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I. IntroductionOver the last several years, machine learning techniques,particularly when applied to neural networks, have playedan increasingly important role in the design of patternrecognition systems. In fact, it could be argued that theavailability of learning techniques has been a crucial fac-tor in the recent success of pattern recognition applica-tions such as continuous speech recognition and handwrit-ing recognition.The main message of this paper is that better patternrecognition systems can be built by relying more on auto-matic learning, and less on hand-designed heuristics. Thisis made possible by recent progress in machine learningand computer technology. Using character recognition asa case study, we show that hand-crafted feature extrac-tion can be advantageously replaced by carefully designedlearning machines that operate directly on pixel images.Using document understanding as a case study, we showthat the traditional way of building recognition systems bymanually integrating individually designed modules can bereplaced by a uni�ed and well-principled design paradigm,called Graph Transformer Networks, that allows trainingall the modules to optimize a global performance criterion.Since the early days of pattern recognition it has beenknown that the variability and richness of natural data,be it speech, glyphs, or other types of patterns, make italmost impossible to build an accurate recognition systementirely by hand. Consequently, most pattern recognitionsystems are built using a combination of automatic learn-ing techniques and hand-crafted algorithms. The usualmethod of recognizing individual patterns consists in divid-ing the system into two main modules shown in �gure 1.The �rst module, called the feature extractor, transformsthe input patterns so that they can be represented by low-dimensional vectors or short strings of symbols that (a) canbe easily matched or compared, and (b) are relatively in-variant with respect to transformations and distortions ofthe input patterns that do not change their nature. Thefeature extractor contains most of the prior knowledge andis rather speci�c to the task. It is also the focus of most ofthe design e�ort, because it is often entirely hand-crafted.The classi�er, on the other hand, is often general-purposeand trainable. One of the main problems with this ap-proach is that the recognition accuracy is largely deter-mined by the ability of the designer to come up with anappropriate set of features. This turns out to be a daunt-ing task which, unfortunately, must be redone for each newproblem. A large amount of the pattern recognition liter-ature is devoted to describing and comparing the relative
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Raw inputFig. 1. Traditional pattern recognition is performed with two mod-ules: a �xed feature extractor, and a trainable classi�er.merits of di�erent feature sets for particular tasks.Historically, the need for appropriate feature extractorswas due to the fact that the learning techniques used bythe classi�ers were limited to low-dimensional spaces witheasily separable classes [1]. A combination of three factorshave changed this vision over the last decade. First, theavailability of low-cost machines with fast arithmetic unitsallows to rely more on brute-force \numerical" methodsthan on algorithmic re�nements. Second, the availabilityof large databases for problems with a large market andwide interest, such as handwriting recognition, has enableddesigners to rely more on real data and less on hand-craftedfeature extraction to build recognition systems. The thirdand very important factor is the availability of powerful ma-chine learning techniques that can handle high-dimensionalinputs and can generate intricate decision functions whenfed with these large data sets. It can be argued that therecent progress in the accuracy of speech and handwritingrecognition systems can be attributed in large part to anincreased reliance on learning techniques and large trainingdata sets. As evidence to this fact, a large proportion ofmodern commercial OCR systems use some form of multi-layer Neural Network trained with back-propagation.In this study, we consider the tasks of handwritten char-acter recognition (Sections I and II) and compare the per-formance of several learning techniques on a benchmarkdata set for handwritten digit recognition (Section III).While more automatic learning is bene�cial, no learningtechnique can succeed without a minimal amount of priorknowledge about the task. In the case of multi-layer neu-ral networks, a good way to incorporate knowledge is totailor its architecture to the task. Convolutional Neu-ral Networks [2] introduced in Section II are an exam-ple of specialized neural network architectures which in-corporate knowledge about the invariances of 2D shapesby using local connection patterns, and by imposing con-straints on the weights. A comparison of several methodsfor isolated handwritten digit recognition is presented insection III. To go from the recognition of individual char-acters to the recognition of words and sentences in docu-ments, the idea of combining multiple modules trained toreduce the overall error is introduced in Section IV. Rec-ognizing variable-length objects such as handwritten wordsusing multi-module systems is best done if the modules

manipulate directed graphs. This leads to the concept oftrainable Graph Transformer Network (GTN) also intro-duced in Section IV. Section V describes the now clas-sical method of heuristic over-segmentation for recogniz-ing words or other character strings. Discriminative andnon-discriminative gradient-based techniques for traininga recognizer at the word level without requiring manualsegmentation and labeling are presented in Section VI. Sec-tion VII presents the promising Space-Displacement Neu-ral Network approach that eliminates the need for seg-mentation heuristics by scanning a recognizer at all pos-sible locations on the input. In section VIII, it is shownthat trainable Graph Transformer Networks can be for-mulated as multiple generalized transductions, based on ageneral graph composition algorithm. The connections be-tween GTNs and Hidden Markov Models, commonly usedin speech recognition is also treated. Section IX describesa globally trained GTN system for recognizing handwrit-ing entered in a pen computer. This problem is known as\on-line" handwriting recognition, since the machine mustproduce immediate feedback as the user writes. The core ofthe system is a Convolutional Neural Network. The resultsclearly demonstrate the advantages of training a recognizerat the word level, rather than training it on pre-segmented,hand-labeled, isolated characters. Section X describes acomplete GTN-based system for reading handwritten andmachine-printed bank checks. The core of the system is theConvolutional Neural Network called LeNet-5 described inSection II. This system is in commercial use in the NCRCorporation line of check recognition systems for the bank-ing industry. It is reading millions of checks per month inseveral banks across the United States.A. Learning from DataThere are several approaches to automatic machinelearning, but one of the most successful approaches, pop-ularized in recent years by the neural network community,can be called \numerical" or gradient-based learning. Thelearning machine computes a function Y p = F (Zp;W )where Zp is the p-th input pattern, and W represents thecollection of adjustable parameters in the system. In apattern recognition setting, the output Y p may be inter-preted as the recognized class label of pattern Zp, or asscores or probabilities associated with each class. A lossfunction Ep = D(Dp; F (W;Zp)), measures the discrep-ancy between Dp, the \correct" or desired output for pat-tern Zp, and the output produced by the system. Theaverage loss function Etrain(W ) is the average of the er-rors Ep over a set of labeled examples called the trainingset f(Z1; D1); ::::(ZP ; DP )g. In the simplest setting, thelearning problem consists in �nding the value of W thatminimizes Etrain(W ). In practice, the performance of thesystem on a training set is of little interest. The more rel-evant measure is the error rate of the system in the �eld,where it would be used in practice. This performance isestimated by measuring the accuracy on a set of samplesdisjoint from the training set, called the test set. Muchtheoretical and experimental work [3], [4], [5] has shown



PROC. OF THE IEEE, NOVEMBER 1998 3that the gap between the expected error rate on the testset Etest and the error rate on the training set Etrain de-creases with the number of training samples approximatelyas Etest �Etrain = k(h=P )� (1)where P is the number of training samples, h is a measure of\e�ective capacity" or complexity of the machine [6], [7], �is a number between 0:5 and 1:0, and k is a constant. Thisgap always decreases when the number of training samplesincreases. Furthermore, as the capacity h increases, Etraindecreases. Therefore, when increasing the capacity h, thereis a trade-o� between the decrease of Etrain and the in-crease of the gap, with an optimal value of the capacity hthat achieves the lowest generalization error Etest. Mostlearning algorithms attempt to minimize Etrain as well assome estimate of the gap. A formal version of this is calledstructural risk minimization [6], [7], and is based on de�n-ing a sequence of learning machines of increasing capacity,corresponding to a sequence of subsets of the parameterspace such that each subset is a superset of the previoussubset. In practical terms, Structural Risk Minimizationis implemented by minimizing Etrain +�H(W ), where thefunction H(W ) is called a regularization function, and � isa constant. H(W ) is chosen such that it takes large val-ues on parameters W that belong to high-capacity subsetsof the parameter space. Minimizing H(W ) in e�ect lim-its the capacity of the accessible subset of the parameterspace, thereby controlling the tradeo� between minimiz-ing the training error and minimizing the expected gapbetween the training error and test error.B. Gradient-Based LearningThe general problem of minimizing a function with re-spect to a set of parameters is at the root of many issues incomputer science. Gradient-Based Learning draws on thefact that it is generally much easier to minimize a reason-ably smooth, continuous function than a discrete (combi-natorial) function. The loss function can be minimized byestimating the impact of small variations of the parame-ter values on the loss function. This is measured by thegradient of the loss function with respect to the param-eters. E�cient learning algorithms can be devised whenthe gradient vector can be computed analytically (as op-posed to numerically through perturbations). This is thebasis of numerous gradient-based learning algorithms withcontinuous-valued parameters. In the procedures describedin this article, the set of parametersW is a real-valued vec-tor, with respect to which E(W ) is continuous, as well asdi�erentiable almost everywhere. The simplest minimiza-tion procedure in such a setting is the gradient descentalgorithm where W is iteratively adjusted as follows:Wk =Wk�1 � �@E(W )@W : (2)In the simplest case, � is a scalar constant. More sophisti-cated procedures use variable �, or substitute it for a diag-onal matrix, or substitute it for an estimate of the inverse

Hessian matrix as in Newton or Quasi-Newton methods.The Conjugate Gradient method [8] can also be used.However, Appendix B shows that despite many claimsto the contrary in the literature, the usefulness of thesesecond-order methods to large learning machines is verylimited.A popular minimization procedure is the stochastic gra-dient algorithm, also called the on-line update. It consistsin updating the parameter vector using a noisy, or approx-imated, version of the average gradient. In the most com-mon instance of it, W is updated on the basis of a singlesample: Wk =Wk�1 � �@Epk(W )@W (3)With this procedure the parameter vector 
uctuatesaround an average trajectory, but usually converges consid-erably faster than regular gradient descent and second or-der methods on large training sets with redundant samples(such as those encountered in speech or character recogni-tion). The reasons for this are explained in Appendix B.The properties of such algorithms applied to learning havebeen studied theoretically since the 1960's [9], [10], [11],but practical successes for non-trivial tasks did not occuruntil the mid eighties.C. Gradient Back-PropagationGradient-Based Learning procedures have been usedsince the late 1950's, but they were mostly limited to lin-ear systems [1]. The surprising usefulness of such sim-ple gradient descent techniques for complex machine learn-ing tasks was not widely realized until the following threeevents occurred. The �rst event was the realization that,despite early warnings to the contrary [12], the presenceof local minima in the loss function does not seem tobe a major problem in practice. This became apparentwhen it was noticed that local minima did not seem tobe a major impediment to the success of early non-lineargradient-based Learning techniques such as Boltzmann ma-chines [13], [14]. The second event was the popularizationby Rumelhart, Hinton and Williams [15] and others of asimple and e�cient procedure, the back-propagation al-gorithm, to compute the gradient in a non-linear systemcomposed of several layers of processing. The third eventwas the demonstration that the back-propagation proce-dure applied to multi-layer neural networks with sigmoidalunits can solve complicated learning tasks. The basic ideaof back-propagation is that gradients can be computed e�-ciently by propagation from the output to the input. Thisidea was described in the control theory literature of theearly sixties [16], but its application to machine learningwas not generally realized then. Interestingly, the earlyderivations of back-propagation in the context of neuralnetwork learning did not use gradients, but \virtual tar-gets" for units in intermediate layers [17], [18], or minimaldisturbance arguments [19]. The Lagrange formalism usedin the control theory literature provides perhaps the bestrigorous method for deriving back-propagation [20], and forderiving generalizations of back-propagation to recurrent



PROC. OF THE IEEE, NOVEMBER 1998 4networks [21], and networks of heterogeneous modules [22].A simple derivation for generic multi-layer systems is givenin Section I-E.The fact that local minima do not seem to be a problemfor multi-layer neural networks is somewhat of a theoreticalmystery. It is conjectured that if the network is oversizedfor the task (as is usually the case in practice), the presenceof \extra dimensions" in parameter space reduces the riskof unattainable regions. Back-propagation is by far themost widely used neural-network learning algorithm, andprobably the most widely used learning algorithm of anyform.D. Learning in Real Handwriting Recognition SystemsIsolated handwritten character recognition has been ex-tensively studied in the literature (see [23], [24] for reviews),and was one of the early successful applications of neuralnetworks [25]. Comparative experiments on recognition ofindividual handwritten digits are reported in Section III.They show that neural networks trained with Gradient-Based Learning perform better than all other methodstested here on the same data. The best neural networks,called Convolutional Networks, are designed to learn toextract relevant features directly from pixel images (seeSection II).One of the most di�cult problems in handwriting recog-nition, however, is not only to recognize individual charac-ters, but also to separate out characters from their neigh-bors within the word or sentence, a process known as seg-mentation. The technique for doing this that has becomethe \standard" is called Heuristic Over-Segmentation. Itconsists in generating a large number of potential cutsbetween characters using heuristic image processing tech-niques, and subsequently selecting the best combination ofcuts based on scores given for each candidate character bythe recognizer. In such a model, the accuracy of the sys-tem depends upon the quality of the cuts generated by theheuristics, and on the ability of the recognizer to distin-guish correctly segmented characters from pieces of char-acters, multiple characters, or otherwise incorrectly seg-mented characters. Training a recognizer to perform thistask poses a major challenge because of the di�culty in cre-ating a labeled database of incorrectly segmented charac-ters. The simplest solution consists in running the imagesof character strings through the segmenter, and then man-ually labeling all the character hypotheses. Unfortunately,not only is this an extremely tedious and costly task, it isalso di�cult to do the labeling consistently. For example,should the right half of a cut up 4 be labeled as a 1 or asa non-character? should the right half of a cut up 8 belabeled as a 3?The �rst solution, described in Section V consists intraining the system at the level of whole strings of char-acters, rather than at the character level. The notion ofGradient-Based Learning can be used for this purpose. Thesystem is trained to minimize an overall loss function whichmeasures the probability of an erroneous answer. Section Vexplores various ways to ensure that the loss function is dif-

ferentiable, and therefore lends itself to the use of Gradient-Based Learning methods. Section V introduces the use ofdirected acyclic graphs whose arcs carry numerical infor-mation as a way to represent the alternative hypotheses,and introduces the idea of GTN.The second solution described in Section VII is to elim-inate segmentation altogether. The idea is to sweep therecognizer over every possible location on the input image,and to rely on the \character spotting" property of the rec-ognizer, i.e. its ability to correctly recognize a well-centeredcharacter in its input �eld, even in the presence of othercharacters besides it, while rejecting images containing nocentered characters [26], [27]. The sequence of recognizeroutputs obtained by sweeping the recognizer over the in-put is then fed to a Graph Transformer Network that takeslinguistic constraints into account and �nally extracts themost likely interpretation. This GTN is somewhat similarto Hidden Markov Models (HMM), which makes the ap-proach reminiscent of the classical speech recognition [28],[29]. While this technique would be quite expensive inthe general case, the use of Convolutional Neural Networksmakes it particularly attractive because it allows signi�cantsavings in computational cost.E. Globally Trainable SystemsAs stated earlier, most practical pattern recognition sys-tems are composed of multiple modules. For example, adocument recognition system is composed of a �eld locator,which extracts regions of interest, a �eld segmenter, whichcuts the input image into images of candidate characters, arecognizer, which classi�es and scores each candidate char-acter, and a contextual post-processor, generally based ona stochastic grammar, which selects the best grammaticallycorrect answer from the hypotheses generated by the recog-nizer. In most cases, the information carried from moduleto module is best represented as graphs with numerical in-formation attached to the arcs. For example, the outputof the recognizer module can be represented as an acyclicgraph where each arc contains the label and the score ofa candidate character, and where each path represent aalternative interpretation of the input string. Typically,each module is manually optimized, or sometimes trained,outside of its context. For example, the character recog-nizer would be trained on labeled images of pre-segmentedcharacters. Then the complete system is assembled, anda subset of the parameters of the modules is manually ad-justed to maximize the overall performance. This last stepis extremely tedious, time-consuming, and almost certainlysuboptimal.A better alternative would be to somehow train the en-tire system so as to minimize a global error measure such asthe probability of character misclassi�cations at the docu-ment level. Ideally, we would want to �nd a good minimumof this global loss function with respect to all the param-eters in the system. If the loss function E measuring theperformance can be made di�erentiable with respect to thesystem's tunable parameters W , we can �nd a local min-imum of E using Gradient-Based Learning. However, at



PROC. OF THE IEEE, NOVEMBER 1998 5�rst glance, it appears that the sheer size and complexityof the system would make this intractable.To ensure that the global loss function Ep(Zp;W ) is dif-ferentiable, the overall system is built as a feed-forward net-work of di�erentiable modules. The function implementedby each module must be continuous and di�erentiable al-most everywhere with respect to the internal parameters ofthe module (e.g. the weights of a Neural Net character rec-ognizer in the case of a character recognition module), andwith respect to the module's inputs. If this is the case, asimple generalization of the well-known back-propagationprocedure can be used to e�ciently compute the gradientsof the loss function with respect to all the parameters inthe system [22]. For example, let us consider a systembuilt as a cascade of modules, each of which implements afunction Xn = Fn(Wn; Xn�1), where Xn is a vector rep-resenting the output of the module, Wn is the vector oftunable parameters in the module (a subset of W ), andXn�1 is the module's input vector (as well as the previousmodule's output vector). The input X0 to the �rst moduleis the input pattern Zp. If the partial derivative of Ep withrespect to Xn is known, then the partial derivatives of Epwith respect to Wn and Xn�1 can be computed using thebackward recurrence@Ep@Wn = @F@W (Wn; Xn�1) @Ep@Xn@Ep@Xn�1 = @F@X (Wn; Xn�1) @Ep@Xn (4)where @F@W (Wn; Xn�1) is the Jacobian of F with respect toW evaluated at the point (Wn; Xn�1), and @F@X (Wn; Xn�1)is the Jacobian of F with respect to X . The Jacobian ofa vector function is a matrix containing the partial deriva-tives of all the outputs with respect to all the inputs.The �rst equation computes some terms of the gradientof Ep(W ), while the second equation generates a back-ward recurrence, as in the well-known back-propagationprocedure for neural networks. We can average the gradi-ents over the training patterns to obtain the full gradient.It is interesting to note that in many instances there isno need to explicitly compute the Jacobian matrix. Theabove formula uses the product of the Jacobian with a vec-tor of partial derivatives, and it is often easier to computethis product directly without computing the Jacobian be-forehand. In By analogy with ordinary multi-layer neuralnetworks, all but the last module are called hidden layersbecause their outputs are not observable from the outside.more complex situations than the simple cascade of mod-ules described above, the partial derivative notation be-comes somewhat ambiguous and awkward. A completelyrigorous derivation in more general cases can be done usingLagrange functions [20], [21], [22].Traditional multi-layer neural networks are a special caseof the above where the state information Xn is representedwith �xed-sized vectors, and where the modules are al-ternated layers of matrix multiplications (the weights) andcomponent-wise sigmoid functions (the neurons). However,as stated earlier, the state information in complex recogni-

tion system is best represented by graphs with numericalinformation attached to the arcs. In this case, each module,called a Graph Transformer, takes one or more graphs asinput, and produces a graph as output. Networks of suchmodules are called Graph Transformer Networks (GTN).Sections IV, VI and VIII develop the concept of GTNs,and show that Gradient-Based Learning can be used totrain all the parameters in all the modules so as to mini-mize a global loss function. It may seem paradoxical thatgradients can be computed when the state information isrepresented by essentially discrete objects such as graphs,but that di�culty can be circumvented, as shown later.II. Convolutional Neural Networks forIsolated Character RecognitionThe ability of multi-layer networks trained with gradi-ent descent to learn complex, high-dimensional, non-linearmappings from large collections of examples makes themobvious candidates for image recognition tasks. In the tra-ditional model of pattern recognition, a hand-designed fea-ture extractor gathers relevant information from the inputand eliminates irrelevant variabilities. A trainable classi�erthen categorizes the resulting feature vectors into classes.In this scheme, standard, fully-connected multi-layer net-works can be used as classi�ers. A potentially more inter-esting scheme is to rely on as much as possible on learningin the feature extractor itself. In the case of characterrecognition, a network could be fed with almost raw in-puts (e.g. size-normalized images). While this can be donewith an ordinary fully connected feed-forward network withsome success for tasks such as character recognition, thereare problems.Firstly, typical images are large, often with several hun-dred variables (pixels). A fully-connected �rst layer with,say one hundred hidden units in the �rst layer, would al-ready contain several tens of thousands of weights. Sucha large number of parameters increases the capacity of thesystem and therefore requires a larger training set. In ad-dition, the memory requirement to store so many weightsmay rule out certain hardware implementations. But, themain de�ciency of unstructured nets for image or speechapplications is that they have no built-in invariance withrespect to translations, or local distortions of the inputs.Before being sent to the �xed-size input layer of a neuralnet, character images, or other 2D or 1D signals, must beapproximately size-normalized and centered in the input�eld. Unfortunately, no such preprocessing can be perfect:handwriting is often normalized at the word level, whichcan cause size, slant, and position variations for individualcharacters. This, combined with variability in writing style,will cause variations in the position of distinctive featuresin input objects. In principle, a fully-connected network ofsu�cient size could learn to produce outputs that are in-variant with respect to such variations. However, learningsuch a task would probably result in multiple units withsimilar weight patterns positioned at various locations inthe input so as to detect distinctive features wherever theyappear on the input. Learning these weight con�gurations



