to be concentrated at scales roughly one-half of
the boundary-layer height, h. In contrast, the eddies that develop in the current
stable boundary-layer simulation form at scales closer to h

4 , and they exhibit a
flatter shape. The ratio of the vertical to horizontal extent of the eddies in Figure 5
is ≈ 0.5. Although the number of eddies appears patchy in Figure 5, their produc-
tion is continuous. This is contrary to what we would expect for turbulence that is
globally intermittent, i.e., where turbulence is suppressed over long periods of time
in comparison with the time scales of the individual eddies (Mahrt, 1998). With the
exception of temperature (which will be discussed further below), the amplitudes
of the fluctuations are greatest for z ≤ 200 m where the turbulence production is
strongest.
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Figure 5. Contours of u (range: −2.5 – 1.5, interval: 0.5), w (range: −1.0 – 1.0, interval: 0.2),
uw (range: −2.4 – 1.2, interval: 0.2), θ (range: −0.8 – 0.4, interval: 0.1), and wθ (range: −0.5 –
0.25, interval: 0.05) in the x-z plane at y = 625 m after ≈ 11 hours of cooling. Solid lines, positive
contours; dashed lines, negative contours. Lighter and darker shaded areas highlight positive and
negative extrema, respectively. The horizontal line at z = 73 m denotes the location of the x-y plane
shown in Figure 11.

The correlations in these contour plots between w and u that result in uw < 0
indicate that turbulent events associated with sweeps (w < 0 and u > 0) and
bursts (w > 0 and u < 0) are contributing equally to the turbulent fluxes. The
quadrant analysis of uw for the whole SBL reveals that on average the number of
sweeping events is somewhat greater than the bursting events throughout the bulk
of the SBL, while the strength of the bursting events is slightly greater than the
sweep events (Figure 6). As a result, neither type of event dominates over the other,
contrary to the neutral boundary-layer results evaluated by Lin et al. (1996) where
ejections were found to prevail. The coherent structures that developed in Lin et
al. (1996) consisted of horseshoe vortices that formed by one of two processes: (1)
the collision between ejections and streaks, or (2) the collision of ejections with
the mean flow. Flow visualization of the SBL revealed the appearance of a few
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Figure 6. Profiles of uw decomposed into quadrants. Solid line, u > 0 and w > 0; dashed-dotted
line, u < 0 and w > 0 (ejections); dashed line, u < 0 and w < 0; dashed double-dotted line, u > 0
and w < 0 (sweeps).

coherent structures in the form of horseshoe vortices that typically formed by the
second process outlined by Lin et al. (1996). Due to the cooling of the SBL, the
vertical velocity is reduced throughout the boundary layer, thus events associated
with ejections and sweeps are weakened and the chance of such coherent structures
forming is reduced.
The quadrant analysis of wθ in Figure 7 reveals that the amplitudes of events

associated with downward moving warmer air (w < 0 and θ > 0) and upward
moving cooler air (w > 0 and θ < 0) are similar. Flow visualization of wθ
indicates that negative heat fluxes with w > 0 and θ < 0 are correlated with the
development of the few horseshoe vortices observed in this case. Consequently, the
formation of the horseshoe vortices can be associated with collisions of cooler air
ejected from the surface with the mean flow.
As noted above, the fluctuations in potential temperature persist throughout the

depth of the boundary layer reaching a maximum near z = 500 m where the strong
capping inversion appears (Figure 5). Focusing on this region, we observe that the
temperature fluctuations correspond to the presence of a gravity wave, which is
denoted by an upstream cell of θ < 0 and a downstream cell of θ > 0. This wave
can be seen in a clearer manner in both temperature and vertical velocity fluctu-
ations by averaging these quantities across the computational domain at constant x
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Figure 7. Profiles of wθ decomposed into quadrants. Solid line, w > 0 and θ > 0; dashed-dotted
line, w > 0 and θ < 0 (rising cool air); dashed line, w < 0 and θ < 0; dashed double-dotted line,
w < 0 and θ > 0 (descending warm air); long dashed line, total wθ .