PROC. OF THE IEEE, NOVEMBER 1998 6requires a very large number of training instances to coverthe space of possible variations. In convolutional networks,described below, shift invariance is automatically obtainedby forcing the replication of weight con�gurations acrossspace.Secondly, a de�ciency of fully-connected architectures isthat the topology of the input is entirely ignored. The in-put variables can be presented in any (�xed) order withouta�ecting the outcome of the training. On the contrary,images (or time-frequency representations of speech) havea strong 2D local structure: variables (or pixels) that arespatially or temporally nearby are highly correlated. Localcorrelations are the reasons for the well-known advantagesof extracting and combining local features before recogniz-ing spatial or temporal objects, because con�gurations ofneighboring variables can be classi�ed into a small numberof categories (e.g. edges, corners...). Convolutional Net-works force the extraction of local features by restrictingthe receptive �elds of hidden units to be local.A. Convolutional NetworksConvolutional Networks combine three architecturalideas to ensure some degree of shift, scale, and distor-tion invariance: local receptive �elds, shared weights (orweight replication), and spatial or temporal sub-sampling.A typical convolutional network for recognizing characters,dubbed LeNet-5, is shown in �gure 2. The input planereceives images of characters that are approximately size-normalized and centered. Each unit in a layer receives in-puts from a set of units located in a small neighborhoodin the previous layer. The idea of connecting units to localreceptive �elds on the input goes back to the Perceptron inthe early 60s, and was almost simultaneous with Hubel andWiesel's discovery of locally-sensitive, orientation-selectiveneurons in the cat's visual system [30]. Local connectionshave been used many times in neural models of visual learn-ing [31], [32], [18], [33], [34], [2]. With local receptive�elds, neurons can extract elementary visual features suchas oriented edges, end-points, corners (or similar features inother signals such as speech spectrograms). These featuresare then combined by the subsequent layers in order to de-tect higher-order features. As stated earlier, distortions orshifts of the input can cause the position of salient featuresto vary. In addition, elementary feature detectors that areuseful on one part of the image are likely to be useful acrossthe entire image. This knowledge can be applied by forcinga set of units, whose receptive �elds are located at di�erentplaces on the image, to have identical weight vectors [32],[15], [34]. Units in a layer are organized in planes withinwhich all the units share the same set of weights. The setof outputs of the units in such a plane is called a featuremap. Units in a feature map are all constrained to per-form the same operation on di�erent parts of the image.A complete convolutional layer is composed of several fea-ture maps (with di�erent weight vectors), so that multiplefeatures can be extracted at each location. A concrete ex-ample of this is the �rst layer of LeNet-5 shown in Figure 2.Units in the �rst hidden layer of LeNet-5 are organized in 6

planes, each of which is a feature map. A unit in a featuremap has 25 inputs connected to a 5 by 5 area in the input,called the receptive �eld of the unit. Each unit has 25 in-puts, and therefore 25 trainable coe�cients plus a trainablebias. The receptive �elds of contiguous units in a featuremap are centered on correspondingly contiguous units inthe previous layer. Therefore receptive �elds of neighbor-ing units overlap. For example, in the �rst hidden layerof LeNet-5, the receptive �elds of horizontally contiguousunits overlap by 4 columns and 5 rows. As stated earlier,all the units in a feature map share the same set of 25weights and the same bias so they detect the same featureat all possible locations on the input. The other featuremaps in the layer use di�erent sets of weights and biases,thereby extracting di�erent types of local features. In thecase of LeNet-5, at each input location six di�erent typesof features are extracted by six units in identical locationsin the six feature maps. A sequential implementation ofa feature map would scan the input image with a singleunit that has a local receptive �eld, and store the statesof this unit at corresponding locations in the feature map.This operation is equivalent to a convolution, followed byan additive bias and squashing function, hence the nameconvolutional network. The kernel of the convolution is theset of connection weights used by the units in the featuremap. An interesting property of convolutional layers is thatif the input image is shifted, the feature map output willbe shifted by the same amount, but will be left unchangedotherwise. This property is at the basis of the robustnessof convolutional networks to shifts and distortions of theinput.Once a feature has been detected, its exact locationbecomes less important. Only its approximate positionrelative to other features is relevant. For example, oncewe know that the input image contains the endpoint of aroughly horizontal segment in the upper left area, a cornerin the upper right area, and the endpoint of a roughly ver-tical segment in the lower portion of the image, we can tellthe input image is a 7. Not only is the precise position ofeach of those features irrelevant for identifying the pattern,it is potentially harmful because the positions are likely tovary for di�erent instances of the character. A simple wayto reduce the precision with which the position of distinc-tive features are encoded in a feature map is to reduce thespatial resolution of the feature map. This can be achievedwith a so-called sub-sampling layers which performs a localaveraging and a sub-sampling, reducing the resolution ofthe feature map, and reducing the sensitivity of the outputto shifts and distortions. The second hidden layer of LeNet-5 is a sub-sampling layer. This layer comprises six featuremaps, one for each feature map in the previous layer. Thereceptive �eld of each unit is a 2 by 2 area in the previouslayer's corresponding feature map. Each unit computes theaverage of its four inputs, multiplies it by a trainable coef-�cient, adds a trainable bias, and passes the result througha sigmoid function. Contiguous units have non-overlappingcontiguous receptive �elds. Consequently, a sub-samplinglayer feature map has half the number of rows and columns
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Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of unitswhose weights are constrained to be identical.as the feature maps in the previous layer. The trainablecoe�cient and bias control the e�ect of the sigmoid non-linearity. If the coe�cient is small, then the unit operatesin a quasi-linear mode, and the sub-sampling layer merelyblurs the input. If the coe�cient is large, sub-samplingunits can be seen as performing a \noisy OR" or a \noisyAND" function depending on the value of the bias. Succes-sive layers of convolutions and sub-sampling are typicallyalternated, resulting in a \bi-pyramid": at each layer, thenumber of feature maps is increased as the spatial resolu-tion is decreased. Each unit in the third hidden layer in �g-ure 2 may have input connections from several feature mapsin the previous layer. The convolution/sub-sampling com-bination, inspired by Hubel and Wiesel's notions of \sim-ple" and \complex" cells, was implemented in Fukushima'sNeocognitron [32], though no globally supervised learningprocedure such as back-propagation was available then. Alarge degree of invariance to geometric transformations ofthe input can be achieved with this progressive reductionof spatial resolution compensated by a progressive increaseof the richness of the representation (the number of featuremaps).Since all the weights are learned with back-propagation,convolutional networks can be seen as synthesizing theirown feature extractor. The weight sharing technique hasthe interesting side e�ect of reducing the number of freeparameters, thereby reducing the \capacity" of the ma-chine and reducing the gap between test error and trainingerror [34]. The network in �gure 2 contains 340,908 con-nections, but only 60,000 trainable free parameters becauseof the weight sharing.Fixed-size Convolutional Networks have been appliedto many applications, among other handwriting recogni-tion [35], [36], machine-printed character recognition [37],on-line handwriting recognition [38], and face recogni-tion [39]. Fixed-size convolutional networks that shareweights along a single temporal dimension are known asTime-Delay Neural Networks (TDNNs). TDNNs have beenused in phoneme recognition (without sub-sampling) [40],[41], spoken word recognition (with sub-sampling) [42],[43], on-line recognition of isolated handwritten charac-ters [44], and signature veri�cation [45].

B. LeNet-5This section describes in more detail the architecture ofLeNet-5, the Convolutional Neural Network used in theexperiments. LeNet-5 comprises 7 layers, not counting theinput, all of which contain trainable parameters (weights).The input is a 32x32 pixel image. This is signi�cantly largerthan the largest character in the database (at most 20x20pixels centered in a 28x28 �eld). The reason is that it isdesirable that potential distinctive features such as strokeend-points or corner can appear in the center of the recep-tive �eld of the highest-level feature detectors. In LeNet-5the set of centers of the receptive �elds of the last convolu-tional layer (C3, see below) form a 20x20 area in the centerof the 32x32 input. The values of the input pixels are nor-malized so that the background level (white) correspondsto a value of -0.1 and the foreground (black) correspondsto 1.175. This makes the mean input roughly 0, and thevariance roughly 1 which accelerates learning [46].In the following, convolutional layers are labeled Cx, sub-sampling layers are labeled Sx, and fully-connected layersare labeled Fx, where x is the layer index.Layer C1 is a convolutional layer with 6 feature maps.Each unit in each feature map is connected to a 5x5 neigh-borhood in the input. The size of the feature maps is 28x28which prevents connection from the input from falling o�the boundary. C1 contains 156 trainable parameters, and122,304 connections.Layer S2 is a sub-sampling layer with 6 feature maps ofsize 14x14. Each unit in each feature map is connected to a2x2 neighborhood in the corresponding feature map in C1.The four inputs to a unit in S2 are added, then multipliedby a trainable coe�cient, and added to a trainable bias.The result is passed through a sigmoidal function. The2x2 receptive �elds are non-overlapping, therefore featuremaps in S2 have half the number of rows and column asfeature maps in C1. Layer S2 has 12 trainable parametersand 5,880 connections.Layer C3 is a convolutional layer with 16 feature maps.Each unit in each feature map is connected to several 5x5neighborhoods at identical locations in a subset of S2'sfeature maps. Table I shows the set of S2 feature maps



PROC. OF THE IEEE, NOVEMBER 1998 80 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 X X X X X X X X X X1 X X X X X X X X X X2 X X X X X X X X X X3 X X X X X X X X X X4 X X X X X X X X X X5 X X X X X X X X X XTABLE IEach column indicates which feature map in S2 are combinedby the units in a particular feature map of C3.combined by each C3 feature map. Why not connect ev-ery S2 feature map to every C3 feature map? The rea-son is twofold. First, a non-complete connection schemekeeps the number of connections within reasonable bounds.More importantly, it forces a break of symmetry in the net-work. Di�erent feature maps are forced to extract di�erent(hopefully complementary) features because they get dif-ferent sets of inputs. The rationale behind the connectionscheme in table I is the following. The �rst six C3 featuremaps take inputs from every contiguous subsets of threefeature maps in S2. The next six take input from everycontiguous subset of four. The next three take input fromsome discontinuous subsets of four. Finally the last onetakes input from all S2 feature maps. Layer C3 has 1,516trainable parameters and 151,600 connections.Layer S4 is a sub-sampling layer with 16 feature maps ofsize 5x5. Each unit in each feature map is connected to a2x2 neighborhood in the corresponding feature map in C3,in a similar way as C1 and S2. Layer S4 has 32 trainableparameters and 2,000 connections.Layer C5 is a convolutional layer with 120 feature maps.Each unit is connected to a 5x5 neighborhood on all 16of S4's feature maps. Here, because the size of S4 is also5x5, the size of C5's feature maps is 1x1: this amountsto a full connection between S4 and C5. C5 is labeledas a convolutional layer, instead of a fully-connected layer,because if LeNet-5 input were made bigger with everythingelse kept constant, the feature map dimension would belarger than 1x1. This process of dynamically increasing thesize of a convolutional network is described in the sectionSection VII. Layer C5 has 48,120 trainable connections.Layer F6, contains 84 units (the reason for this numbercomes from the design of the output layer, explained be-low) and is fully connected to C5. It has 10,164 trainableparameters.As in classical neural networks, units in layers up to F6compute a dot product between their input vector and theirweight vector, to which a bias is added. This weighted sum,denoted ai for unit i, is then passed through a sigmoidsquashing function to produce the state of unit i, denotedby xi: xi = f(ai) (5)The squashing function is a scaled hyperbolic tangent:f(a) = A tanh(Sa) (6)

where A is the amplitude of the function and S determinesits slope at the origin. The function f is odd, with horizon-tal asymptotes at +A and �A. The constant A is chosento be 1:7159. The rationale for this choice of a squashingfunction is given in Appendix A.Finally, the output layer is composed of Euclidean RadialBasis Function units (RBF), one for each class, with 84inputs each. The outputs of each RBF unit yi is computedas follows: yi =Xj (xj � wij)2: (7)In other words, each output RBF unit computes the Eu-clidean distance between its input vector and its parametervector. The further away is the input from the parametervector, the larger is the RBF output. The output of aparticular RBF can be interpreted as a penalty term mea-suring the �t between the input pattern and a model of theclass associated with the RBF. In probabilistic terms, theRBF output can be interpreted as the unnormalized nega-tive log-likelihood of a Gaussian distribution in the spaceof con�gurations of layer F6. Given an input pattern, theloss function should be designed so as to get the con�gu-ration of F6 as close as possible to the parameter vectorof the RBF that corresponds to the pattern's desired class.The parameter vectors of these units were chosen by handand kept �xed (at least initially). The components of thoseparameters vectors were set to -1 or +1. While they couldhave been chosen at random with equal probabilities for -1and +1, or even chosen to form an error correcting codeas suggested by [47], they were instead designed to repre-sent a stylized image of the corresponding character classdrawn on a 7x12 bitmap (hence the number 84). Such arepresentation is not particularly useful for recognizing iso-lated digits, but it is quite useful for recognizing strings ofcharacters taken from the full printable ASCII set. Therationale is that characters that are similar, and thereforeconfusable, such as uppercase O, lowercase O, and zero, orlowercase l, digit 1, square brackets, and uppercase I, willhave similar output codes. This is particularly useful if thesystem is combined with a linguistic post-processor thatcan correct such confusions. Because the codes for confus-able classes are similar, the output of the correspondingRBFs for an ambiguous character will be similar, and thepost-processor will be able to pick the appropriate interpre-tation. Figure 3 gives the output codes for the full ASCIIset.Another reason for using such distributed codes, ratherthan the more common \1 of N" code (also called placecode, or grand-mother cell code) for the outputs is thatnon distributed codes tend to behave badly when the num-ber of classes is larger than a few dozens. The reason isthat output units in a non-distributed code must be o�most of the time. This is quite di�cult to achieve withsigmoid units. Yet another reason is that the classi�ers areoften used to not only recognize characters, but also to re-ject non-characters. RBFs with distributed codes are moreappropriate for that purpose because unlike sigmoids, theyare activated within a well circumscribed region of their in-
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p q r s t u v w x y z { | } ~ �Fig. 3. Initial parameters of the output RBFs for recognizing thefull ASCII set.put space that non-typical patterns are more likely to falloutside of.The parameter vectors of the RBFs play the role of targetvectors for layer F6. It is worth pointing out that the com-ponents of those vectors are +1 or -1, which is well withinthe range of the sigmoid of F6, and therefore prevents thosesigmoids from getting saturated. In fact, +1 and -1 are thepoints of maximum curvature of the sigmoids. This forcesthe F6 units to operate in their maximally non-linear range.Saturation of the sigmoids must be avoided because it isknown to lead to slow convergence and ill-conditioning ofthe loss function.C. Loss FunctionThe simplest output loss function that can be used withthe above network is the Maximum Likelihood Estimationcriterion (MLE), which in our case is equivalent to the Min-imum Mean Squared Error (MSE). The criterion for a setof training samples is simply:E(W ) = 1P PXp=1 yDp(Zp;W ) (8)where yDp is the output of the Dp-th RBF unit, i.e. theone that corresponds to the correct class of input patternZp. While this cost function is appropriate for most cases,it lacks three important properties. First, if we allow theparameters of the RBF to adapt, E(W ) has a trivial, buttotally unacceptable, solution. In this solution, all the RBFparameter vectors are equal, and the state of F6 is constantand equal to that parameter vector. In this case the net-work happily ignores the input, and all the RBF outputsare equal to zero. This collapsing phenomenon does notoccur if the RBF weights are not allowed to adapt. Thesecond problem is that there is no competition betweenthe classes. Such a competition can be obtained by us-ing a more discriminative training criterion, dubbed theMAP (maximum a posteriori) criterion, similar to Maxi-mum Mutual Information criterion sometimes used to trainHMMs [48], [49], [50]. It corresponds to maximizing theposterior probability of the correct class Dp (or minimiz-ing the logarithm of the probability of the correct class),given that the input image can come from one of the classesor from a background \rubbish" class label. In terms of

penalties, it means that in addition to pushing down thepenalty of the correct class like the MSE criterion, thiscriterion also pulls up the penalties of the incorrect classes:E(W ) = 1P PXp=1(yDp(Zp;W ) + log(e�j +Xi e�yi(Zp;W )))(9)The negative of the second term plays a \competitive" role.It is necessarily smaller than (or equal to) the �rst term,therefore this loss function is positive. The constant j ispositive, and prevents the penalties of classes that are al-ready very large from being pushed further up. The pos-terior probability of this rubbish class label would be theratio of e�j and e�j +Pi e�yi(Zp;W ). This discrimina-tive criterion prevents the previously mentioned \collaps-ing e�ect" when the RBF parameters are learned becauseit keeps the RBF centers apart from each other. In Sec-tion VI, we present a generalization of this criterion forsystems that learn to classify multiple objects in the input(e.g., characters in words or in documents).Computing the gradient of the loss function with respectto all the weights in all the layers of the convolutionalnetwork is done with back-propagation. The standard al-gorithm must be slightly modi�ed to take account of theweight sharing. An easy way to implement it is to �rst com-pute the partial derivatives of the loss function with respectto each connection, as if the network were a conventionalmulti-layer network without weight sharing. Then the par-tial derivatives of all the connections that share a sameparameter are added to form the derivative with respect tothat parameter.Such a large architecture can be trained very e�ciently,but doing so requires the use of a few techniques that aredescribed in the appendix. Section A of the appendixdescribes details such as the particular sigmoid used, andthe weight initialization. Section B and C describe theminimization procedure used, which is a stochastic versionof a diagonal approximation to the Levenberg-Marquardtprocedure.III. Results and Comparison with OtherMethodsWhile recognizing individual digits is only one of manyproblems involved in designing a practical recognition sys-tem, it is an excellent benchmark for comparing shaperecognition methods. Though many existing method com-bine a hand-crafted feature extractor and a trainable clas-si�er, this study concentrates on adaptive methods thatoperate directly on size-normalized images.A. Database: the Modi�ed NIST setThe database used to train and test the systems de-scribed in this paper was constructed from the NIST's Spe-cial Database 3 and Special Database 1 containing binaryimages of handwritten digits. NIST originally designatedSD-3 as their training set and SD-1 as their test set. How-ever, SD-3 is much cleaner and easier to recognize than SD-1. The reason for this can be found on the fact that SD-3