Figure 8. Contours of conditionally averaged w (range: −0.12 – 0.12, interval: 0.02) and θ (−0.28
– 0.32, interval: 0.04) in the x-z plane after ≈ 11 hours of cooling. Solid lines, positive contours;
dashed lines, negative contours. Lighter and darker shaded areas highlight positive and negative
extrema, respectively. The horizontal line denotes the height of the boundary layer, h. The z direction
is magnified two times its normal size.
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Figure 9. Vertical profile of the Brunt–Väisälä frequency.

(Figure 8). The w contours corresponding to the wave near z = 500 m are roughly
90◦ out of phase with the temperature contours. If w and θ were exactly 90◦ out of
phase, the heat flux and the correlation coefficient between w and θ would be zero.
However, the correlation coefficient in the region spanning z = 500 and 600 m
is ≈ 0.1 and Figure 1 reveals that wθ is small but nonzero above the top of the
boundary layer indicating that the wave behaviour is weakly nonlinear.
The contours in Figure 8 further show that the wave develops primarily between

the top of the boundary layer (z = 442.5 m) and the top of the capping inversion
region (z = 600 m). The vertical distribution of the Brunt-Väisälä frequency (N)
presented in Figure 9, indicates that any waves that propagate vertically upward
from below have frequencies smaller than Nmax = 0.052 s−1 at z = 550 m (we
suspect that the minimum in N near z ≈ 640 m is a numerical artifact associated
with our implementation of the monotone discretization scheme). Above z = 550 m,
waves with higher frequencies will be evanescent as they exceed the Brunt–Väisälä
frequency of the upper layer.
Within the boundary layer, the turbulence is sufficiently strong enough to pre-

vent any waves from being easily discerned. The spectra in the boundary layer are
smooth and there is no evidence of distinctive peaks at low frequencies to indicate
the presence of waves. A peak corresponding to the wave above the boundary layer
does appear in the spectra for vertical velocity around z = 350 m in accordance with
Figure 8, where the w contours associated with the gravity wave extend below the
height of the SBL. The penetration of the wave into the boundary layer reflects the
relative weakness of the turbulence at the top.
Based upon a rough tracking of the time needed for the troughs and crests of

the wave to traverse the computational domain, we estimate the phase speed of
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the wave to be c ≈ 6.1 m s−1, and, by assuming a frequency of N = 0.052 s−1,
the wavelength can be determined as λ = 2πc

N
= 737 m. An estimation of the

wavelength directly from Figure 8 is somewhat larger at λ ≈ 800 m. The fact
that these estimated wavelengths are fairly near the size of the computational do-
main (Lx = 1000 m), begs the question as to whether the preferred wavelength
is actually longer and the size of the computational domain is artificially forcing
the wavelength. The estimated phase speed of the wave is not equal to the local
mean speed of the flow indicating that even though shear is present due to the
low-level jet, the wave is not a Kelvin–Helmholtz (K–H) wave. In addition, the
gradient Richardson number in the region where the wave develops is greater than
the critical value for K–H instability (Figure 3). A K–H wavelength estimated with
c ≈ Ug and frequency ω = 0.052 s−1 would be several kilometres, which would
clearly exceed the size of the domain.
To determine if the wavelength is a physical manifestation of the flow field,

we consider the linear stability equation for gravity waves, the Taylor–Goldstein
equation (Gossard and Hooke, 1975),

W ′′(z) +
(

N(z)2

(U(z) − C)2
− U ′′(z)

(U(z) − C)
− α2

)
W(z) = 0. (23)

Here, W is the vertical fluctuating velocity component in Fourier space, C is the
complex phase speed (C = c + ici) of a wave with wavenumber, α = 2π

λ
, and

the symbol ′ denotes the derivative with respect to z. It should be mentioned that
this equation describes the linear behaviour of small amplitude waves. The wave
observed in the current study exhibits nonlinear characteristics, however as noted
above they appear to be weak, and therefore we feel this analysis is valid for our
purposes.
Given the wavenumber and horizontally averaged profiles for N (Figure 9) and

U (Figure 10), C can be determined as a complex eigenvalue of Equation (23) (see
Appendix A for the numerical algorithm used to solve Equation (23)). The real and
imaginary parts of C define the phase speed, c, and growth rate, ci , of the wave.
This is an inviscid problem, therefore all waves are either unstable (ci > 0) or
neutrally stable (ci = 0) (Hazel, 1972; Gossard and Hooke, 1975). The frequency
of the wave, ω, can be determined from the real part of C as ω = 2πc

λ
.

The outcome of using this equation to evaluate the wave that develops above the
SBL is summarized in Table II, where we present the eigenvalue with the highest
growth rate obtained for three different wavelengths: the estimated wavelengths,
λ = 737 and 800 m, and a wavelength equal to the size of the computational
domain, λ = 1000 m. Note that the wave speeds, c, determined from this analysis
for each wavelength (c = 6.38, 6.37, and 6.36 m s−1), are close to the wave speed
roughly estimated above (c ≈ 6.1 m s−1). In addition, the resulting frequencies for
wavelengths λ = 737 and 800 m lie close to the maximum value of N = 0.052 s−1
at z = 550 m, whereas the frequency for λ =1000 m is much smaller.
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Figure 10. Vertical profiles of velocity. Dashed line, U; dashed-dotted line, V; solid line,
M = (U2 + V 2)

1
2 .

TABLE II
Results of solving Equation (23)
for different wavelengths using the
Brunt–Väisälä profile in Figure 9 and
mean velocity profile in Figure 10.

λ (m) C (m s−1) ω (m s−1)

737 6.38 + i0.267 0.055
800 6.37 + i0.273 0.05
1000 6.36 + i0.29 0.04

These results show that the wavelength of the gravity wave observed in the cur-
rent computation has not been truncated by the size of the computational domain.
This analysis also reveals that the dominant gravity wave that develops above the
stable boundary layer is linked to the most unstable wave, i.e., the wave with the
highest growth rate, ci , as predicted by the Taylor–Goldstein wave equation. It
appears that this wave originates in the SBL where it propagates vertically until
it reaches the capping inversion. The wave is then trapped at the inversion as
it cannot propagate further into the weaker inversion above. The same analysis
performed on results from additional SBL LESs, where the strength of cooling
and the geostrophic wind were varied, revealed the same conclusion. We observed
that the wavelength typically decreased with decreasing geostrophic wind, whereas
there was no obvious trend in the wavelength for different cooling fluxes. In each
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of the cases we examined, the capping inversion was quite strong. With a weaker
capping inversion (smaller N) the most unstable wave would not be trapped, but
would continue to propagate vertically as observed in the case of Andren (1995).
This link between the waves in the inversion and the Taylor–Goldstein equation

was not observed for either the convective or neutral boundary layer. In these cases,
waves cannot develop within the boundary layer, but can form above if a stably
stratified capping inversion is present. However, unlike the SBL, the turbulence in
the CBL and neutral boundary layer persists all the way up to the capping inver-
sion, and will influence the development of the waves. This behaviour has been
considered theoretically by Carruthers and Moeng (1987) for the CBL where the
turbulent velocity and length scales have been used to predict the wavelength and
frequency of the resonant waves in the inversion. In the current study, the gravity
wave itself does not appear to have a marked effect on the turbulence. This is in
contrast with the observations of Finnigan et al. (1984) where it was observed that
turbulence was maintained by energy transfer from gravity waves in the SBL.
To conclude this section, we briefly present contours of u, w, θ , uw and wθ in

the x-y plane near the surface at z = 73 m (Figure 11). In the neutral boundary layer,
the near surface region is typically characterized by the appearance of alternating
streaks of high and low speed fluid aligned in the mean flow direction, while in the
mixed convective/neutral boundary layer, the streaks coexist with horizontal rolls.
Figure 11 shows that there are a few small streaky-like structures that develop
in the SBL. The u contours reveal a pair of high (u > 0) and low (u < 0) speed
streaks that are nearly aligned in the mean flow direction near y = 600 m and which
correspond to the weak updraft/downdraft pair of eddies observed in the cross-
plane shown in Figure 5. The w fluctuations reflect stronger streaky behaviour
associated with the low speed u streak resulting in the development of one uw
streak near y = 600 m. Accordingly, streak-like regions where θ < 0 and wθ < 0
also form only at the same location as the low speed u streak. These contours
further emphasize the reduction in the size of the structures that develop in the
SBL due to the cooling.