PROC. OF THE IEEE, NOVEMBER 1998 10was collected among Census Bureau employees, while SD-1was collected among high-school students. Drawing sensi-ble conclusions from learning experiments requires that theresult be independent of the choice of training set and testamong the complete set of samples. Therefore it was nec-essary to build a new database by mixing NIST's datasets.SD-1 contains 58,527 digit images written by 500 dif-ferent writers. In contrast to SD-3, where blocks of datafrom each writer appeared in sequence, the data in SD-1 isscrambled. Writer identities for SD-1 are available and weused this information to unscramble the writers. We thensplit SD-1 in two: characters written by the �rst 250 writerswent into our new training set. The remaining 250 writerswere placed in our test set. Thus we had two sets withnearly 30,000 examples each. The new training set wascompleted with enough examples from SD-3, starting atpattern # 0, to make a full set of 60,000 training patterns.Similarly, the new test set was completed with SD-3 exam-ples starting at pattern # 35,000 to make a full set with60,000 test patterns. In the experiments described here, weonly used a subset of 10,000 test images (5,000 from SD-1and 5,000 from SD-3), but we used the full 60,000 trainingsamples. The resulting database was called the Modi�edNIST, or MNIST, dataset.The original black and white (bilevel) images were sizenormalized to �t in a 20x20 pixel box while preservingtheir aspect ratio. The resulting images contain grey lev-els as result of the anti-aliasing (image interpolation) tech-nique used by the normalization algorithm. Three ver-sions of the database were used. In the �rst version,the images were centered in a 28x28 image by comput-ing the center of mass of the pixels, and translating theimage so as to position this point at the center of the28x28 �eld. In some instances, this 28x28 �eld was ex-tended to 32x32 with background pixels. This version ofthe database will be referred to as the regular database.In the second version of the database, the character im-ages were deslanted and cropped down to 20x20 pixels im-ages. The deslanting computes the second moments of in-ertia of the pixels (counting a foreground pixel as 1 and abackground pixel as 0), and shears the image by horizon-tally shifting the lines so that the principal axis is verti-cal. This version of the database will be referred to as thedeslanted database. In the third version of the database,used in some early experiments, the images were reducedto 16x16 pixels. The regular database (60,000 trainingexamples, 10,000 test examples size-normalized to 20x20,and centered by center of mass in 28x28 �elds) is avail-able at http://www.research.att.com/~yann/ocr/mnist.Figure 4 shows examples randomly picked from the test set.B. ResultsSeveral versions of LeNet-5 were trained on the regularMNIST database. 20 iterations through the entire train-ing data were performed for each session. The values ofthe global learning rate � (see Equation 21 in Appendix Cfor a de�nition) was decreased using the following sched-ule: 0.0005 for the �rst two passes, 0.0002 for the next

Fig. 4. Size-normalized examples from the MNIST database.three, 0.0001 for the next three, 0.00005 for the next 4,and 0.00001 thereafter. Before each iteration, the diagonalHessian approximation was reevaluated on 500 samples, asdescribed in Appendix C and kept �xed during the entireiteration. The parameter � was set to 0.02. The resultinge�ective learning rates during the �rst pass varied betweenapproximately 7� 10�5 and 0:016 over the set of parame-ters. The test error rate stabilizes after around 10 passesthrough the training set at 0.95%. The error rate on thetraining set reaches 0.35% after 19 passes. Many authorshave reported observing the common phenomenon of over-training when training neural networks or other adaptivealgorithms on various tasks. When over-training occurs,the training error keeps decreasing over time, but the testerror goes through a minimum and starts increasing aftera certain number of iterations. While this phenomenon isvery common, it was not observed in our case as the learn-ing curves in �gure 5 show. A possible reason is that thelearning rate was kept relatively large. The e�ect of this isthat the weights never settle down in the local minimumbut keep oscillating randomly. Because of those 
uctua-tions, the average cost will be lower in a broader minimum.Therefore, stochastic gradient will have a similar e�ect asa regularization term that favors broader minima. Broaderminima correspond to solutions with large entropy of theparameter distribution, which is bene�cial to the general-ization error.The in
uence of the training set size was measured bytraining the network with 15,000, 30,000, and 60,000 exam-ples. The resulting training error and test error are shownin �gure 6. It is clear that, even with specialized architec-tures such as LeNet-5, more training data would improvethe accuracy.To verify this hypothesis, we arti�cially generated moretraining examples by randomly distorting the originaltraining images. The increased training set was composedof the 60,000 original patterns plus 540,000 instances of
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Fig. 7. Examples of distortions of ten training patterns.
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4−>9 2−>8Fig. 8. The 82 test patterns misclassi�ed by LeNet-5. Below eachimage is displayed the correct answers (left) and the network an-swer (right). These errors are mostly caused either by genuinelyambiguous patterns, or by digits written in a style that are under-represented in the training set.perfectly identi�able by humans, although they are writ-ten in an under-represented style. This shows that furtherimprovements are to be expected with more training data.C. Comparison with Other Classi�ersFor the sake of comparison, a variety of other trainableclassi�ers was trained and tested on the same database. Anearly subset of these results was presented in [51]. The errorrates on the test set for the various methods are shown in�gure 9.C.1 Linear Classi�er, and Pairwise Linear Classi�erPossibly the simplest classi�er that one might consider isa linear classi�er. Each input pixel value contributes to aweighted sum for each output unit. The output unit withthe highest sum (including the contribution of a bias con-
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Fig. 9. Error rate on the test set (%) for various classi�cation methods. [deslant] indicates that the classi�er was trained and tested onthe deslanted version of the database. [dist] indicates that the training set was augmented with arti�cially distorted examples. [16x16]indicates that the system used the 16x16 pixel images. The uncertainty in the quoted error rates is about 0.1%.stant) indicates the class of the input character. On theregular data, the error rate is 12%. The network has 7850free parameters. On the deslanted images, the test errorrate is 8.4% The network has 4010 free parameters. Thede�ciencies of the linear classi�er are well documented [1]and it is included here simply to form a basis of comparisonfor more sophisticated classi�ers. Various combinations ofsigmoid units, linear units, gradient descent learning, andlearning by directly solving linear systems gave similar re-sults.A simple improvement of the basic linear classi�er wastested [52]. The idea is to train each unit of a single-layernetwork to separate each class from each other class. In ourcase this layer comprises 45 units labeled 0/1, 0/2,...0/9,1/2....8/9. Unit i=j is trained to produce +1 on patternsof class i, -1 on patterns of class j, and is not trained onother patterns. The �nal score for class i is the sum ofthe outputs all the units labeled i=x minus the sum of theoutput of all the units labeled y=i, for all x and y. Theerror rate on the regular test set was 7.6%.C.2 Baseline Nearest Neighbor Classi�erAnother simple classi�er is a K-nearest neighbor classi-�er with a Euclidean distance measure between input im-ages. This classi�er has the advantage that no trainingtime, and no brain on the part of the designer, are required.

However, the memory requirement and recognition time arelarge: the complete 60,000 twenty by twenty pixel trainingimages (about 24 Megabytes at one byte per pixel) must beavailable at run time. Much more compact representationscould be devised with modest increase in error rate. On theregular test set the error rate was 5.0%. On the deslanteddata, the error rate was 2.4%, with k = 3. Naturally, arealistic Euclidean distance nearest-neighbor system wouldoperate on feature vectors rather than directly on the pix-els, but since all of the other systems presented in thisstudy operate directly on the pixels, this result is useful fora baseline comparison.C.3 Principal Component Analysis (PCA) and PolynomialClassi�erFollowing [53], [54], a preprocessing stage was con-structed which computes the projection of the input pat-tern on the 40 principal components of the set of trainingvectors. To compute the principal components, the mean ofeach input component was �rst computed and subtractedfrom the training vectors. The covariance matrix of the re-sulting vectors was then computed and diagonalized usingSingular Value Decomposition. The 40-dimensional featurevector was used as the input of a second degree polynomialclassi�er. This classi�er can be seen as a linear classi�erwith 821 inputs, preceded by a module that computes all



PROC. OF THE IEEE, NOVEMBER 1998 13products of pairs of input variables. The error on the reg-ular test set was 3.3%.C.4 Radial Basis Function NetworkFollowing [55], an RBF network was constructed. The�rst layer was composed of 1,000 Gaussian RBF units with28x28 inputs, and the second layer was a simple 1000 inputs/ 10 outputs linear classi�er. The RBF units were dividedinto 10 groups of 100. Each group of units was trainedon all the training examples of one of the 10 classes usingthe adaptive K-means algorithm. The second layer weightswere computed using a regularized pseudo-inverse method.The error rate on the regular test set was 3.6%C.5 One-Hidden Layer Fully Connected Multilayer NeuralNetworkAnother classi�er that we tested was a fully connectedmulti-layer neural network with two layers of weights (onehidden layer) trained with the version of back-propagationdescribed in Appendix C. Error on the regular test set was4.7% for a network with 300 hidden units, and 4.5% for anetwork with 1000 hidden units. Using arti�cial distortionsto generate more training data brought only marginal im-provement: 3.6% for 300 hidden units, and 3.8% for 1000hidden units. When deslanted images were used, the testerror jumped down to 1.6% for a network with 300 hiddenunits.It remains somewhat of a mystery that networks withsuch a large number of free parameters manage to achievereasonably low testing errors. We conjecture that the dy-namics of gradient descent learning in multilayer nets hasa \self-regularization" e�ect. Because the origin of weightspace is a saddle point that is attractive in almost everydirection, the weights invariably shrink during the �rstfew epochs (recent theoretical analysis seem to con�rmthis [56]). Small weights cause the sigmoids to operatein the quasi-linear region, making the network essentiallyequivalent to a low-capacity, single-layer network. As thelearning proceeds, the weights grow, which progressivelyincreases the e�ective capacity of the network. This seemsto be an almost perfect, if fortuitous, implementation ofVapnik's \Structural Risk Minimization" principle [6]. Abetter theoretical understanding of these phenomena, andmore empirical evidence, are de�nitely needed.C.6 Two-Hidden Layer Fully Connected Multilayer NeuralNetworkTo see the e�ect of the architecture, several two-hiddenlayer multilayer neural networks were trained. Theoreti-cal results have shown that any function can be approxi-mated by a one-hidden layer neural network [57]. However,several authors have observed that two-hidden layer archi-tectures sometimes yield better performance in practicalsituations. This phenomenon was also observed here. Thetest error rate of a 28x28-300-100-10 network was 3.05%,a much better result than the one-hidden layer network,obtained using marginally more weights and connections.Increasing the network size to 28x28-1000-150-10 yielded

only marginally improved error rates: 2.95%. Trainingwith distorted patterns improved the performance some-what: 2.50% error for the 28x28-300-100-10 network, and2.45% for the 28x28-1000-150-10 network.C.7 A Small Convolutional Network: LeNet-1Convolutional Networks are an attempt to solve thedilemma between small networks that cannot learnthe training set, and large networks that seem over-parameterized. LeNet-1 was an early embodiment of theConvolutional Network architecture which is included herefor comparison purposes. The images were down-sampledto 16x16 pixels and centered in the 28x28 input layer. Al-though about 100,000 multiply/add steps are required toevaluate LeNet-1, its convolutional nature keeps the num-ber of free parameters to only about 2600. The LeNet-1 architecture was developed using our own version ofthe USPS (US Postal Service zip codes) database and itssize was tuned to match the available data [35]. LeNet-1achieved 1.7% test error. The fact that a network with sucha small number of parameters can attain such a good errorrate is an indication that the architecture is appropriatefor the task.C.8 LeNet-4Experiments with LeNet-1 made it clear that a largerconvolutional network was needed to make optimal use ofthe large size of the training set. LeNet-4 and later LeNet-5 were designed to address this problem. LeNet-4 is verysimilar to LeNet-5, except for the details of the architec-ture. It contains 4 �rst-level feature maps, followed by8 subsampling maps connected in pairs to each �rst-layerfeature maps, then 16 feature maps, followed by 16 sub-sampling map, followed by a fully connected layer with120 units, followed by the output layer (10 units). LeNet-4contains about 260,000 connections and has about 17,000free parameters. Test error was 1.1%. In a series of ex-periments, we replaced the last layer of LeNet-4 with aEuclidean Nearest Neighbor classi�er, and with the \locallearning" method of Bottou and Vapnik [58], in which a lo-cal linear classi�er is retrained each time a new test patternis shown. Neither of those methods improved the raw errorrate, although they did improve the rejection performance.C.9 Boosted LeNet-4Following theoretical work by R. Schapire [59], Druckeret al. [60] developed the \boosting" method for combiningmultiple classi�ers. Three LeNet-4s are combined: the �rstone is trained the usual way. the second one is trained onpatterns that are �ltered by the �rst net so that the secondmachine sees a mix of patterns, 50% of which the �rst netgot right, and 50% of which it got wrong. Finally, thethird net is trained on new patterns on which the �rst andthe second nets disagree. During testing, the outputs ofthe three nets are simply added. Because the error rate ofLeNet-4 is very low, it was necessary to use the arti�ciallydistorted images (as with LeNet-5) in order to get enoughsamples to train the second and third nets. The test error



PROC. OF THE IEEE, NOVEMBER 1998 14rate was 0.7%, the best of any of our classi�ers. At �rstglance, boosting appears to be three times more expensiveas a single net. In fact, when the �rst net produces ahigh con�dence answer, the other nets are not called. Theaverage computational cost is about 1.75 times that of asingle net.C.10 Tangent Distance Classi�er (TDC)The Tangent Distance classi�er (TDC) is a nearest-neighbor method where the distance function is made in-sensitive to small distortions and translations of the inputimage [61]. If we consider an image as a point in a highdimensional pixel space (where the dimensionality equalsthe number of pixels), then an evolving distortion of a char-acter traces out a curve in pixel space. Taken together,all these distortions de�ne a low-dimensional manifold inpixel space. For small distortions, in the vicinity of theoriginal image, this manifold can be approximated by aplane, known as the tangent plane. An excellent measureof "closeness" for character images is the distance betweentheir tangent planes, where the set of distortions used togenerate the planes includes translations, scaling, skewing,squeezing, rotation, and line thickness variations. A testerror rate of 1.1% was achieved using 16x16 pixel images.Pre�ltering techniques using simple Euclidean distance atmultiple resolutions allowed to reduce the number of nec-essary Tangent Distance calculations.C.11 Support Vector Machine (SVM)Polynomial classi�ers are well-studied methods for gen-erating complex decision surfaces. Unfortunately, theyare impractical for high-dimensional problems, because thenumber of product terms is prohibitive. The Support Vec-tor technique is an extremely economical way of represent-ing complex surfaces in high-dimensional spaces, includingpolynomials and many other types of surfaces [6].A particularly interesting subset of decision surfaces isthe ones that correspond to hyperplanes that are at a max-imum distance from the convex hulls of the two classes inthe high-dimensional space of the product terms. Boser,Guyon, and Vapnik [62] realized that any polynomial ofdegree k in this \maximum margin" set can be computedby �rst computing the dot product of the input image witha subset of the training samples (called the \support vec-tors"), elevating the result to the k-th power, and linearlycombining the numbers thereby obtained. Finding the sup-port vectors and the coe�cients amounts to solving a high-dimensional quadratic minimization problem with linearinequality constraints. For the sake of comparison, we in-clude here the results obtained by Burges and Sch�olkopfreported in [63]. With a regular SVM, their error rateon the regular test set was 1.4%. Cortes and Vapnik hadreported an error rate of 1.1% with SVM on the samedata using a slightly di�erent technique. The computa-tional cost of this technique is very high: about 14 millionmultiply-adds per recognition. Using Sch�olkopf's VirtualSupport Vectors technique (V-SVM), 1.0% error was at-tained. More recently, Sch�olkopf (personal communication)
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Fig. 11. Number of multiply-accumulate operations for the recogni-tion of a single character starting with a size-normalized image.has reached 0.8% using a modi�ed version of the V-SVM.Unfortunately, V-SVM is extremely expensive: about twiceas much as regular SVM. To alleviate this problem, Burgeshas proposed the Reduced Set Support Vector technique(RS-SVM), which attained 1.1% on the regular test set [63],with a computational cost of only 650,000 multiply-addsper recognition, i.e. only about 60% more expensive thanLeNet-5.D. DiscussionA summary of the performance of the classi�ers is shownin Figures 9 to 12. Figure 9 shows the raw error rate of theclassi�ers on the 10,000 example test set. Boosted LeNet-4performed best, achieving a score of 0.7%, closely followedby LeNet-5 at 0.8%.Figure 10 shows the number of patterns in the test setthat must be rejected to attain a 0.5% error for some ofthe methods. Patterns are rejected when the value of cor-responding output is smaller than a prede�ned threshold.In many applications, rejection performance is more signif-icant than raw error rate. The score used to decide uponthe rejection of a pattern was the di�erence between thescores of the top two classes. Again, Boosted LeNet-4 hasthe best performance. The enhanced versions of LeNet-4did better than the original LeNet-4, even though the raw
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Fig. 12. Memory requirements, measured in number of variables, foreach of the methods. Most of the methods only require one byteper variable for adequate performance.accuracies were identical.Figure 11 shows the number of multiply-accumulate op-erations necessary for the recognition of a single size-normalized image for each method. Expectedly, neuralnetworks are much less demanding than memory-basedmethods. Convolutional Neural Networks are particu-larly well suited to hardware implementations because oftheir regular structure and their low memory requirementsfor the weights. Single chip mixed analog-digital imple-mentations of LeNet-5's predecessors have been shown tooperate at speeds in excess of 1000 characters per sec-ond [64]. However, the rapid progress of mainstream com-puter technology renders those exotic technologies quicklyobsolete. Cost-e�ective implementations of memory-basedtechniques are more elusive, due to their enormous memoryrequirements, and computational requirements.Training time was also measured. K-nearest neighborsand TDC have essentially zero training time. While thesingle-layer net, the pairwise net, and PCA+quadratic netcould be trained in less than an hour, the multilayer nettraining times were expectedly much longer, but only re-quired 10 to 20 passes through the training set. Thisamounts to 2 to 3 days of CPU to train LeNet-5 on a Sil-icon Graphics Origin 2000 server, using a single 200MHzR10000 processor. It is important to note that while thetraining time is somewhat relevant to the designer, it is oflittle interest to the �nal user of the system. Given thechoice between an existing technique, and a new techniquethat brings marginal accuracy improvements at the priceof considerable training time, any �nal user would chosethe latter.Figure 12 shows the memory requirements, and thereforethe number of free parameters, of the various classi�ersmeasured in terms of the number of variables that needto be stored. Most methods require only about one byteper variable for adequate performance. However, Nearest-Neighbor methods may get by with 4 bits per pixel for stor-

ing the template images. Not surprisingly, neural networksrequire much less memory than memory-based methods.The Overall performance depends on many factors in-cluding accuracy, running time, and memory requirements.As computer technology improves, larger-capacity recog-nizers become feasible. Larger recognizers in turn requirelarger training sets. LeNet-1 was appropriate to the avail-able technology in 1989, just as LeNet-5 is appropriate now.In 1989 a recognizer as complex as LeNet-5 would have re-quired several weeks' training, and more data than wasavailable, and was therefore not even considered. For quitea long time, LeNet-1 was considered the state of the art.The local learning classi�er, the optimal margin classi�er,and the tangent distance classi�er were developed to im-prove upon LeNet-1 { and they succeeded at that. How-ever, they in turn motivated a search for improved neuralnetwork architectures. This search was guided in part byestimates of the capacity of various learning machines, de-rived from measurements of the training and test error asa function of the number of training examples. We dis-covered that more capacity was needed. Through a seriesof experiments in architecture, combined with an analy-sis of the characteristics of recognition errors, LeNet-4 andLeNet-5 were crafted.We �nd that boosting gives a substantial improvement inaccuracy, with a relatively modest penalty in memory andcomputing expense. Also, distortion models can be usedto increase the e�ective size of a data set without actuallyrequiring to collect more data.The Support Vector Machine has excellent accuracy,which is most remarkable, because unlike the other highperformance classi�ers, it does not include a priori knowl-edge about the problem. In fact, this classi�er would dojust as well if the image pixels were permuted with a �xedmapping and lost their pictorial structure. However, reach-ing levels of performance comparable to the ConvolutionalNeural Networks can only be done at considerable expensein memory and computational requirements. The reduced-set SVM requirements are within a factor of two of theConvolutional Networks, and the error rate is very close.Improvements of those results are expected, as the tech-nique is relatively new.When plenty of data is available, many methods can at-tain respectable accuracy. The neural-net methods runmuch faster and require much less space than memory-based techniques. The neural nets' advantage will becomemore striking as training databases continue to increase insize.E. Invariance and Noise ResistanceConvolutional networks are particularly well suited forrecognizing or rejecting shapes with widely varying size,position, and orientation, such as the ones typically pro-duced by heuristic segmenters in real-world string recogni-tion systems.In an experiment like the one described above, the im-portance of noise resistance and distortion invariance isnot obvious. The situation in most real applications is



PROC. OF THE IEEE, NOVEMBER 1998 16quite di�erent. Characters must generally be segmentedout of their context prior to recognition. Segmentationalgorithms are rarely perfect and often leave extraneousmarks in character images (noise, underlines, neighboringcharacters), or sometimes cut characters too much and pro-duce incomplete characters. Those images cannot be re-liably size-normalized and centered. Normalizing incom-plete characters can be very dangerous. For example, anenlarged stray mark can look like a genuine 1. Thereforemany systems have resorted to normalizing the images atthe level of �elds or words. In our case, the upper and lowerpro�les of entire �elds (amounts in a check) are detectedand used to normalize the image to a �xed height. Whilethis guarantees that stray marks will not be blown up intocharacter-looking images, this also creates wide variationsof the size and vertical position of characters after segmen-tation. Therefore it is preferable to use a recognizer that isrobust to such variations. Figure 13 shows several exam-ples of distorted characters that are correctly recognized byLeNet-5. It is estimated that accurate recognition occursfor scale variations up to about a factor of 2, vertical shiftvariations of plus or minus about half the height of thecharacter, and rotations up to plus or minus 30 degrees.While fully invariant recognition of complex shapes is stillan elusive goal, it seems that Convolutional Networks o�era partial answer to the problem of invariance or robustnesswith respect to geometrical distortions.Figure 13 includes examples of the robustness of LeNet-5 under extremely noisy conditions. Processing thoseimages would pose unsurmountable problems of segmen-tation and feature extraction to many methods, butLeNet-5 seems able to robustly extract salient featuresfrom these cluttered images. The training set used forthe network shown here was the MNIST training setwith salt and pepper noise added. Each pixel was ran-domly inverted with probability 0.1. More examplesof LeNet-5 in action are available on the Internet athttp://www.research.att.com/~yann/ocr.IV. Multi-Module Systems and GraphTransformer NetworksThe classical back-propagation algorithm, as describedand used in the previous sections, is a simple form ofGradient-Based Learning. However, it is clear that thegradient back-propagation algorithm given by Equation 4describes a more general situation than simple multi-layerfeed-forward networks composed of alternated linear trans-formations and sigmoidal functions. In principle, deriva-tives can be back-propagated through any arrangement offunctional modules, as long as we can compute the prod-uct of the Jacobians of those modules by any vector. Whywould we want to train systems composed of multiple het-erogeneous modules? The answer is that large and complextrainable systems need to be built out of simple, specializedmodules. The simplest example is LeNet-5, which mixesconvolutional layers, sub-sampling layers, fully-connectedlayers, and RBF layers. Another less trivial example, de-scribed in the next two sections, is a system for recognizing
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Fig. 14. A trainable system composed of heterogeneous modules.words, that can be trained to simultaneously segment andrecognize words, without ever being given the correct seg-mentation.Figure 14 shows an example of a trainable multi-modularsystem. A multi-module system is de�ned by the functionimplemented by each of the modules, and by the graph ofinterconnection of the modules to each other. The graphimplicitly de�nes a partial order according to which themodules must be updated in the forward pass. For exam-ple in Figure 14, module 0 is �rst updated, then modules 1and 2 are updated (possibly in parallel), and �nally mod-ule 3. Modules may or may not have trainable parameters.Loss functions, which measure the performance of the sys-tem, are implemented as module 4. In the simplest case,the loss function module receives an external input thatcarries the desired output. In this framework, there is noqualitative di�erence between trainable parameters (W1,W2in the �gure), external inputs and outputs (Z,D,E), andintermediate state variables(X1,X2,X3,X4,X5).A. An Object-Oriented ApproachObject-Oriented programming o�ers a particularly con-venient way of implementing multi-module systems. Eachmodule is an instance of a class. Module classes have a \for-ward propagation" method (or member function) calledfprop whose arguments are the inputs and outputs of themodule. For example, computing the output of module 3in Figure 14 can be done by calling the method fprop onmodule 3 with the arguments X3,X4,X5. Complex mod-ules can be constructed from simpler modules by simplyde�ning a new class whose slots will contain the membermodules and the intermediate state variables between thosemodules. The fprop method for the class simply calls thefprop methods of the member modules, with the appro-priate intermediate state variables or external input andoutputs as arguments. Although the algorithms are eas-ily generalizable to any network of such modules, includingthose whose in
uence graph has cycles, we will limit the dis-cussion to the case of directed acyclic graphs (feed-forwardnetworks).Computing derivatives in a multi-module system is justas simple. A \backward propagation" method, calledbprop, for each module class can be de�ned for that pur-pose. The bprop method of a module takes the same ar-
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Fig. 13. Examples of unusual, distorted, and noisy characters correctly recognized by LeNet-5. The grey-level of the output label representsthe penalty (lighter for higher penalties).guments as the fprop method. All the derivatives in thesystem can be computed by calling the bpropmethod on allthe modules in reverse order compared to the forward prop-agation phase. The state variables are assumed to containslots for storing the gradients computed during the back-ward pass, in addition to storage for the states computed inthe forward pass. The backward pass e�ectively computesthe partial derivatives of the loss E with respect to all thestate variables and all the parameters in the system. Thereis an interesting duality property between the forward andbackward functions of certain modules. For example, asum of several variables in the forward direction is trans-formed into a simple fan-out (replication) in the backwarddirection. Conversely, a fan-out in the forward directionis transformed into a sum in the backward direction. Thesoftware environment used to obtain the results describedin this paper, called SN3.1, uses the above concepts. It isbased on a home-grown object-oriented dialect of Lisp witha compiler to C.The fact that derivatives can be computed by propaga-tion in the reverse graph is easy to understand intuitively.The best way to justify it theoretically is through the use ofLagrange functions [21], [22]. The same formalism can be

used to extend the procedures to networks with recurrentconnections.B. Special ModulesNeural networks and many other standard pattern recog-nition techniques can be formulated in terms of multi-modular systems trained with Gradient-Based Learning.Commonly used modules include matrix multiplicationsand sigmoidal modules, the combination of which can beused to build conventional neural networks. Other mod-ules include convolutional layers, sub-sampling layers, RBFlayers, and \softmax" layers [65]. Loss functions are alsorepresented as modules whose single output produces thevalue of the loss. Commonly used modules have simplebprop methods. In general, the bprop method of a func-tion F is a multiplication by the Jacobian of F . Here area few commonly used examples. The bprop method of afanout (a \Y" connection) is a sum, and vice versa. Thebprop method of a multiplication by a coe�cient is a mul-tiplication by the same coe�cient. The bprop method of amultiplication by a matrix is a multiplication by the trans-pose of that matrix. The bpropmethod of an addition witha constant is the identity.
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(b)Fig. 15. Traditional neural networks, and multi-module systems com-municate �xed-size vectors between layer. Multi-Layer GraphTransformer Networks are composed of trainable modules thatoperate on and produce graphs whose arcs carry numerical in-formation.Interestingly, certain non-di�erentiable modules can beinserted in a multi-module system without adverse e�ect.An interesting example of that is the multiplexer module.It has two (or more) regular inputs, one switching input,and one output. The module selects one of its inputs, de-pending upon the (discrete) value of the switching input,and copies it on its output. While this module is not dif-ferentiable with respect to the switching input, it is di�er-entiable with respect to the regular inputs. Therefore theoverall function of a system that includes such modules willbe di�erentiable with respect to its parameters as long asthe switching input does not depend upon the parameters.For example, the switching input can be an external input.Another interesting case is the min module. This mod-ule has two (or more) inputs and one output. The outputof the module is the minimum of the inputs. The func-tion of this module is di�erentiable everywhere, except onthe switching surface which is a set of measure zero. In-terestingly, this function is continuous and reasonably reg-ular, and that is su�cient to ensure the convergence of aGradient-Based Learning algorithm.The object-oriented implementation of the multi-moduleidea can easily be extended to include a bbprop methodthat propagates Gauss-Newton approximations of the sec-ond derivatives. This leads to a direct generalization formodular systems of the second-derivative back-propagationEquation 22 given in the Appendix.The multiplexer module is a special case of a muchmore general situation, described at length in Section VIII,where the architecture of the system changes dynamicallywith the input data. Multiplexer modules can be used todynamically rewire (or recon�gure) the architecture of thesystem for each new input pattern.C. Graph Transformer NetworksMulti-module systems are a very 
exible tool for build-ing large trainable system. However, the descriptions inthe previous sections implicitly assumed that the set ofparameters, and the state information communicated be-

tween the modules, are all �xed-size vectors. The limited
exibility of �xed-size vectors for data representation is aserious de�ciency for many applications, notably for tasksthat deal with variable length inputs (e.g continuous speechrecognition and handwritten word recognition), or for tasksthat require encoding relationships between objects or fea-tures whose number and nature can vary (invariant per-ception, scene analysis, recognition of composite objects).An important special case is the recognition of strings ofcharacters or words.More generally, �xed-size vectors lack 
exibility for tasksin which the state must encode probability distributionsover sequences of vectors or symbols as is the case in lin-guistic processing. Such distributions over sequences arebest represented by stochastic grammars, or, in the moregeneral case, directed graphs in which each arc contains avector (stochastic grammars are special cases in which thevector contains probabilities and symbolic information).Each path in the graph represents a di�erent sequence ofvectors. Distributions over sequences can be representedby interpreting elements of the data associated with eacharc as parameters of a probability distribution or simplyas a penalty. Distributions over sequences are particularlyhandy for modeling linguistic knowledge in speech or hand-writing recognition systems: each sequence, i.e., each pathin the graph, represents an alternative interpretation of theinput. Successive processing modules progressively re�nethe interpretation. For example, a speech recognition sys-tem might start with a single sequence of acoustic vectors,transform it into a lattice of phonemes (distribution overphoneme sequences), then into a lattice of words (distribu-tion over word sequences), and then into a single sequenceof words representing the best interpretation.In our work on building large-scale handwriting recog-nition systems, we have found that these systems couldmuch more easily and quickly be developed and designedby viewing the system as a networks of modules that takeone or several graphs as input and produce graphs as out-put. Such modules are called Graph Transformers, and thecomplete systems are called Graph Transformer Networks,or GTN. Modules in a GTN communicate their states andgradients in the form of directed graphs whose arcs carrynumerical information (scalars or vectors) [66].From the statistical point of view, the �xed-size statevectors of conventional networks can be seen as represent-ing the means of distributions in state space. In variable-size networks such as the Space-Displacement Neural Net-works described in section VII, the states are variable-length sequences of �xed size vectors. They can be seenas representing the mean of a probability distribution overvariable-length sequences of �xed-size vectors. In GTNs,the states are represented as graphs, which can be seenas representing mixtures of probability distributions overstructured collections (possibly sequences) of vectors (Fig-ure 15).One of the main points of the next several sections isto show that Gradient-Based Learning procedures are notlimited to networks of simple modules that communicate



PROC. OF THE IEEE, NOVEMBER 1998 19through �xed-size vectors, but can be generalized to GTNs.Gradient back-propagation through a Graph Transformertakes gradients with respect to the numerical informa-tion in the output graph, and computes gradients with re-spect to the numerical information attached to the inputgraphs, and with respect to the module's internal param-eters. Gradient-Based Learning can be applied as long asdi�erentiable functions are used to produce the numericaldata in the output graph from the numerical data in theinput graph and the functions parameters.The second point of the next several sections is to showthat the functions implemented by many of the modulesused in typical document processing systems (and otherimage recognition systems), though commonly thought tobe combinatorial in nature, are indeed di�erentiable withrespect to their internal parameters as well as with respectto their inputs, and are therefore usable as part of a globallytrainable system.In most of the following, we will purposely avoid makingreferences to probability theory. All the quantities manip-ulated are viewed as penalties, or costs, which if necessarycan be transformed into probabilities by taking exponen-tials and normalizing.V. Multiple Object Recognition: HeuristicOver-SegmentationOne of the most di�cult problems of handwriting recog-nition is to recognize not just isolated characters, butstrings of characters, such as zip codes, check amounts,or words. Since most recognizers can only deal with onecharacter at a time, we must �rst segment the string intoindividual character images. However, it is almost impos-sible to devise image analysis techniques that will infalliblysegment naturally written sequences of characters into wellformed characters.The recent history of automatic speech recognition [28],[67] is here to remind us that training a recognizer by opti-mizing a global criterion (at the word or sentence level) ismuch preferable to merely training it on hand-segmentedphonemes or other units. Several recent works have shownthat the same is true for handwriting recognition [38]: op-timizing a word-level criterion is preferable to solely train-ing a recognizer on pre-segmented characters because therecognizer can learn not only to recognize individual char-acters, but also to reject mis-segmented characters therebyminimizing the overall word error.This section and the next describe in detail a simple ex-ample of GTN to address the problem of reading strings ofcharacters, such as words or check amounts. The methodavoids the expensive and unreliable task of hand-truthingthe result of the segmentation often required in more tra-ditional systems trained on individually labeled characterimages.A. Segmentation GraphA now classical method for word segmentation and recog-nition is called Heuristic Over-Segmentation [68], [69]. Itsmain advantages over other approaches to segmentation are

Fig. 16. Building a segmentation graph with Heuristic Over-Segmentation.that it avoids making hard decisions about the segmenta-tion by taking a large number of di�erent segmentationsinto consideration. The idea is to use heuristic image pro-cessing techniques to �nd candidate cuts of the word orstring, and then to use the recognizer to score the alter-native segmentations thereby generated. The process isdepicted in Figure 16. First, a number of candidate cutsare generated. Good candidate locations for cuts can befound by locating minima in the vertical projection pro�le,or minima of the distance between the upper and lowercontours of the word. Better segmentation heuristics aredescribed in section X. The cut generation heuristic is de-signed so as to generate more cuts than necessary, in thehope that the \correct" set of cuts will be included. Oncethe cuts have been generated, alternative segmentations arebest represented by a graph, called the segmentation graph.The segmentation graph is a Directed Acyclic Graph (DAG)with a start node and an end node. Each internal node isassociated with a candidate cut produced by the segmen-tation algorithm. Each arc between a source node and adestination node is associated with an image that containsall the ink between the cut associated with the source nodeand the cut associated with the destination node. An arcis created between two nodes if the segmentor decided thatthe ink between the corresponding cuts could form a can-didate character. Typically, each individual piece of inkwould be associated with an arc. Pairs of successive piecesof ink would also be included, unless they are separated bya wide gap, which is a clear indication that they belongto di�erent characters. Each complete path through thegraph contains each piece of ink once and only once. Eachpath corresponds to a di�erent way of associating pieces ofink together so as to form characters.B. Recognition Transformer and Viterbi TransformerA simple GTN to recognize character strings is shownin Figure 17. It is composed of two graph transformerscalled the recognition transformer Trec, and the Viterbitransformer Tvit. The goal of the recognition transformeris to generate a graph, called the interpretation graph orrecognition graph Gint, that contains all the possible inter-pretations for all the possible segmentations of the input.Each path in Gint represents one possible interpretation ofone particular segmentation of the input. The role of theViterbi transformer is to extract the best interpretationfrom the interpretation graph.The recognition transformer Trec takes the segmentationgraph Gseg as input, and applies the recognizer for singlecharacters to the images associated with each of the arcs
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PROC. OF THE IEEE, NOVEMBER 1998 21VI. Global Training for Graph TransformerNetworksThe previous section describes the process of recognizinga string using Heuristic Over-Segmentation, assuming thatthe recognizer is trained so as to give low penalties for thecorrect class label of correctly segmented characters, highpenalties for erroneous categories of correctly segmentedcharacters, and high penalties for all categories for badlyformed characters. This section explains how to train thesystem at the string level to do the above without requiringmanual labeling of character segments. This training willbe performed with a GTN whose architecture is slightlydi�erent from the recognition architecture described in theprevious section.In many applications, there is enough a priori knowl-edge about what is expected from each of the modules inorder to train them separately. For example, with Heuris-tic Over-Segmentation one could individually label single-character images and train a character recognizer on them,but it might be di�cult to obtain an appropriate set ofnon-character images to train the model to reject wronglysegmented candidates. Although separate training is sim-ple, it requires additional supervision information that isoften lacking or incomplete (the correct segmentation andthe labels of incorrect candidate segments). Furthermoreit can be shown that separate training is sub-optimal [67].The following section describes three di�erent gradient-based methods for training GTN-based handwriting recog-nizers at the string level: Viterbi training, discriminativeViterbi training, forward training, and discriminative for-ward training. The last one is a generalization to graph-based systems of the MAP criterion introduced in Sec-tion II-C. Discriminative forward training is somewhatsimilar to the so-called Maximum Mutual Information cri-terion used to train HMM in speech recognition. However,our rationale di�ers from the classical one. We make norecourse to a probabilistic interpretation, but show that,within the Gradient-Based Learning approach, discrimina-tive training is a simple instance of the pervasive principleof error correcting learning.Training methods for graph-based sequence recognitionsystems such as HMMs have been extensively studied inthe context of speech recognition [28]. Those methods re-quire that the system be based on probabilistic generativemodels of the data, which provide normalized likelihoodsover the space of possible input sequences. Popular HMMlearning methods, such as the the Baum-Welsh algorithm,rely on this normalization. The normalization cannot bepreserved when non-generative models such as neural net-works are integrated into the system. Other techniques,such as discriminative training methods, must be used inthis case. Several authors have proposed such methods totrain neural network/HMM speech recognizers at the wordor sentence level [71], [72], [73], [74], [75], [76], [77], [78],[29], [67].Other globally trainable sequence recognition systemsavoid the di�culties of statistical modeling by not resortingto graph-based techniques. The best example is Recurrent
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Fig. 19. Viterbi Training GTN Architecture for a character stringrecognizer based on Heuristic Over-Segmentation.Neural Networks (RNN). Unfortunately, despite early en-thusiasm, the training of RNNs with gradient-based tech-niques has proved very di�cult in practice [79].The GTN techniques presented below simplify and gen-eralize the global training methods developed for speechrecognition.A. Viterbi TrainingDuring recognition, we select the path in the Interpre-tation Graph that has the lowest penalty with the Viterbialgorithm. Ideally, we would like this path of lowest penaltyto be associated with the correct label sequence as often aspossible. An obvious loss function to minimize is thereforethe average over the training set of the penalty of the pathassociated with the correct label sequence that has the low-est penalty. The goal of training will be to �nd the set ofrecognizer parameters (the weights, if the recognizer is aneural network) that minimize the average penalty of this\correct" lowest penalty path. The gradient of this lossfunction can be computed by back-propagation throughthe GTN architecture shown in �gure 19. This trainingarchitecture is almost identical to the recognition archi-tecture described in the previous section, except that anextra graph transformer called a path selector is insertedbetween the Interpretation Graph and the Viterbi Trans-former. This transformer takes the interpretation graphand the desired label sequence as input. It extracts fromthe interpretation graph those paths that contain the cor-rect (desired) label sequence. Its output graph Gc is calledthe constrained interpretation graph (also known as forcedalignment in the HMM literature), and contains all thepaths that correspond to the correct label sequence. Theconstrained interpretation graph is then sent to the Viterbitransformer which produces a graph Gcvit with a singlepath. This path is the \correct" path with the lowestpenalty. Finally, a path scorer transformer takes Gcvit, andsimply computes its cumulated penalty Ccvit by adding upthe penalties along the path. The output of this GTN is