3.4. LOW-LEVEL JET

The most interesting feature of the present simulation is the formation of a low-
level jet at the top of the boundary layer that develops due to the inertial oscillation
associated with the Coriolis force. The jet can be clearly observed in Figure 10
where the mean velocity profile exhibits a supergeostrophic maximum of M =
(U 2 + V 2)

1
2 ≈ 20.3 m s−1 at the top of the SBL near z ≈ 450 m. The depend-

ency of the jet on the Coriolis force can be observed by considering the horizontal
momentum equations for the mean wind components, U and V ,
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Figure 11. Contours of u (range: −3.0 – 2.5, interval: 0.5), w (range: −2 – 1.75, interval: 0.25),
uw (range: −3.5 – 1.75, interval: 0.25), θ (range: −0.4 – 0.6, interval: 0.1), and wθ (range: −0.65
– 0.2, interval: 0.05) in the x-y plane at z = 73 m ( z

h = 0.16) after ≈ 11 hours of cooling. Solid
lines, positive contours; dashed lines, negative contours. Lighter and darker shaded areas highlight
positive and negative extrema, respectively. The horizontal line at x = 625 m denotes the location of
the cross-plane shown in Figure 5.
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∂U

∂t
= −∂〈uw〉

∂z
+ f V

∂V

∂t
= −∂〈vw〉

∂z
− f (U − Ug).

(24)

Here, f = 1 × 10−4 s−1, is the Coriolis parameter at a latitude of φ = 45◦. As
the boundary layer cools, the turbulence at the top collapses such that 〈uw〉 and
〈vw〉 decrease. To compensate for this collapse and to balance the Coriolis terms
of Equation (24), U must increase beyond Ug.
The behaviour of the winds associated with the nocturnal jet was first examined

closely by Blackadar (1957). His analysis demonstrated that if the turbulent stresses
fall to zero, the velocity of the jet will oscillate around the geostrophic velocity,
Ug, with a frequency of f . This can be seen by recasting the difference between
the mean horizontal velocity components and the geostrophic velocity as a complex
number, i.e.,W = (U−Ug)−iV , setting the stress terms to zero, and then rewriting
Equation (24) as

∂W

∂t
= −if W. (25)

The solution to the above equation is simply,

W = Woe
−if t , (26)

whereWo is the ageostrophic velocity at the time when the cooling of the boundary
layer begins. This idealized equation reflects the undamped oscillatory behaviour
of the jet, as well as the fact that the maximum amplitude of the jet is dependent
upon the initial deviation of the wind field from the geostrophic velocity. The
hodograph formed by the velocity components obtained from Equation (26) is a
circle with radius, |Wo| = ((U − Ug)

2 + V 2)
1
2 .

The time evolution of the maximum velocity of the jet (Uj ) that develops in the
current simulation is contrasted with the prediction of Uj given by Equation (26) in
Figure 12. In these plots, time is measured from the moment when the cooling be-
gins with the application of the smallest negative flux (〈wθ〉o = −0.02 m Ks−1) to
the boundary layer. The LES results for Uj were obtained by tracking the maxima
in the profiles ofM in time, thus in the early stages of cooling this value was simply
equal toUg up until the point in the simulation where the effects of the cooling were
felt aloft and Mmax = Uj became supergeostrophic. The time evolution of the jet
velocity predicted by Equation (26) is computed using Wo = (−4, 3.55) m s−1,
which is the geostrophic departure of the mean velocities measured at the final
height of the jet, z = 450 m, at the time when the cooling begins. Figure 12 reveals
that Mmax = Uj in the LES exceeds Ug after about two hours of cooling. This is
then followed by a steady increase over about seven hours reaching a maximum
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Figure 12. Time evolution of the maximum low-level jet velocity. Time is measured from when the
cooling first begins. Solid line, LES results; dashed line, solution from Equation (26) withWo = (−4,
3.55) m s−1.

value of Uj ≈ 20.3 m s−1 after nine hours of cooling. Beyond this point, Uj

decreases in accordance with the effects of the inertial oscillation. The prediction
given by the dashed curve in Figure 12 reflects the idealization of the boundary
layer used to obtain Equation (26). In particular, it assumes that the turbulent
stresses fall to zero instantaneously, and as a result the peak in the maximum value
of Uj develops earlier. As noted above, the LES results show that there is an initial
period of two hours during which the effects of the cooling permeate the boundary
layer followed by the decay of the turbulent stresses at the top. A shift of the dashed
curve predicted by Equation (26) by two hours results in an improved comparison
of the occurrence of the maximum Uj with the LES curve in Figure 12.
The time evolution of the height of the jet is presented in Figure 13. When

Uj becomes geostrophic after two hours of cooling, the height of the maximum
velocity shifts downward to just below the level of the capping inversion and then
slowly decreases from 500 m to 450 m. The gradual cooling of the SBL in our LES
required increases in the magnitude of the downward surface heat flux at t ≈ 4, 5,
and 6 hr, however there does not appear to be a marked effect on the time develop-
ment of either hj or Uj due to these increases. The time-evolution behaviour of the
height and velocity of the jet is qualitatively similar to the one-dimensional model
results of Delage (1974).
Figure 14 presents the hodograph of the ageostrophic velocity components of

the jet obtained from the LES. For clarity in the following discussion, sections
of the hodograph have been broken down into three parts denoted as I, II, and
III and the location of the maximum jet velocity is highlighted by a ♦. These
results are further compared with the predicted jet velocity components given by



24 EILEENM. SAIKI ET AL.

Figure 13. Time evolution of the height of the low-level jet.

Figure 14. Hodographs of the low-level jet ageostrophic velocity components. Solid line, LES result;
dashed line, solution from Equation (26) withWo=(−4, 3.55) m s−1. The ♦ denotes the point where
the maximum velocity of the jet develops in the LES.

Equation (26). The first portion of the LES curve (section I) reflects the two hour
pre-development stage when no jet is present. As the turbulence aloft decays due
to the cooling, the jet begins to develop and, in accordance with the influence of
the inertial oscillations, the hodograph forms a quarter circle in the upper right
hand quadrant of Figure 14 (sections II and III). The hodograph of the LES res-
ults in section II compares quite well with Equation (26) up to the point where
the jet maximum occurs. Although the predicted value of the maximum jet speed



LARGE-EDDY SIMULATION 25

Figure 15. Vertical profiles of the dominant turbulent kinetic energy budget terms. Solid line, shear
production; dashed line, buoyancy; dashed-dotted line, dissipation.

(20.35 m s−1) agrees extremely well with the observed LES value (20.3 m s−1), the
locations of the maxima on the hodographs are different. The idealized behaviour
described by Equation (26) requires that the maximum in the jet velocity occurs
when V = 0 m s−1, however this is clearly not the case for the LES results as
the jet maximum occurs when the ageostrophic velocity components of the jet are
(U − Ug, V ) = (5.22, 1.82) m s−1 (as denoted by the ♦ in Figure 14).
The above study comparing the development of the low-level jet observed in

the LES with the simple analysis of Blackadar (1957) for describing the initial jet
behaviour shows some quantitative agreement. This is possibly due to the relatively
high cooling flux applied in this case which causes the turbulent stresses at the top
of the boundary layer to fall close to zero fairly rapidly (after two hours of cooling).
However, it should be emphasized that Equation (26) reflects an idealized situation
which qualitatively describes the jet behaviour based upon the initial geostrophic
departure of the wind and the assumption that the stresses are zero. We found that
the behaviour of the jet did not correlate as well quantitatively with Equation (26)
in other SBL cases where the cooling flux was weaker and the decay rate of the
turbulent stresses was smaller.
The low-level jet may be important in the SBL as shear associated with the jet