PROC. OF THE IEEE, NOVEMBER 1998 22the loss function for the current pattern:Evit = Ccvit (11)The only label information that is required by the abovesystem is the sequence of desired character labels. Noknowledge of the correct segmentation is required on thepart of the supervisor, since it chooses among the segmen-tations in the interpretation graph the one that yields thelowest penalty.The process of back-propagating gradients through theViterbi training GTN is now described. As explained insection IV, the gradients must be propagated backwardsthrough all modules of the GTN, in order to compute gra-dients in preceding modules and thereafter tune their pa-rameters. Back-propagating gradients through the pathscorer is quite straightforward. The partial derivatives ofthe loss function with respect to the individual penalties onthe constrained Viterbi path Gcvit are equal to 1, since theloss function is simply the sum of those penalties. Back-propagating through the Viterbi Transformer is equallysimple. The partial derivatives of Evit with respect to thepenalties on the arcs of the constrained graph Gc are 1for those arcs that appear in the constrained Viterbi pathGcvit, and 0 for those that do not. Why is it legitimateto back-propagate through an essentially discrete functionsuch as the Viterbi Transformer? The answer is that theViterbi Transformer is nothing more than a collection ofmin functions and adders put together. It was shown inSection IV that gradients can be back-propagated throughmin functions without adverse e�ects. Back-propagationthrough the path selector transformer is similar to back-propagation through the Viterbi transformer. Arcs in Gintthat appear in Gc have the same gradient as the corre-sponding arc in Gc, i.e. 1 or 0, depending on whether thearc appear in Gcvit. The other arcs, i.e. those that donot have an alter ego in Gc because they do not containthe right label have a gradient of 0. During the forwardpropagation through the recognition transformer, one in-stance of the recognizer for single character was createdfor each arc in the segmentation graph. The state of rec-ognizer instances was stored. Since each arc penalty inGint is produced by an individual output of a recognizerinstance, we now have a gradient (1 or 0) for each out-put of each instance of the recognizer. Recognizer outputsthat have a non zero gradient are part of the correct an-swer, and will therefore have their value pushed down. Thegradients present on the recognizer outputs can be back-propagated through each recognizer instance. For each rec-ognizer instance, we obtain a vector of partial derivativesof the loss function with respect to the recognizer instanceparameters. All the recognizer instances share the same pa-rameter vector, since they are merely clones of each other,therefore the full gradient of the loss function with respectto the recognizer's parameter vector is simply the sum ofthe gradient vectors produced by each recognizer instance.Viterbi training, though formulated di�erently, is often usein HMM-based speech recognition systems [28]. Similar al-gorithms have been applied to speech recognition systems

that integrate neural networks with time alignment [71],[72], [76] or hybrid neural-network/HMM systems [29], [74],[75].While it seems simple and satisfying, this training ar-chitecture has a 
aw that can potentially be fatal. Theproblem was already mentioned in Section II-C. If therecognizer is a simple neural network with sigmoid out-put units, the minimum of the loss function is attained,not when the recognizer always gives the right answer, butwhen it ignores the input, and sets its output to a constantvector with small values for all the components. This isknown as the collapse problem. The collapse only occurs ifthe recognizer outputs can simultaneously take their min-imum value. If on the other hand the recognizer's out-put layer contains RBF units with �xed parameters, thenthere is no such trivial solution. This is due to the factthat a set of RBF with �xed distinct parameter vectorscannot simultaneously take their minimum value. In thiscase, the complete collapse described above does not occur.However, this does not totally prevent the occurrence of amilder collapse because the loss function still has a \
atspot" for a trivial solution with constant recognizer out-put. This 
at spot is a saddle point, but it is attractive inalmost all directions and is very di�cult to get out of usinggradient-based minimization procedures. If the parametersof the RBFs are allowed to adapt, then the collapse prob-lems reappears because the RBF centers can all convergeto a single vector, and the underlying neural network canlearn to produce that vector, and ignore the input. A dif-ferent kind of collapse occurs if the width of the RBFs arealso allowed to adapt. The collapse only occurs if a train-able module such as a neural network feeds the RBFs. Thecollapse does not occur in HMM-based speech recognitionsystems because they are generative systems that producenormalized likelihoods for the input data (more on thislater). Another way to avoid the collapse is to train thewhole system with respect to a discriminative training cri-terion, such as maximizing the conditional probability ofthe correct interpretations (correct sequence of class labels)given the input image.Another problem with Viterbi training is that thepenalty of the answer cannot be used reliably as a mea-sure of con�dence because it does not take low-penalty (orhigh-scoring) competing answers into account.B. Discriminative Viterbi TrainingA modi�cation of the training criterion can circumventthe collapse problem described above and at the same timeproduce more reliable con�dence values. The idea is to notonly minimize the cumulated penalty of the lowest penaltypath with the correct interpretation, but also to somehowincrease the penalty of competing and possibly incorrectpaths that have a dangerously low penalty. This type ofcriterion is called discriminative, because it plays the goodanswers against the bad ones. Discriminative training pro-cedures can be seen as attempting to build appropriateseparating surfaces between classes rather than to modelindividual classes independently of each other. For exam-
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PROC. OF THE IEEE, NOVEMBER 1998 24ple, modeling the conditional distribution of the classesgiven the input image is more discriminative (focus-singmore on the classi�cation surface) than having a separategenerative model of the input data associated to each class(which, with class priors, yields the whole joint distribu-tion of classes and inputs). This is because the conditionalapproach does not need to assume a particular form for thedistribution of the input data.One example of discriminative criterion is the di�erencebetween the penalty of the Viterbi path in the constrainedgraph, and the penalty of the Viterbi path in the (uncon-strained) interpretation graph, i.e. the di�erence betweenthe penalty of the best correct path, and the penalty ofthe best path (correct or incorrect). The correspondingGTN training architecture is shown in �gure 20. The leftside of the diagram is identical to the GTN used for non-discriminative Viterbi training. This loss function reducesthe risk of collapse because it forces the recognizer to in-creases the penalty of wrongly recognized objects. Dis-criminative training can also be seen as another exampleof error correction procedure, which tends to minimize thedi�erence between the desired output computed in the lefthalf of the GTN in �gure 20 and the actual output com-puted in the right half of �gure 20.Let the discriminative Viterbi loss function be denotedEdvit, and let us call Ccvit the penalty of the Viterbi path inthe constrained graph, and Cvit the penalty of the Viterbipath in the unconstrained interpretation graph:Edvit = Ccvit � Cvit (12)Edvit is always positive since the constrained graph is asubset of the paths in the interpretation graph, and theViterbi algorithm selects the path with the lowest totalpenalty. In the ideal case, the two paths Ccvit and Cvitcoincide, and Edvit is zero.Back-propagating gradients through the discriminativeViterbi GTN adds some \negative" training to the pre-viously described non-discriminative training. Figure 20shows how the gradients are back-propagated. The lefthalf is identical to the non-discriminative Viterbi trainingGTN, therefore the back-propagation is identical. The gra-dients back-propagated through the right half of the GTNare multiplied by -1, since Cvit contributes to the loss witha negative sign. Otherwise the process is similar to the lefthalf. The gradients on arcs of Gint get positive contribu-tions from the left half and negative contributions from theright half. The two contributions must be added, since thepenalties on Gint arcs are sent to the two halves througha \Y" connection in the forward pass. Arcs in Gint thatappear neither in Gvit nor in Gcvit have a gradient of zero.They do not contribute to the cost. Arcs that appear inboth Gvit and Gcvit also have zero gradient. The -1 contri-bution from the right half cancels the the +1 contributionfrom the left half. In other words, when an arc is rightfullypart of the answer, there is no gradient. If an arc appearsin Gcvit but not in Gvit, the gradient is +1. The arc shouldhave had a lower penalty to make it to Gvit. If an arc isin Gvit but not in Gcvit, the gradient is -1. The arc had a

low penalty, but should have had a higher penalty since itis not part of the desired answer.Variations of this technique have been used for the speechrecognition. Driancourt and Bottou [76] used a version ofit where the loss function is saturated to a �xed value.This can be seen as a generalization of the Learning VectorQuantization 2 (LVQ-2) loss function [80]. Other variationsof this method use not only the Viterbi path, but the K-best paths. The Discriminative Viterbi algorithm does nothave the 
aws of the non-discriminative version, but thereare problems nonetheless. The main problem is that thecriterion does not build a margin between the classes. Thegradient is zero as soon as the penalty of the constrainedViterbi path is equal to that of the Viterbi path. It wouldbe desirable to push up the penalties of the wrong pathswhen they are dangerously close to the good one. Thefollowing section presents a solution to this problem.C. Forward Scoring, and Forward TrainingWhile the penalty of the Viterbi path is perfectly appro-priate for the purpose of recognition, it gives only a partialpicture of the situation. Imagine the lowest penalty pathscorresponding to several di�erent segmentations producedthe same answer (the same label sequence). Then it couldbe argued that the overall penalty for the interpretationshould be smaller than the penalty obtained when only onepath produced that interpretation, because multiple pathswith identical label sequences are more evidence that thelabel sequence is correct. Several rules can be used com-pute the penalty associated to a graph that contains severalparallel paths. We use a combination rule borrowed froma probabilistic interpretation of the penalties as negativelog posteriors. In a probabilistic framework, the posteriorprobability for the interpretation should be the sum of theposteriors for all the paths that produce that interpreta-tion. Translated in terms of penalties, the penalty of aninterpretation should be the negative logarithm of the sumof the negative exponentials of the penalties of the individ-ual paths. The overall penalty will be smaller than all thepenalties of the individual paths.Given an interpretation, there is a well known method,called the forward algorithm for computing the above quan-tity e�ciently [28]. The penalty computed with this pro-cedure for a particular interpretation is called the forwardpenalty. Consider again the concept of constrained graph,the subgraph of the interpretation graph which containsonly the paths that are consistent with a particular labelsequence. There is one constrained graph for each pos-sible label sequence (some may be empty graphs, whichhave in�nite penalties). Given an interpretation, runningthe forward algorithm on the corresponding constrainedgraph gives the forward penalty for that interpretation.The forward algorithm proceeds in a way very similar tothe Viterbi algorithm, except that the operation used ateach node to combine the incoming cumulated penalties,instead of being the min function is the so-called logaddoperation, which can be seen as a \soft" version of the min



PROC. OF THE IEEE, NOVEMBER 1998 25function: fn = logaddi2Un(ci + fsi): (13)where fstart = 0, Un is the set of upstream arcs of node n,ciis the penalty on arc i, andlogadd(x1; x2; : : : ; xn) = � log( nXi=1 e�xi) (14)Note that because of numerical inaccuracies, it is betterto factorize the largest e�xi (corresponding to the smallestpenalty) out of the logarithm.An interesting analogy can be drawn if we consider thata graph on which we apply the forward algorithm is equiv-alent to a neural network on which we run a forward prop-agation, except that multiplications are replaced by addi-tions, the additions are replaced by logadds, and there areno sigmoids.One way to understand the forward algorithm is to thinkabout multiplicative scores (e.g., probabilities) instead ofadditive penalties on the arcs: score = exp(� penalty ). Inthat case the Viterbi algorithm selects the path with thelargest cumulative score (with scores multiplied along thepath), whereas the forward score is the sum of the cumula-tive scores associated to each of the possible paths from thestart to the end node. The forward penalty is always lowerthan the cumulated penalty on any of the paths, but if onepath \dominates" (with a much lower penalty), its penaltyis almost equal to the forward penalty. The forward algo-rithm gets its name from the forward pass of the well-knownBaum-Welsh algorithm for training Hidden Markov Mod-els [28]. Section VIII-E gives more details on the relationbetween this work and HMMs.The advantage of the forward penalty with respect tothe Viterbi penalty is that it takes into account all thedi�erent ways to produce an answer, and not just the onewith the lowest penalty. This is important if there is someambiguity in the segmentation, since the combined forwardpenalty of two paths C1 and C2 associated with the samelabel sequence may be less than the penalty of a path C3associated with another label sequence, even though thepenalty of C3 might be less than any one of C1 or C2.The Forward training GTN is only a slight modi�ca-tion of the previously introduced Viterbi training GTN. Itsu�ces to turn the Viterbi transformers in Figure 19 intoForward Scorers that take an interpretation graph as inputan produce the forward penalty of that graph on output.Then the penalties of all the paths that contain the correctanswer are lowered, instead of just that of the best one.Back-propagating through the forward penalty computa-tion (the forward transformer) is quite di�erent from back-propagating through a Viterbi transformer. All the penal-ties of the input graph have an in
uence on the forwardpenalty, but penalties that belong to low-penalty pathshave a stronger in
uence. Computing derivatives with re-spect to the forward penalties fn computed at each n nodeof a graph is done by back-propagation through the graph
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uence. Back-propagation through the path selector is the same as before.The derivative with respect to Gint arcs that have an alterego in Gc are simply copied from the corresponding arc inGc. The derivatives with respect to the other arcs are 0.Several authors have applied the idea of back-propagating gradients through a forward scorer to trainspeech recognition systems, including Bridle and his �-netmodel [73] and Ha�ner and his ��-TDNN model [81], butthese authors recommended discriminative training as de-scribed in the next section.D. Discriminative Forward TrainingThe information contained in the forward penalty can beused in another discriminative training criterion which wewill call the discriminative forward criterion. This criterioncorresponds to maximization of the posterior probability ofchoosing the paths associated with the correct interpreta-tion. This posterior probability is de�ned as the exponen-tial of the minus the constrained forward penalty, normal-ized by the exponential of minus the unconstrained forwardpenalty. Note that the forward penalty of the constrainedgraph is always larger or equal to the forward penalty of theunconstrained interpretation graph. Ideally, we would likethe forward penalty of the constrained graph to be equal to



PROC. OF THE IEEE, NOVEMBER 1998 26the forward penalty of the complete interpretation graph.Equality between those two quantities is achieved when thecombined penalties of the paths with the correct label se-quence is negligibly small compared to the penalties of allthe other paths, or that the posterior probability associ-ated to the paths with the correct interpretation is almost1, which is precisely what we want. The correspondingGTN training architecture is shown in �gure 21.Let the di�erence be denoted Edforw, and let us callCcforw the forward penalty of the constrained graph, andCforw the forward penalty of the complete interpretationgraph: Edforw = Ccforw � Cforw (17)Edforw is always positive since the constrained graph is asubset of the paths in the interpretation graph, and theforward penalty of a graph is always larger than the for-ward penalty of a subgraph of this graph. In the ideal case,the penalties of incorrect paths are in�nitely large, there-fore the two penalties coincide and Edforw is zero. Readersfamiliar with the Boltzmann machine connectionist modelmight recognize the constrained and unconstrained graphsas analogous to the \clamped" (constrained by the ob-served values of the output variable) and \free" (uncon-strained) phases of the Boltzmann machine algorithm [13].Back-propagating derivatives through the discriminativeForward GTN distributes gradients more evenly than in theViterbi case. Derivatives are back-propagated through theleft half of the the GTN in Figure 21 down to the interpre-tation graph. Derivatives are negated and back-propagatedthrough the right-half, and the result for each arc is addedto the contribution from the left half. Each arc in Gintnow has a derivative. Arcs that are part of a correct pathhave a positive derivative. This derivative is very large ifan incorrect path has a lower penalty than all the correctpaths. Similarly, the derivatives with respect to arcs thatare part of a low-penalty incorrect path have a large nega-tive derivative. On the other hand, if the penalty of a pathassociated with the correct interpretation is much smallerthan all other paths, the loss function is very close to 0and almost no gradient is back-propagated. The trainingtherefore concentrates on examples of images which yield aclassi�cation error, and furthermore, it concentrates on thepieces of the image which cause that error. Discriminativeforward training is an elegant and e�cient way of solvingthe infamous credit assignment problem for learning ma-chines that manipulate \dynamic" data structures such asgraphs. More generally, the same idea can be used in allsituations where a learning machine must choose betweendiscrete alternative interpretations.As previously, the derivatives on the interpretation graphpenalties can then be back-propagated into the characterrecognizer instances. Back-propagation through the char-acter recognizer gives derivatives on its parameters. All thegradient contributions for the di�erent candidate segmentsare added up to obtain the total gradient associated to onepair (input image, correct label sequence), that is, one ex-ample in the training set. A step of stochastic gradientdescent can then be applied to update the parameters.