is a possible source of turbulence production aloft (Mahrt, 1998). The question of
whether the low-level jet in our LES flow is producing significant turbulence can
be addressed by considering the behaviour of the turbulent kinetic energy budget
(Figure 15). The vertical profile of the production term in Figure 15 does not reveal
a substantial effect of the jet as it decreases monotonically to zero upward from
the surface. While the underside of the jet itself has considerable shear ( ∂U

∂z
), the
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amplitudes of 〈uw〉 and 〈vw〉 near the bottom of the jet are smaller than those
closer to the surface (Figure 2). This decrease of 〈uw〉 with height is also reflected
in the contours of Figure 5. In addition, the Richardson number profiles (Figure
3) do not indicate production of turbulence as Rig exceeds (Rig)c = 0.25 at the
height of the jet. Therefore, it appears that the shear associated with the jet is not
a source of turbulent production in this simulated SBL. Such a jet would have a
greater effect on a highly intermittent stable boundary layer where the jet induced
turbulence aloft would be detached from the surface (Mahrt, 1998). The strong
inversion above the SBL is also ‘capping’ the turbulence production aiding in the
prevention of turbulence production due to the jet.

4. Discussion and Conclusions

In this paper, results from a large-eddy simulation of a stably stratified boundary
layer were presented. The early stages of this study revealed that the two part SGS
model of Sullivan et al. (1994) in its original form produced unphysical profiles in
the turbulent quantities when the boundary layer was cooled by a large negative
heat flux. This behaviour first manifested itself when the SGS vertical heat flux fell
to zero near the surface in direct conflict with assumptions associated with large-
eddy simulation of the atmosphere. This was remedied by adding a second term
to the SGS vertical heat flux model in a manner similar to the model for the SGS
momentum flux. While this improved SGS model alleviated these problems, the
simulations were still sensitive to rapid cooling by the sudden application of large
negative heat fluxes at the surface. Therefore, the boundary layer was gradually
cooled by incrementally increasing the surface cooling flux.
The case investigated here involves a SBL with a geostrophic wind of Ug =

15 m s−1, which is cooled by a maximum heat flux of 〈wθ〉o = −0.05 m K s−1.
The boundary layer was capped by a strong inversion at z = 500 m. Typical
turbulent profiles were presented revealing the development of a weakly stable
boundary layer where the turbulence remains fairly continuous. The distributions
of nondimensional gradients of velocity and temperature compared with Monin–
Obukhov theory demonstrated that the modification of the SGS model was able to
produce reasonable surface-layer profiles.
The small-scale features of the SBL were observed through flow visualization

of various quantities. Quadrant analysis of the momentum and heat fluxes showed
that the occurrence of structures associated with cool air ejections is similar to
that of warm air sweeps. A distinctive gravity wave develops at the top of the
SBL in the strong capping inversion region that penetrated into the top part of the
boundary layer. Our results showed that the gravity wave is related to the wave
with the highest growth rate as predicted by the Taylor–Goldstein equation. The
wave develops in the SBL due to the stable stratification and then propagates up-
ward where it is trapped by the capping inversion. A strong low-level jet of Uj =
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20.3 m s−1 also formed at the top of the boundary layer in conjunction with the
decay of turbulent stresses and the inertial oscillation associated with the Coriolis
forces. The jet velocity grew in time to a maximum value of Uj = 20.3 m s−1 and
then began to decay while the height of the jet decreased to a level of z = 450 m. The
oscillatory behaviour of the jet showed qualitative and some quantitative agreement
with the analysis of Blackadar (1957). The jet itself did not generate substantial
turbulence aloft in the simulated boundary layer.
This work involves a first step towards examining a very stable boundary layer