E. Remarks on Discriminative TrainingIn the above discussion, the global training criterionwas given a probabilistic interpretation, but the individ-ual penalties on the arcs of the graphs were not. There aregood reasons for that. For example, if some penalties areassociated to the di�erent class labels, they would (1) haveto sum to 1 (class posteriors), or (2) integrate to 1 over theinput domain (likelihoods).Let us �rst discuss the �rst case (class posteriors normal-ization). This local normalization of penalties may elimi-nate information that is important for locally rejecting allthe classes [82], e.g., when a piece of image does not cor-respond to a valid character class, because some of thesegmentation candidates may be wrong. Although an ex-plicit \garbage class" can be introduced in a probabilisticframework to address that question, some problems remainbecause it is di�cult to characterize such a class probabilis-tically and to train a system in this way (it would requirea density model of unseen or unlabeled samples).The probabilistic interpretation of individual variablesplays an important role in the Baum-Welsh algorithmin combination with the Expectation-Maximization proce-dure. Unfortunately, those methods cannot be applied todiscriminative training criteria, and one is reduced to us-ing gradient-based methods. Enforcing the normalizationof the probabilistic quantities while performing gradient-based learning is complex, ine�cient, time consuming, andcreates ill-conditioning of the loss-function.Following [82], we therefore prefer to postpone normal-ization as far as possible (in fact, until the �nal decisionstage of the system). Without normalization, the quanti-ties manipulated in the system do not have a direct prob-abilistic interpretation.Let us now discuss the second case (using a generativemodel of the input). Generative models build the boundaryindirectly, by �rst building an independent density modelfor each class, and then performing classi�cation decisionson the basis of these models. This is not a discriminativeapproach in that it does not focus on the ultimate goal oflearning, which in this case is to learn the classi�cation de-cision surface. Theoretical arguments [6], [7] suggest thatestimating input densities when the real goal is to obtaina discriminant function for classi�cation is a suboptimalstrategy. In theory, the problem of estimating densities inhigh-dimensional spaces is much more ill-posed than �nd-ing decision boundaries.Even though the internal variables of the system do nothave a direct probabilistic interpretation, the overall sys-tem can still be viewed as producing posterior probabilitiesfor the classes. In fact, assuming that a particular label se-quence is given as the \desired sequence" to the GTN in�gure 21, the exponential of minus Edforw can be inter-preted as an estimate of the posterior probability of thatlabel sequence given the input. The sum of those posteriorsfor all the possible label sequences is 1. Another approachwould consists of directly minimizing an approximation ofthe number of misclassi�cations [83] [76]. We prefer to usethe discriminative forward loss function because it causes
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"U"

Recognizer

Fig. 22. Explicit segmentation can be avoided by sweeping a recog-nizer at every possible location in the input �eld.less numerical problems during the optimization. We willsee in Section X-C that this is a good way to obtain scoreson which to base a rejection strategy. The important pointbeing made here is that one is free to choose any param-eterization deemed appropriate for a classi�cation model.The fact that a particular parameterization uses internalvariables with no clear probabilistic interpretation does notmake the model any less legitimate than models that ma-nipulate normalized quantities.An important advantage of global and discriminativetraining is that learning focuses on the most importanterrors, and the system learns to integrate the ambigui-ties from the segmentation algorithm with the ambigui-ties of the character recognizer. In Section IX we presentexperimental results with an on-line handwriting recogni-tion system that con�rm the advantages of using globaltraining versus separate training. Experiments in speechrecognition with hybrids of neural networks and HMMsalso showed marked improvements brought by global train-ing [77], [29], [67], [84].VII. Multiple Object Recognition: SpaceDisplacement Neural Network.There is a simple alternative to explicitly segmenting im-ages of character strings using heuristics. The idea is tosweep a recognizer at all possible locations across a nor-malized image of the entire word or string as shown inFigure 22. With this technique, no segmentation heuris-tics are required since the system essentially examines allthe possible segmentations of the input. However, thereare problems with this approach. First, the method is ingeneral quite expensive. The recognizer must be appliedat every possible location on the input, or at least at alarge enough subset of locations so that misalignments ofcharacters in the �eld of view of the recognizers are smallenough to have no e�ect on the error rate. Second, whenthe recognizer is centered on a character to be recognized,the neighbors of the center character will be present in the�eld of view of the recognizer, possibly touching the cen-ter character. Therefore the recognizer must be able tocorrectly recognize the character in the center of its input�eld, even if neighboring characters are very close to, ortouching the central character. Third, a word or charac-ter string cannot be perfectly size normalized. Individual

$Fig. 23. A Space Displacement Neural Network is a convolutionalnetwork that has been replicated over a wide input �eld.characters within a string may have widely varying sizesand baseline positions. Therefore the recognizer must bevery robust to shifts and size variations.These three problems are elegantly circumvented if aconvolutional network is replicated over the input �eld.First of all, as shown in section III, convolutional neu-ral networks are very robust to shifts and scale varia-tions of the input image, as well as to noise and extra-neous marks in the input. These properties take care ofthe latter two problems mentioned in the previous para-graph. Second, convolutional networks provide a drasticsaving in computational requirement when replicated overlarge input �elds. A replicated convolutional network, alsocalled a Space Displacement Neural Network or SDNN [27],is shown in Figure 23. While scanning a recognizer canbe prohibitively expensive in general, convolutional net-works can be scanned or replicated very e�ciently overlarge, variable-size input �elds. Consider one instance ofa convolutional net and its alter ego at a nearby location.Because of the convolutional nature of the network, unitsin the two instances that look at identical locations on theinput have identical outputs, therefore their states do notneed to be computed twice. Only a thin \slice" of newstates that are not shared by the two network instancesneeds to be recomputed. When all the slices are put to-gether, the result is simply a larger convolutional networkwhose structure is identical to the original network, exceptthat the feature maps are larger in the horizontal dimen-sion. In other words, replicating a convolutional networkcan be done simply by increasing the size of the �elds overwhich the convolutions are performed, and by replicatingthe output layer accordingly. The output layer e�ectivelybecomes a convolutional layer. An output whose receptive�eld is centered on an elementary object will produce theclass of this object, while an in-between output may indi-cate no character or contain rubbish. The outputs can beinterpreted as evidences for the presence of objects at allpossible positions in the input �eld.The SDNN architecture seems particularly attractive for



PROC. OF THE IEEE, NOVEMBER 1998 28recognizing cursive handwriting where no reliable segmen-tation heuristic exists. Although the idea of SDNN is quiteold, and very attractive by its simplicity, it has not gener-ated wide interest until recently because, as stated above,it puts enormous demands on the recognizer [26], [27]. Inspeech recognition, where the recognizer is at least oneorder of magnitude smaller, replicated convolutional net-works are easier to implement, for instance in Ha�ner'sMulti-State TDNN model [78], [85].A. Interpreting the Output of an SDNN with a GTNThe output of an SDNN is a sequence of vectors whichencode the likelihoods, penalties, or scores of �nding char-acter of a particular class label at the corresponding lo-cation in the input. A post-processor is required to pullout the best possible label sequence from this vector se-quence. An example of SDNN output is shown in Fig-ure 25. Very often, individual characters are spotted byseveral neighboring instances of the recognizer, a conse-quence of the robustness of the recognizer to horizontaltranslations. Also quite often, characters are erroneouslydetected by recognizer instances that see only a piece ofa character. For example a recognizer instance that onlysees the right third of a \4" might output the label 1. Howcan we eliminate those extraneous characters from the out-put sequence and pull-out the best interpretation? Thiscan be done using a new type of Graph Transformer withtwo input graphs as shown in Figure 24. The sequence ofvectors produced by the SDNN is �rst coded into a lineargraph with multiple arcs between pairs of successive nodes.Each arc between a particular pair of nodes contains thelabel of one of the possible categories, together with thepenalty produced by the SDNN for that class label at thatlocation. This graph is called the SDNN Output Graph.The second input graph to the transformer is a grammartransducer, more speci�cally a �nite-state transducer [86],that encodes the relationship between input strings of classlabels and corresponding output strings of recognized char-acters.The transducer is a weighted �nite state machine (agraph) where each arc contains a pair of labels and possiblya penalty. Like a �nite-state machine, a transducer is in astate and follows an arc to a new state when an observedinput symbol matches the �rst symbol in the symbol pairattached to the arc. At this point the transducer emits thesecond symbol in the pair together with a penalty that com-bines the penalty of the input symbol and the penalty ofthe arc. A transducer therefore transforms a weighted sym-bol sequence into another weighted symbol sequence. Thegraph transformer shown in �gure 24 performs a composi-tion between the recognition graph and the grammar trans-ducer. This operation takes every possible sequence corre-sponding to every possible path in the recognition graphand matches them with the paths in the grammar trans-ducer. The composition produces the interpretation graph,which contains a path for each corresponding output labelsequence. This composition operation may seem combina-torially intractable, but it turns out there exists an e�cientalgorithm for it described in more details in Section VIII.
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Fig. 25. An example of multiple character recognition with SDNN.With SDNN, no explicit segmentation is performed.B. Experiments with SDNNIn a series of experiments, LeNet-5 was trained with thegoal of being replicated so as to recognize multiple char-acters without segmentations. The data was generatedfrom the previously described Modi�ed NIST set as fol-lows. Training images were composed of a central char-acter, 
anked by two side characters picked at random inthe training set. The separation between the boundingboxes of the characters were chosen at random between -1and 4 pixels. In other instances, no central character waspresent, in which case the desired output of the networkwas the blank space class. In addition, training imageswere degraded with 10% salt and pepper noise (randompixel inversions).Figures 25 and 26 show a few examples of success-ful recognitions of multiple characters by the LeNet-5SDNN. Standard techniques based on Heuristic Over-Segmentation would fail miserably on many of those ex-amples. As can be seen on these examples, the networkexhibits striking invariance and noise resistance properties.While some authors have argued that invariance requiresmore sophisticated models than feed-forward neural net-works [87], LeNet-5 exhibits these properties to a large ex-tent.
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Fig. 26. An SDNN applied to a noisy image of digit string. The digits shown in the SDNN output represent the winning class labels, witha lighter grey level for high-penalty answers.Similarly, it has been suggested that accurate recognitionof multiple overlapping objects require explicit mechanismsthat would solve the so-called feature binding problem [87].As can be seen on Figures 25 and 26, the network is able totell the characters apart, even when they are closely inter-twined, a task that would be impossible to achieve with themore classical Heuristic Over-Segmentation technique. TheSDNN is also able to correctly group disconnected piecesof ink that form characters. Good examples of that areshown in the upper half of �gure 26. In the top left ex-ample, the 4 and the 0 are more connected to each otherthan they are connected with themselves, yet the systemcorrectly identi�es the 4 and the 0 as separate objects. Thetop right example is interesting for several reasons. Firstthe system correctly identi�es the three individual ones.Second, the left half and right half of disconnected 4 arecorrectly grouped, even though no geometrical informationcould decide to associate the left half to the vertical bar onits left or on its right. The right half of the 4 does causethe appearance of an erroneous 1 on the SDNN output,but this one is removed by the character model transducerwhich prevents characters from appearing on contiguousoutputs.Another important advantage of SDNN is the ease with

which they can be implemented on parallel hardware. Spe-cialized analog/digital chips have been designed and usedin character recognition, and in image preprocessing appli-cations [88]. However the rapid progress of conventionalprocessor technology with reduced-precision vector arith-metic instructions (such as Intel's MMX) make the successof specialized hardware hypothetical at best.Short video clips of the LeNet-5 SDNN can be viewed athttp://www.research.att.com/~yann/ocr.C. Global Training of SDNNIn the above experiments, the string image were arti�-cially generated from individual character. The advantageis that we know in advance the location and the label ofthe important character. With real training data, the cor-rect sequence of labels for a string is generally available,but the precise locations of each corresponding characterin the input image are unknown.In the experiments described in the previous section, thebest interpretation was extracted from the SDNN outputusing a very simple graph transformer. Global training ofan SDNN can be performed by back-propagating gradientsthrough such graph transformers arranged in architecturessimilar to the ones described in section VI.
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SDNN OutputFig. 27. A globally trainable SDNN/HMM hybrid system expressedas a GTN.This is somewhat equivalent to modeling the outputof an SDNN with a Hidden Markov Model. Globallytrained, variable-size TDNN/HMM hybrids have been usedfor speech recognition and on-line handwriting recogni-tion [77], [89], [90], [67]. Space Displacement Neural Net-works have been used in combination with HMMs or otherelastic matching methods for handwritten word recogni-tion [91], [92].Figure 27 shows the graph transformer architecture fortraining an SDNN/HMM hybrid with the DiscriminativeForward Criterion. The top part is comparable to the toppart of �gure 21. On the right side the composition of therecognition graph with the grammar gives the interpreta-tion graph with all the possible legal interpretations. Onthe left side the composition is performed with a grammarthat only contains paths with the desired sequence of la-bels. This has a somewhat similar function to the pathselector used in the previous section. Like in Section VI-Dthe loss function is the di�erence between the forward scoreobtained from the left half and the forward score obtainedfrom the right half. To back-propagate through the com-position transformer, we need to keep a record of which arcin the recognition graph originated which arcs in the inter-pretation graph. The derivative with respect to an arc inthe recognition graph is equal to the sum of the derivativeswith respect to all the arcs in the interpretation graph thatoriginated from it. Derivative can also be computed for thepenalties on the grammar graph, allowing to learn them aswell. As in the previous example, a discriminative criterionmust be used, because using a non-discriminative criterioncould result in a collapse e�ect if the network's output RBFare adaptive. The above training procedure can be equiv-alently formulated in term of HMM. Early experiments in

zip code recognition [91], and more recent experiments inon-line handwriting recognition [38] have demonstrated theidea of globally-trained SDNN/HMM hybrids. SDNN is anextremely promising and attractive technique for OCR, butso far it has not yielded better results than Heuristic Over-Segmentation. We hope that these results will improve asmore experience is gained with these models.D. Object Detection and Spotting with SDNNAn interesting application of SDNNs is object detectionand spotting. The invariance properties of ConvolutionalNetworks, combined with the e�ciency with which theycan be replicated over large �elds suggest that they canbe used for \brute force" object spotting and detection inlarge images. The main idea is to train a single Convolu-tional Network to distinguish images of the object of inter-est from images present in the background. In utilizationmode, the network is replicated so as to cover the entireimage to be analyzed, thereby forming a two-dimensionalSpace Displacement Neural Network. The output of theSDNN is a two-dimensional plane in which activated unitsindicate the presence of the object of interest in the corre-sponding receptive �eld. Since the sizes of the objects tobe detected within the image are unknown, the image canbe presented to the network at multiple resolutions, andthe results at multiple resolutions combined. The idea hasbeen applied to face location, [93], address block locationon envelopes [94], and hand tracking in video [95].To illustrate the method, we will consider the case offace detection in images as described in [93]. First, imagescontaining faces at various scales are collected. Those im-ages are �ltered through a zero-mean Laplacian �lter so asto remove variations in global illumination and low spatialfrequency illumination gradients. Then, training samplesof faces and non-faces are manually extracted from thoseimages. The face sub-images are then size normalized sothat the height of the entire face is approximately 20 pixelswhile keeping fairly large variations (within a factor of two).The scale of background sub-images are picked at random.A single convolutional network is trained on those samplesto classify face sub-images from non-face sub-images.When a scene image is to be analyzed, it is �rst �lteredthrough the Laplacian �lter, and sub-sampled at powers-of-two resolutions. The network is replicated over each ofmultiple resolution images. A simple voting technique isused to combine the results from multiple resolutions.A two-dimensional version of the global training methoddescribed in the previous section can be used to allevi-ate the need to manually locate faces when building thetraining sample [93]. Each possible location is seen as analternative interpretation, i.e. one of several parallel arcsin a simple graph that only contains a start node and anend node.Other authors have used Neural Networks, or other clas-si�ers such as Support Vector Machines for face detectionwith great success [96], [97]. Their systems are very similarto the one described above, including the idea of presentingthe image to the network at multiple scales. But since those



PROC. OF THE IEEE, NOVEMBER 1998 31systems do not use Convolutional Networks, they cannottake advantage of the speedup described here, and have torely on other techniques, such as pre-�ltering and real-timetracking, to keep the computational requirement withinreasonable limits. In addition, because those classi�ers aremuch less invariant to scale variations than ConvolutionalNetworks, it is necessary to multiply the number of scalesat which the images are presented to the classi�er.VIII. Graph Transformer Networks andTransducersIn Section IV, Graph Transformer Networks (GTN)were introduced as a generalization of multi-layer, multi-module networks where the state information is repre-sented as graphs instead of �xed-size vectors. This sectionre-interprets the GTNs in the framework of GeneralizedTransduction, and proposes a powerful Graph Compositionalgorithm.A. Previous WorkNumerous authors in speech recognition have usedGradient-Based Learning methods that integrate graph-based statistical models (notably HMM) with acousticrecognition modules, mainly Gaussian mixture models, butalso neural networks [98], [78], [99], [67]. Similar ideas havebeen applied to handwriting recognition (see [38] for a re-view). However, there has been no proposal for a system-atic approach to multi-layer graph-based trainable systems.The idea of transforming graphs into other graphs has re-ceived considerable interest in computer science, throughthe concept of weighted �nite-state transducers [86]. Trans-ducers have been applied to speech recognition [100] andlanguage translation [101], and proposals have been madefor handwriting recognition [102]. This line of work hasbeen mainly focused on e�cient search algorithms [103]and on the algebraic aspects of combining transducers andgraphs (called acceptors in this context), but very littlee�ort has been devoted to building globally trainable sys-tems out of transducers. What is proposed in the follow-ing sections is a systematic approach to automatic trainingin graph-manipulating systems. A di�erent approach tograph-based trainable systems, called Input-Output HMM,was proposed in [104], [105].B. Standard TransductionIn the established framework of �nite-state transduc-ers [86], discrete symbols are attached to arcs in the graphs.Acceptor graphs have a single symbol attached to eacharc whereas transducer graphs have two symbols (an inputsymbol and an output symbol). A special null symbol isabsorbed by any other symbol (when concatenating sym-bols to build a symbol sequence). Weighted transducersand acceptors also have a scalar quantity attached to eacharc. In this framework, the composition operation takes asinput an acceptor graph and a transducer graph and buildsan output acceptor graph. Each path in this output graph(with symbol sequence Sout) corresponds to one path (withsymbol sequence Sin) in the input acceptor graph and one

path and a corresponding pair of input/output sequences(Sout,Sin) in the transducer graph. The weights on the arcsof the output graph are obtained by adding the weightsfrom the matching arcs in the input acceptor and trans-ducer graphs. In the rest of the paper, we will call thisgraph composition operation using transducers the (stan-dard) transduction operation.A simple example of transduction is shown in Figure 28.In this simple example, the input and output symbols onthe transducer arcs are always identical. This type of trans-ducer graph is called a grammar graph. To better under-stand the transduction operation, imagine two tokens sit-ting each on the start nodes of the input acceptor graphand the transducer graph. The tokens can freely followany arc labeled with a null input symbol. A token canfollow an arc labeled with a non-null input symbol if theother token also follows an arc labeled with the same in-put symbol. We have an acceptable trajectory when bothtokens reach the end nodes of their graphs (i.e. the tokenshave reached the terminal con�guration). This trajectoryrepresents a sequence of input symbols that complies withboth the acceptor and the transducer. We can then collectthe corresponding sequence of output symbols along thetrajectory of the transducer token. The above procedureproduces a tree, but a simple technique described in Sec-tion VIII-C can be used to avoid generating multiple copiesof certain subgraphs by detecting when a particular outputstate has already been seen.The transduction operation can be performed very e�-ciently [106], but presents complex book-keeping problemsconcerning the handling of all combinations of null and nonnull symbols. If the weights are interpreted as probabilities(normalized appropriately) then an acceptor graph repre-sents a probability distribution over the language de�nedby the set of label sequences associated to all possible paths(from the start to the end node) in the graph.An example of application of the transduction opera-tion is the incorporation of linguistic constraints (a lexiconor a grammar) when recognizing words or other characterstrings. The recognition transformer produces the recog-nition graph (an acceptor graph) by applying the neuralnetwork recognizer to each candidate segment. This ac-ceptor graph is composed with a transducer graph for thegrammar. The grammar transducer contains a path foreach legal sequence of symbol, possibly augmented withpenalties to indicate the relative likelihoods of the possi-ble sequences. The arcs contain identical input and outputsymbols. Another example of transduction was mentionedin Section V: the path selector used in the heuristic over-segmentation training GTN is implementable by a compo-sition. The transducer graph is linear graph which con-tains the correct label sequence. The composition of theinterpretation graph with this linear graph yields the con-strained graph.C. Generalized TransductionIf the data structures associated to each arc took onlya �nite number of values, composing the input graph and