as defined by Mahrt (1998), where turbulence is highly intermittent and horizontal
layering can develop. In pushing the limits of a well established SGS model that
has been implemented in a number of LES investigating the atmospheric bound-
ary layer, weaknesses of the model were exposed. We were able to avoid these
problems, but ultimately to simulate the very stable boundary layer, a better SGS
model that is designed for the SBL is needed. This would include gaining a better
understanding of the dependence of the SGS length scale, l, on local stability
and/or improving LES in the near surface region. The current formulation of l
was ‘borrowed’ from the work of Deardorff (1980) who developed the stability
corrected relation for l (Equation (7)) for simulating the capping inversion above
the boundary layer and not for the stable boundary layer in particular. In addition,
this form of l is not consistent with the expected scaling near the surface where
l ∝ z (Brost and Wyngaard, 1978). The presence of the ground makes the problem
for determining a suitable length scale more complicated.
Backscatter may also be important in improving a LES in order to simulate the

very stable boundary layer. Currently, one of the highest stably stratified bound-
ary layers successfully studied using LES was performed by Brown et al. (1994)
where the stability parameter h

L
= 4–5. Earlier simulations of the same case without

backscatter (Mason and Derbyshire, 1990) resulted in the development of unusual
kinks in the total heat flux profiles in a manner similar to the kinks that were
observed in the current study when the boundary layer was cooled too quickly
or when larger negative values of 〈wθ〉o were applied. Their SGS model was also
Smagorinsky based, using stability corrected coefficients akin to the application of
l in the current study. With the inclusion of backscatter in their SGS model they
were able to overcome the above problems (Brown et al., 1994), however their
boundary layer was still considered to be weakly stable and the highly intermittent
regime was not reached.
These issues and questions need to be addressed in order to move forward. An

improved version of the current SGS model or an altogether new one most likely
will be needed in order to perform LES of the very stable boundary layer. We
believe that recent work in the development of other SGS models and new field
campaigns with state of the art instrumentation can help us develop a better SGS
model for the stable boundary layer.



28 EILEENM. SAIKI ET AL.

Acknowledgements

We thank Don Lenschow and Jeff Weil for constructive comments on this manu-
script. We also wish to thank the anonymous reviewers whose comments improved
the presentation of this work. EMS gratefully acknowledges the Advanced Studies
Program at NCAR for support during the course of this work.

Appendix A

This section briefly outlines the methodology used to determine the eigenvalues of
the Taylor–Goldstein presented in Equation (23). This equation can be rewritten as,

C2(W ′′ − k2W) + C(−2UW ′′ + U ′′W + 2Uk2W)

+(U 2W ′′ + N2 − UU ′′W − k2U 2W) = 0. (A1)

This is a nonlinear eigenvalue problem for the complex wave speed, C = c + ici ,
with boundary conditions, W = 0 at z = 0 and z = Lz. To solve this problem, we
use the companion matrix method by Bridges and Morris (1984) that reformulates
this nonlinear equation for C into a linear form.
After discretizing Equation (A1) in the z direction over Nz points using second

order finite differences, the resulting system of equations can be written in matrix
form, i.e.,

(AC2 + BC + D)W = 0. (A2)

Here,W represents the a vector of unknowns, while A, B, and D are matrices

A = δz − k2I
B = (−2Uδz) + (U ′′ + 2Uk2)I (A3)
C = (U 2δz) + (N2 − UU ′′ − k2U 2)I

where δz is the matrix of finite difference coefficients and I is the identity matrix.
Following Bridges and Morris (1984), we can rewrite this system once again in

the generalized eigenvalue form of
(∣∣∣∣

−B −D
I 0

∣∣∣∣ − C

∣∣∣∣
A 0
0 I

∣∣∣∣

)(
CW
W

)
= 0. (A4)

Note that since the boundary conditions are zero, we only solve for the interior
points such that the matrices in Equation (A4) are not singular. The eigenvalue
problem is then solved using a standard eigenvalue software package. The solution
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method and code were tested by reproducing the results of Hazel (1972) for the
case studying the stability of the hyperbolic tangent shear layer.
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