PROC. OF THE IEEE, NOVEMBER 1998 32an appropriate transducer would be a sound solution. Forour applications however, the data structures attached tothe arcs of the graphs may be vectors, images or otherhigh-dimensional objects that are not readily enumerated.We present a new composition operation that solves thisproblem.Instead of only handling graphs with discrete symbolsand penalties on the arcs, we are interested in consideringgraphs whose arcs may carry complex data structures, in-cluding continuous-valued data structures such as vectorsand images. Composing such graphs requires additionalinformation:� When examining a pair of arcs (one from each inputgraph), we need a criterion to decide whether to create cor-responding arc(s) and node(s) in the output graph, basedon the information attached to the input arcs. We can de-cide to build an arc, several arcs, or an entire sub-graphwith several nodes and arcs.� When that criterion is met, we must build the corre-sponding arc(s) and node(s) in the output graph and com-pute the information attached to the newly created arc(s)as a function the the information attached to the inputarcs.These functions are encapsulated in an object called aComposition Transformer. An instance of CompositionTransformer implements three methods:� check(arc1, arc2)compares the data structures pointed to by arcs arc1 (fromthe �rst graph) and arc2 (from the second graph) and re-turns a boolean indicating whether corresponding arc(s)should be created in the output graph.� fprop(ngraph, upnode, downnode, arc1, arc2)is called when check(arc1, arc2) returns true. Thismethod creates new arcs and nodes between nodes upnodeand downnode in the output graph ngraph, and computesthe information attached to these newly created arcs as afunction of the attached information of the input arcs arc1and arc2.� bprop(ngraph, upnode, downnode, arc1, arc2)is called during training in order to propagate gradient in-formation from the output sub-graph between upnode anddownnode into the data structures on the arc1 and arc2,as well as with respect to the parameters that were used inthe fprop call with the same arguments. This assumes thatthe function used by fprop to compute the values attachedto its output arcs is di�erentiable.The check method can be seen as constructing a dy-namic architecture of functional dependencies, while thefprop method performs a forward propagation throughthat architecture to compute the numerical information at-tached to the arcs. The bprop method performs a back-ward propagation through the same architecture to com-pute the partial derivatives of the loss function with respectto the information attached to the arcs. This is illustratedin Figure 28.Figure 29 shows a simpli�ed generalized graph composi-tion algorithm. This simpli�ed algorithm does not handlenull transitions, and does not check whether the tokens tra-
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Fig. 28. Example of composition of the recognition graph withthe grammar graph in order to build an interpretation that isconsistent with both of them. During the forward propagation(dark arrows), the methods check and fprop are used. Gradients(dashed arrows) are back-propagated with the application of themethod bprop.jectory is acceptable (i.e. both tokens simultaneously reachthe end nodes of their graphs). The management of nulltransitions is a straightforward modi�cation of the tokensimulation function. Before enumerating the possible nonnull joint token transitions, we loop on the possible nulltransitions of each token, recursively call the token sim-ulation function, and �nally call the method fprop. Thesafest way for identifying acceptable trajectories consists inrunning a preliminary pass for identifying the token con-�gurations from which we can reach the terminal con�gu-ration (i.e. both tokens on the end nodes). This is easilyachieved by enumerating the trajectories in the oppositedirection. We start on the end nodes and follow the arcsupstream. During the main pass, we only build the nodesthat allow the tokens to reach the terminal con�guration.Graph composition using transducers (i.e. standardtransduction) is easily and e�ciently implemented as a gen-eralized transduction. The method check simply tests theequality of the input symbols on the two arcs, and themethod fprop creates a single arc whose symbol is theoutput symbol on the transducer's arc.The composition between pairs of graphs is particularlyuseful for incorporating linguistic constraints in a hand-writing recognizer. Examples of its use are given in theon-line handwriting recognition system described in Sec-tion IX) and in the check reading system described in Sec-tion X).In the rest of the paper, the term Composition Trans-former will denote a Graph Transformer based on the gen-eralized transductions of multiple graphs. The concept ofgeneralized transduction is a very general one. In fact,many of the graph transformers described earlier in thispaper, such as the segmenter and the recognizer, can be
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Function generalized_composition(PGRAPH graph1,PGRAPH graph2,PTRANS trans)Returns PGRAPH{ // Create new graphPGRAPH ngraph = new_graph()// Create map between token positions// and nodes of the new graphPNODE map[PNODE,PNODE] = new_empty_map()map[endnode(graph1), endnode(graph2)] =endnode(newgraph)// Recursive subroutine for simulating tokensFunction simtokens(PNODE node1, PNODE node2)Returns PNODE{ PNODE currentnode = map[node1, node2]// Check if already visitedIf (currentnode == nil)// Record new configurationcurrentnode = ngraph->create_node()map[node1, node2] = currentnode// Enumerate the possible non-null// joint token transitionsFor ARC arc1 in down_arcs(node1)For ARC arc2 in down_arcs(node2)If (trans->check(arc1, arc2))PNODE newnode =simtokens(down_node(arc1),down_node(arc2))trans->fprop(ngraph, currentnode,newnode, arc1, arc2)// Return node in composed graphReturn currentnode}// Perform token simulationsimtokens(startnode(graph1), startnode(graph2))Delete mapReturn ngraph}Fig. 29. Pseudo-code for a simpli�ed generalized composition algo-rithm. For simplifying the presentation, we do not handle nulltransitions nor implement dead end avoidance. The two maincomponent of the composition appear clearly here: (a) the re-cursive function simtoken() enumerating the token trajectories,and, (b) the associative array map used for remembering whichnodes of the composed graph have been visited.

formulated in terms of generalized transduction. In thiscase the, the generalized transduction does not take two in-put graphs but a single input graph. The method fprop ofthe transformer may create several arcs or even a completesubgraph for each arc of the initial graph. In fact the pair(check, fprop) itself can be seen as procedurally de�ninga transducer.In addition, It can be shown that the generalized trans-duction of a single graph is theoretically equivalent to thestandard composition of this graph with a particular trans-ducer graph. However, implementing the operation thisway may be very ine�cient since the transducer can bevery complicated.In practice, the graph produced by a generalized trans-duction is represented procedurally, in order to avoid build-ing the whole output graph (which may be huge when forexample the interpretation graph is composed with thegrammar graph). We only instantiate the nodes whichare visited by the search algorithm during recognition (e.g.Viterbi). This strategy propagates the bene�ts of pruningalgorithms (e.g. Beam Search) in all the Graph TransformerNetwork.D. Notes on the Graph StructuresSection VI has discussed the idea of global trainingby back-propagating gradient through simple graph trans-formers. The bprop method is the basis of the back-propagation algorithm for generic graph transformers. Ageneralized composition transformer can be seen as dynam-ically establishing functional relationships between the nu-merical quantities on the input and output arcs. Once thecheck function has decided that a relationship should be es-tablished, the fprop function implements the numerical re-lationship. The check function establishes the structure ofthe ephemeral network inside the composition transformer.Since fprop is assumed to be di�erentiable, gradients canbe back-propagated through that structure. Most param-eters a�ect the scores stored on the arcs of the successivegraphs of the system. A few threshold parameters may de-termine whether an arc appears or not in the graph. Sincenon existing arcs are equivalent to arcs with very largepenalties, we only consider the case of parameters a�ect-ing the penalties.In the kind of systems we have discussed until now (andthe application described in Section X), much of the knowl-edge about the structure of the graph that is produced bya Graph Transformer is determined by the nature of theGraph Transformer, but it may also depend on the valueof the parameters and on the input. It may also be interest-ing to consider Graph Transformer modules which attemptto learn the structure of the output graph. This mightbe considered a combinatorial problem and not amenableto Gradient-Based Learning, but a solution to this prob-lem is to generate a large graph that contains the graphcandidates as sub-graphs, and then select the appropriatesub-graph.



PROC. OF THE IEEE, NOVEMBER 1998 34E. GTN and Hidden Markov ModelsGTNs can be seen as a generalization and an extension ofHMMs. On the one hand, the probabilistic interpretationcan be either kept (with penalties being log-probabilities),pushed to the �nal decision stage (with the di�erence of theconstrained forward penalty and the unconstrained forwardpenalty being interpreted as negative log-probabilities oflabel sequences), or dropped altogether (the network justrepresents a decision surface for label sequences in inputspace). On the other hand, Graph Transformer Networksextend HMMs by allowing to combine in a well-principledframework multiple levels of processing, or multiple mod-els (e.g., Pereira et al. have been using the transducerframework for stacking HMMs representing di�erent levelsof processing in automatic speech recognition [86]).Unfolding a HMM in time yields a graph that is very sim-ilar to our interpretation graph (at the �nal stage of pro-cessing of the Graph Transformer Network, before Viterbirecognition). It has nodes n(t; i) associated to each timestep t and state i in the model. The penalty ci for an arcfrom n(t � 1; j) to n(t; i) then corresponds to the nega-tive log-probability of emitting observed data ot at posi-tion t and going from state j to state i in the time interval(t � 1; t). With this probabilistic interpretation, the for-ward penalty is the negative logarithm of the likelihood ofwhole observed data sequence (given the model).In Section VI we mentioned that the collapsing phe-nomenon can occur when non-discriminative loss functionsare used to train neural networks/HMM hybrid systems.With classical HMMs with �xed preprocessing, this prob-lem does not occur because the parameters of the emissionand transition probability models are forced to satisfy cer-tain probabilistic constraints: the sum or the integral ofthe probabilities of a random variable over its possible val-ues must be 1. Therefore, when the probability of certainevents is increased, the probability of other events must au-tomatically be decreased. On the other hand, if the prob-abilistic assumptions in an HMM (or other probabilisticmodel) are not realistic, discriminative training, discussedin Section VI, can improve performance as this has beenclearly shown for speech recognition systems [48], [49], [50],[107], [108].The Input-Output HMM model (IOHMM) [105], [109],is strongly related to graph transformers. Viewed as aprobabilistic model, an IOHMM represents the conditionaldistribution of output sequences given input sequences (ofthe same or a di�erent length). It is parameterized froman emission probability module and a transition probabil-ity module. The emission probability module computesthe conditional emission probability of an output variable(given an input value and the value of discrete \state" vari-able). The transition probability module computes condi-tional transition probabilities of a change in the value ofthe \state" variable, given the an input value. Viewed as agraph transformer, it assigns an output graph (representinga probability distribution over the sequences of the outputvariable) to each path in the input graph. All these outputgraphs have the same structure, and the penalties on their

arcs are simply added in order to obtain the complete out-put graph. The input values of the emission and transitionmodules are read o� the data structure on the input arcsof the IOHMM Graph Transformer. In practice, the out-put graph may be very large, and needs not be completelyinstantiated (i.e., it is pruned: only the low penalty pathsare created).IX. An On-Line Handwriting Recognition SystemNatural handwriting is often a mixture of di�erent\styles", lower case printed, upper case, and cursive. Areliable recognizer for such handwriting would greatly im-prove interaction with pen-based devices, but its imple-mentation presents new technical challenges. Characterstaken in isolation can be very ambiguous, but consider-able information is available from the context of the wholeword. We have built a word recognition system for pen-based devices based on four main modules: a preprocessorthat normalizes a word, or word group, by �tting a geomet-rical model to the word structure; a module that producesan \annotated image" from the normalized pen trajectory;a replicated convolutional neural network that spots andrecognizes characters; and a GTN that interprets the net-works output by taking word-level constraints into account.The network and the GTN are jointly trained to minimizean error measure de�ned at the word level.In this work, we have compared a system based onSDNNs (such as described in Section VII), and a systembased on Heuristic Over-Segmentation (such as describedin Section V). Because of the sequential nature of the infor-mation in the pen trajectory (which reveals more informa-tion than the purely optical input from in image), HeuristicOver-Segmentation can be very e�cient in proposing can-didate character cuts, especially for non-cursive script.A. PreprocessingInput normalization reduces intra-character variability,simplifying character recognition. We have used a wordnormalization scheme [92] based on �tting a geometricalmodel of the word structure. Our model has four \
exi-ble" lines representing respectively the ascenders line, thecore line, the base line and the descenders line. The linesare �tted to local minima or maxima of the pen trajectory.The parameters of the lines are estimated with a modi�edversion of the EM algorithm to maximize the joint prob-ability of observed points and parameter values, using aprior on parameters that prevents the lines from collapsingon each other.The recognition of handwritten characters from a pentrajectory on a digitizing surface is often done in the timedomain [110], [44], [111]. Typically, trajectories are nor-malized, and local geometrical or dynamical features areextracted. The recognition may then be performed us-ing curve matching [110], or other classi�cation techniquessuch as TDNNs [44], [111]. While these representationshave several advantages, their dependence on stroke order-ing and individual writing styles makes them di�cult to
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Fig. 30. An on-line handwriting recognition GTN based on heuristicover-segmentationuse in high accuracy, writer independent systems that in-tegrate the segmentation with the recognition.Since the intent of the writer is to produce a legible im-age, it seems natural to preserve as much of the pictorialnature of the signal as possible, while at the same time ex-ploit the sequential information in the trajectory. For thispurpose we have designed a representation scheme, calledAMAP [38], where pen trajectories are represented by low-resolution images in which each picture element containsinformation about the local properties of the trajectory. AnAMAP can be viewed as an \annotated image" in whicheach pixel is a 5-element feature vector: 4 features are as-sociated to four orientations of the pen trajectory in thearea around the pixel, and the �fth one is associated tolocal curvature in the area around the pixel. A particu-larly useful feature of the AMAP representation is that itmakes very few assumptions about the nature of the inputtrajectory. It does not depend on stroke ordering or writ-ing speed, and it can be used with all types of handwriting(capital, lower case, cursive, punctuation, symbols). Un-like many other representations (such as global features),AMAPs can be computed for complete words without re-quiring segmentation.
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Fig. 31. An on-line handwriting recognition GTN based on Space-Displacement Neural NetworkB. Network ArchitectureOne of the best networks we found for both online ando�ine character recognition is a 5-layer convolutional net-work somewhat similar to LeNet-5 (Figure 2), but withmultiple input planes and di�erent numbers of units on thelast two layers; layer 1: convolution with 8 kernels of size3x3, layer 2: 2x2 sub-sampling, layer 3: convolution with25 kernels of size 5x5, layer 4 convolution with 84 kernelsof size 4x4, layer 5: 2x1 sub-sampling, classi�cation layer:95 RBF units (one per class in the full printable ASCIIset). The distributed codes on the output are the same asfor LeNet-5, except they are adaptive unlike with LeNet-5.When used in the heuristic over-segmentation system, theinput to above network consisted of an AMAP with �veplanes, 20 rows and 18 columns. It was determined thatthis resolution was su�cient for representing handwrittencharacters. In the SDNN version, the number of columnswas varied according to the width of the input word. Oncethe number of sub-sampling layers and the sizes of the ker-nels are chosen, the sizes of all the layers, including theinput, are determined unambiguously. The only architec-tural parameters that remain to be selected are the num-ber of feature maps in each layer, and the information asto what feature map is connected to what other featuremap. In our case, the sub-sampling rates were chosen assmall as possible (2x2), and the kernels as small as pos-



PROC. OF THE IEEE, NOVEMBER 1998 36sible in the �rst layer (3x3) to limit the total number ofconnections. Kernel sizes in the upper layers are chosen tobe as small as possible while satisfying the size constraintsmentioned above. Larger architectures did not necessarilyperform better and required considerably more time to betrained. A very small architecture with half the input �eldalso performed worse, because of insu�cient input resolu-tion. Note that the input resolution is nonetheless muchless than for optical character recognition, because the an-gle and curvature provide more information than would asingle grey level at each pixel.C. Network TrainingTraining proceeded in two phases. First, we kept thecenters of the RBFs �xed, and trained the network weightsso as to minimize the output distance of the RBF unitcorresponding to the correct class. This is equivalent tominimizing the mean-squared error between the previouslayer and the center of the correct-class RBF. This boot-strap phase was performed on isolated characters. In thesecond phase, all the parameters, network weights and RBFcenters were trained globally to minimize a discriminativecriterion at the word level.With the Heuristic Over-Segmentation approach, theGTN was composed of four main Graph Transformers:1. The Segmentation Transformer performs theHeuristic Over-Segmentation, and outputs the segmenta-tion graph. An AMAP is then computed for each imageattached to the arcs of this graph.2. The Character Recognition Transformer appliesthe the convolutional network character recognizer to eachcandidate segment, and outputs the recognition graph,with penalties and classes on each arc.3. The Composition Transformer composes the recog-nition graph with a grammar graph representing a languagemodel incorporating lexical constraints.4. TheBeam Search Transformer extracts a good inter-pretation from the interpretation graph. This task couldhave been achieved with the usual Viterbi Transformer.The Beam Search algorithm however implements pruningstrategies which are appropriate for large interpretationgraphs.With the SDNN approach, the main Graph Transformersare the following:1. The SDNN Transformer replicates the convolutionalnetwork over the a whole word image, and outputs a recog-nition graph that is a linear graph with class penalties forevery window centered at regular intervals on the inputimage.2. The Character-Level Composition Transformercomposes the recognition graph with a left-to-right HMMfor each character class (as in Figure 27).3. The Word-Level Composition Transformer com-poses the output of the previous transformer with a lan-guage model incorporating lexical constraints, and outputsthe interpretation graph.4. The Beam Search Transformer extracts a good in-terpretation from the interpretation graph.

In this application, the language model simply constrainsthe �nal output graph to represent sequences of characterlabels from a given dictionary. Furthermore, the interpre-tation graph is not actually completely instantiated: theonly nodes created are those that are needed by the BeamSearch module. The interpretation graph is therefore rep-resented procedurally rather than explicitly.A crucial contribution of this research was the joint train-ing of all graph transformer modules within the networkwith respect to a single criterion, as explained in Sec-tions VI and VIII. We used the Discriminative Forward lossfunction on the �nal output graph: minimize the forwardpenalty of the constrained interpretation (i.e., along all the\correct" paths) while maximizing the forward penalty ofthe whole interpretation graph (i.e., along all the paths).During global training, the loss function was optimizedwith the stochastic diagonal Levenberg-Marquardt proce-dure described in Appendix C, that uses second derivativesto compute optimal learning rates. This optimization op-erates on all the parameters in the system, most notablythe network weights and the RBF centers.D. Experimental ResultsIn the �rst set of experiments, we evaluated the general-ization ability of the neural network classi�er coupled withthe word normalization preprocessing and AMAP inputrepresentation. All results are in writer independent mode(di�erent writers in training and testing). Initial train-ing on isolated characters was performed on a database ofapproximately 100,000 hand printed characters (95 classesof upper case, lower case, digits, and punctuation). Testson a database of isolated characters were performed sepa-rately on the four types of characters: upper case (2.99%error on 9122 patterns), lower case (4.15% error on 8201patterns), digits (1.4% error on 2938 patterns), and punc-tuation (4.3% error on 881 patterns). Experiments wereperformed with the network architecture described above.To enhance the robustness of the recognizer to variationsin position, size, orientation, and other distortions, addi-tional training data was generated by applying local a�netransformations to the original characters.The second and third set of experiments concerned therecognition of lower case words (writer independent). Thetests were performed on a database of 881 words. Firstwe evaluated the improvements brought by the word nor-malization to the system. For the SDNN/HMM systemwe have to use word-level normalization since the net-work sees one whole word at a time. With the Heuris-tic Over-Segmentation system, and before doing any word-level training, we obtained with character-level normaliza-tion 7.3% and 3.5% word and character errors (adding in-sertions, deletions and substitutions) when the search wasconstrained within a 25461-word dictionary. When usingthe word normalization preprocessing instead of a charac-ter level normalization, error rates dropped to 4.6% and2.0% for word and character errors respectively, i.e., a rel-ative drop of 37% and 43% in word and character errorrespectively. This suggests that normalizing the word in
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Fig. 32. Comparative results (character error rates) showing theimprovement brought by global training on the SDNN/HMMhybrid, and on the Heuristic Over-Segmentation system (HOS),without and with a 25461 words dictionary.In the third set of experiments, we measured the im-provements obtained with the joint training of the neuralnetwork and the post-processor with the word-level crite-rion, in comparison to training based only on the errorsperformed at the character level. After initial training onindividual characters as above, global word-level discrim-inative training was performed with a database of 3500lower case words. For the SDNN/HMM system, withoutany dictionary constraints, the error rates dropped from38% and 12.4% word and character error to 26% and 8.2%respectively after word-level training, i.e., a relative dropof 32% and 34%. For the Heuristic Over-Segmentation sys-tem and a slightly improved architecture, without any dic-tionary constraints, the error rates dropped from 22.5%and 8.5% word and character error to 17% and 6.3% re-spectively, i.e., a relative drop of 24.4% and 25.6%. With a25461-word dictionary, errors dropped from 4.6% and 2.0%word and character errors to 3.2% and 1.4% respectivelyafter word-level training, i.e., a relative drop of 30.4% and30.0%. Even lower error rates can be obtained by dras-tically reducing the size of the dictionary to 350 words,yielding 1.6% and 0.94% word and character errors.These results clearly demonstrate the usefulness of glob-ally trained Neural-Net/HMM hybrids for handwritingrecognition. This con�rms similar results obtained earlierin speech recognition [77].X. A Check Reading SystemThis section describes a GTN based Check Reading Sys-tem, intended for immediate industrial deployment. It alsoshows how the use of Gradient Based-Learning and GTNsmake this deployment fast and cost-e�ective while yieldingan accurate and reliable solution.The veri�cation of the amount on a check is a task thatis extremely time and money consuming for banks. As aconsequence, there is a very high interest in automating theprocess as much as possible (see for example [112], [113],[114]). Even a partial automation would result in consid-erable cost reductions. The threshold of economic viabilityfor automatic check readers, as set by the bank, is when50% of the checks are read with less than 1% error. Theother 50% of the check being rejected and sent to humanoperators. In such a case, we describe the performance of

the system as 50% correct / 49% reject / 1% error. Thesystem presented here was one of the �rst to cross thatthreshold on representative mixtures of business and per-sonal checks.Checks contain at least two versions of the amount. TheCourtesy amount is written with numerals, while the Legalamount is written with letters. On business checks, whichare generally machine-printed, these amounts are relativelyeasy to read, but quite di�cult to �nd due to the lack ofstandard for business check layout. On the other hand,these amounts on personal checks are easy to �nd but muchharder to read.For simplicity (and speed requirements), our initial taskis to read the Courtesy amount only. This task consists oftwo main steps:� The system has to �nd, among all the �elds (lines oftext), the candidates that are the most likely to contain thecourtesy amount. This is obvious for many personal checks,where the position of the amount is standardized. However,as already noted, �nding the amount can be rather di�cultin business checks, even for the human eye. There aremany strings of digits, such as the check number, the date,or even \not to exceed" amounts, that can be confusedwith the actual amount. In many cases, it is very di�cultto decide which candidate is the courtesy amount beforeperforming a full recognition.� In order to read (and choose) some Courtesy amountcandidates, the system has to segment the �elds into char-acters, read and score the candidate characters, and �nally�nd the best interpretation of the amount using contextualknowledge represented by a stochastic grammar for checkamounts.The GTNmethodology was used to build a check amountreading system that handles both personal checks and busi-ness checks.A. A GTN for Check Amount RecognitionWe now describe the successive graph transformationsthat allow this network to read the check amount (cf. Fig-ure 33). Each Graph Transformer produces a graph whosepaths encode and score the current hypotheses consideredat this stage of the system.The input to the system is a trivial graph with a singlearc that carries the image of the whole check (cf. Figure 33).The �eld location transformer Tfield �rst performsclassical image analysis (including connected componentanalysis, ink density histograms, layout analysis, etc...)and heuristically extracts rectangular zones that may con-tain the check amount. Tfield produces an output graph,called the �eld graph (cf. Figure 33) such that each can-didate zone is associated with one arc that links the startnode to the end node. Each arc contains the image of thezone, and a penalty term computed from simple featuresextracted from the zone (absolute position, size, aspect ra-tio, etc...). The penalty term is close to zero if the featuressuggest that the �eld is a likely candidate, and is large ifthe �eld is deemed less likely to be an amount. The penalty
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Fig. 33. A complete check amount reader implemented as a singlecascade of Graph Transformer modules. Successive graph trans-formations progressively extract higher level information.function is di�erentiable, therefore its parameter are glob-ally tunable.An arc may represent separate dollar and cent amountsas a sequence of �elds. In fact, in handwritten checks, thecent amount may be written over a fractional bar, and notaligned at all with the dollar amount. In the worst case,one may �nd several cent amount candidates (above andbelow the fraction bar) for the same dollar amount.The segmentation transformer Tseg , similar to theone described in Section VIII examines each zone containedin the �eld graph, and cuts each image into pieces of inkusing heuristic image processing techniques. Each pieceof ink may be a whole character or a piece of character.Each arc in the �eld graph is replaced by its correspond-ing segmentation graph that represents all possible group-ings of pieces of ink. Each �eld segmentation graph is ap-pended to an arc that contains the penalty of the �eld inthe �eld graph. Each arc carries the segment image, to-gether with a penalty that provides a �rst evaluation ofthe likelihood that the segment actually contains a charac-ter. This penalty is obtained with a di�erentiable functionthat combines a few simple features such as the space be-tween the pieces of ink or the compliance of the segmentimage with a global baseline, and a few tunable parame-ters. The segmentation graph represents all the possiblesegmentations of all the �eld images. We can compute thepenalty for one segmented �eld by adding the arc penaltiesalong the corresponding path. As before using a di�eren-tiable function for computing the penalties will ensure thatthe parameters can be optimized globally.

The segmenter uses a variety of heuristics to �nd candi-date cut. One of the most important ones is called \hit andde
ect" [115]. The idea is to cast lines downward from thetop of the �eld image. When a line hits a black pixel, it isde
ected so as to follow the contour of the object. When aline hits a local minimum of the upper pro�le, i.e. when itcannot continue downward without crossing a black pixel,it is just propagated vertically downward through the ink.When two such lines meet each other, they are merged intoa single cut. The procedure can be repeated from the bot-tom up. This strategy allows the separation of touchingcharacters such as double zeros.The recognition transformer Trec iterates over allsegment arcs in the segmentation graph and runs a charac-ter recognizer on the corresponding segment image. In ourcase, the recognizer is LeNet-5, the Convolutional NeuralNetwork described in Section II, whose weights constitutethe largest and most important subset of tunable parame-ters. The recognizer classi�es segment images into one of95 classes (full printable ASCII set) plus a rubbish class forunknown symbols or badly-formed characters. Each arc inthe input graph Trec is replaced by 96 arcs in the outputgraph. Each of those 96 arcs contains the label of one ofthe classes, and a penalty that is the sum of the penaltyof the corresponding arc in the input (segmentation) graphand the penalty associated with classifying the image inthe corresponding class, as computed by the recognizer. Inother words, the recognition graph represents a weightedtrellis of scored character classes. Each path in this graphrepresents a possible character string for the correspond-ing �eld. We can compute a penalty for this interpretationby adding the penalties along the path. This sequence ofcharacters may or may not be a valid check amount.The composition transformer Tgram selects thepaths of the recognition graph that represent valid char-acter sequences for check amounts. This transformer takestwo graphs as input: the recognition graph, and the gram-mar graph. The grammar graph contains all possible se-quences of symbols that constitute a well-formed amount.The output of the composition transformer, called the in-terpretation graph, contains all the paths in the recognitiongraph that are compatible with the grammar. The oper-ation that combines the two input graphs to produce theoutput is a generalized transduction (see Section VIII).Adi�erentiable function is used to compute the data attachedto the output arc from the data attached to the input arcs.In our case, the output arc receives the class label of thetwo arcs, and a penalty computed by simply summing thepenalties of the two input arcs (the recognizer penalty, andthe arc penalty in the grammar graph). Each path in theinterpretation graph represents one interpretation of onesegmentation of one �eld on the check. The sum of thepenalties along the path represents the \badness" of thecorresponding interpretation and combines evidence fromeach of the modules along the process, as well as from thegrammar.The Viterbi transformer �nally selects the path withthe lowest accumulated penalty, corresponding to the best
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AnswerFig. 34. Additional processing required to compute the con�dence.grammatically correct interpretations.B. Gradient-Based LearningEach stage of this check reading system contains tun-able parameters. While some of these parameters could bemanually adjusted, for example the parameters of the �eldlocator and segmenter, the vast majority of them must belearned, particularly the weights of the neural net recog-nizer.Prior to globally optimizing the system, each module pa-rameters are initialized with reasonable values. The param-eters of the �eld locator and the segmenter are initializedby hand, while the parameters of the neural net charac-ter recognizer are initialized by training on a database ofpre-segmented and labeled characters. Then, the entiresystem is trained globally from whole check images labeledwith the correct amount. No explicit segmentation of theamounts is needed to train the system: it is trained at thecheck level.The loss function E minimized by our global train-ing procedure is the Discriminative Forward criterion de-scribed in Section VI: the di�erence between (a) the for-ward penalty of the constrained interpretation graph (con-strained by the correct label sequence), and (b) the forwardpenalty of the unconstrained interpretation graph. Deriva-tives can be back-propagated through the entire structure,although it only practical to do it down to the segmenter.C. Rejecting Low Con�dence ChecksIn order to be able to reject checks which are the mostlikely to carry erroneous Viterbi answers, we must ratethem with a con�dence, and reject the check if this con-�dence is below a given threshold. To compare the un-normalized Viterbi Penalties of two di�erent checks wouldbe meaningless when it comes to decide which answer wetrust the most.The optimal measure of con�dence is the probability ofthe Viterbi answer given the input image. As seen in Sec-tion VI-E, given a target sequence (which, in this case,would be the Viterbi answer), the discriminative forwardloss function is an estimate of the logarithm of this prob-ability. Therefore, a simple solution to obtain a good esti-mate of the con�dence is to reuse the interpretation graph(see Figure 33) to compute the discriminative forward loss

as described in Figure 21, using as our desired sequence theViterbi answer. This is summarized in Figure 34, with:con�dence = exp(Edforw)D. ResultsA version of the above system was fully implementedand tested on machine-print business checks. This sys-tem is basically a generic GTN engine with task speci�cheuristics encapsulated in the check and fprop method.As a consequence, the amount of code to write was min-imal: mostly the adaptation of an earlier segmenter intothe segmentation transformer. The system that deals withhand-written or personal checks was based on earlier im-plementations that used the GTN concept in a restrictedway.The neural network classi�er was initially trained on500,000 images of character images from various originsspanning the entire printable ASCII set. This containedboth handwritten and machine-printed characters that hadbeen previously size normalized at the string level. Addi-tional images were generated by randomly distorting theoriginal images using simple a�ne transformations of theimages. The network was then further trained on characterimages that had been automatically segmented from checkimages and manually truthed. The network was also ini-tially trained to reject non-characters that resulted fromsegmentation errors. The recognizer was then inserted inthe check reading system and a small subset of the parame-ters were trained globally (at the �eld level) on whole checkimages.On 646 business checks that were automatically catego-rized as machine printed the performance was 82% cor-rectly recognized checks, 1% errors, and 17% rejects. Thiscan be compared to the performance of the previous sys-tem on the same test set: 68% correct, 1% errors, and31% rejects. A check is categorized as machine-printedwhen characters that are near a standard position Dollarsign are detected as machine printed, or when, if nothingis found in the standard position, at least one courtesyamount candidate is found somewhere else. The improve-ment is attributed to three main causes. First the neuralnetwork recognizer was bigger, and trained on more data.Second, because of the GTN architecture, the new systemcould take advantage of grammatical constraints in a muchmore e�cient way than the previous system. Third, theGTN architecture provided extreme 
exibility for testingheuristics, adjusting parameters, and tuning the system.This last point is more important than it seems. The GTNframework separates the \algorithmic" part of the systemfrom the \knowledge-based" part of the system, allowingeasy adjustments of the latter. The importance of globaltraining was only minor in this task because the globaltraining only concerned a small subset of the parameters.An independent test performed by systems integratorsin 1995 showed the superiority of this system over othercommercial Courtesy amount reading systems. The systemwas integrated in NCR's line of check reading systems. It



PROC. OF THE IEEE, NOVEMBER 1998 40has been �elded in several banks across the US since June1996, and has been reading millions of checks per day sincethen. XI. ConclusionsDuring the short history of automatic pattern recogni-tion, increasing the role of learning seems to have invari-ably improved the overall performance of recognition sys-tems. The systems described in this paper are more ev-idence to this fact. Convolutional Neural Networks havebeen shown to eliminate the need for hand-crafted fea-ture extractors. Graph Transformer Networks have beenshown to reduce the need for hand-crafted heuristics, man-ual labeling, and manual parameter tuning in documentrecognition systems. As training data becomes plentiful, ascomputers get faster, as our understanding of learning al-gorithms improves, recognition systems will rely more andmore of learning, and their performance will improve.Just as the back-propagation algorithm elegantly solvedthe credit assignment problem in multi-layer neural net-works, the gradient-based learning procedure for GraphTransformer Networks introduced in this paper solves thecredit assignment problem in systems whose functional ar-chitecture dynamically changes with each new input. Thelearning algorithms presented here are in a sense nothingmore than unusual forms of gradient descent in complex,dynamic architectures, with e�cient back-propagation al-gorithms to compute the gradient. The results in this pa-per help establish the usefulness and relevance of gradient-based minimization methods as a general organizing prin-ciple for learning in large systems.It was shown that all the steps of a document analysissystem can be formulated as graph transformers throughwhich gradients can be back-propagated. Even in thenon-trainable parts of the system, the design philosophyin terms of graph transformation provides a clear separa-tion between domain-speci�c heuristics (e.g. segmentationheuristics) and generic, procedural knowledge (the gener-alized transduction algorithm)It is worth pointing out that data generating models(such as HMMs) and the Maximum Likelihood Principlewere not called upon to justify most of the architecturesand the training criteria described in this paper. Gradientbased learning applied to global discriminative loss func-tions guarantees optimal classi�cation and rejection with-out the use of \hard to justify" principles that put strongconstraints on the system architecture, often at the expenseof performances.More speci�cally, the methods and architectures pre-sented in this paper o�er generic solutions to a large num-ber of problems encountered in pattern recognition sys-tems:1. Feature extraction is traditionally a �xed transform,generally derived from some expert prior knowledge aboutthe task. This relies on the probably incorrect assumptionthat the human designer is able to capture all the rele-vant information in the input. We have shown that theapplication of Gradient-Based Learning to Convolutional

Neural Networks allows to learn appropriate features fromexamples. The success of this approach was demonstratedin extensive comparative digit recognition experiments onthe NIST database.2. Segmentation and recognition of objects in images can-not be completely decoupled. Instead of taking hard seg-mentation decisions too early, we have used Heuristic Over-Segmentation to generate and evaluate a large number ofhypotheses in parallel, postponing any decision until theoverall criterion is minimized.3. Hand truthing images to obtain segmented charactersfor training a character recognizer is expensive and doesnot take into account the way in which a whole documentor sequence of characters will be recognized (in particularthe fact that some segmentation candidates may be wrong,even though they may look like true characters). Insteadwe train multi-module systems to optimize a global mea-sure of performance, which does not require time consum-ing detailed hand-truthing, and yields signi�cantly betterrecognition performance, because it allows to train thesemodules to cooperate towards a common goal.4. Ambiguities inherent in the segmentation, characterrecognition, and linguistic model should be integrated op-timally. Instead of using a sequence of task-dependentheuristics to combine these sources of information, wehave proposed a uni�ed framework in which generalizedtransduction methods are applied to graphs representing aweighted set of hypotheses about the input. The success ofthis approach was demonstrated with a commercially de-ployed check reading system that reads millions of businessand personal checks per day: the generalized transductionengine resides in only a few hundred lines of code.5. Traditional recognition systems rely on many hand-crafted heuristics to isolate individually recognizable ob-jects. The promising Space Displacement Neural Networkapproach draws on the robustness and e�ciency of Con-volutional Neural Networks to avoid explicit segmentationaltogether. Simultaneous automatic learning of segmenta-tion and recognition can be achieved with Gradient-BasedLearning methods.This paper presents a small number of examples of graphtransformer modules, but it is clear that the concept can beapplied to many situations where the domain knowledge orthe state information can be represented by graphs. This isthe case in many audio signal recognition tasks, and visualscene analysis applications. Future work will attempt toapply Graph Transformer Networks to such problems, withthe hope of allowing more reliance on automatic learning,and less on detailed engineering.AppendicesA. Pre-conditions for faster convergenceAs seen before, the squashing function used in our Con-volutional Networks is f(a) = A tanh(Sa). Symmetricfunctions are believed to yield faster convergence, althoughthe learning can become extremely slow if the weights aretoo small. The cause of this problem is that in weight spacethe origin is a �xed point of the learning dynamics, and,



PROC. OF THE IEEE, NOVEMBER 1998 41although it is a saddle point, it is attractive in almost alldirections [116]. For our simulations, we use A = 1:7159and S = 23 (see [20], [34]). With this choice of parame-ters, the equalities f(1) = 1 and f(�1) = �1 are satis�ed.The rationale behind this is that the overall gain of thesquashing transformation is around 1 in normal operat-ing conditions, and the interpretation of the state of thenetwork is simpli�ed. Moreover, the absolute value of thesecond derivative of f is a maximum at +1 and �1, whichimproves the convergence towards the end of the learningsession. This particular choice of parameters is merely aconvenience, and does not a�ect the result.Before training, the weights are initialized with randomvalues using a uniform distribution between �2:4=Fi and2:4=Fi where Fi is the number of inputs (fan-in) of the unitwhich the connection belongs to. Since several connectionsshare a weight, this rule could be di�cult to apply, but inour case, all connections sharing a same weight belong tounits with identical fan-ins. The reason for dividing by thefan-in is that we would like the initial standard deviationof the weighted sums to be in the same range for eachunit, and to fall within the normal operating region of thesigmoid. If the initial weights are too small, the gradientsare very small and the learning is slow. If they are toolarge, the sigmoids are saturated and the gradient is alsovery small. The standard deviation of the weighted sumscales like the square root of the number of inputs whenthe inputs are independent, and it scales linearly with thenumber of inputs if the inputs are highly correlated. Wechose to assume the second hypothesis since some unitsreceive highly correlated signals.B. Stochastic Gradient vs Batch GradientGradient-Based Learning algorithms can use one of twoclasses of methods to update the parameters. The �rstmethod, dubbed \Batch Gradient", is the classical one: thegradients are accumulated over the entire training set, andthe parameters are updated after the exact gradient hasbeen so computed. In the second method, called \Stochas-tic Gradient", a partial, or noisy, gradient is evaluated onthe basis of one single training sample (or a small num-ber of samples), and the parameters are updated usingthis approximate gradient. The training samples can beselected randomly or according to a properly randomizedsequence. In the stochastic version, the gradient estimatesare noisy, but the parameters are updated much more oftenthan with the batch version. An empirical result of con-siderable practical importance is that on tasks with large,redundant data sets, the stochastic version is considerablyfaster than the batch version, sometimes by orders of mag-nitude [117]. Although the reasons for this are not totallyunderstood theoretically, an intuitive explanation can befound in the following extreme example. Let us take anexample where the training database is composed of twocopies of the same subset. Then accumulating the gradientover the whole set would cause redundant computationsto be performed. On the other hand, running Stochas-tic Gradient once on this training set would amount to

performing two complete learning iterations over the smallsubset. This idea can be generalized to training sets wherethere exist no precise repetition of the same pattern butwhere some redundancy is present. In fact stochastic up-date must be better when there is redundancy, i.e., when acertain level of generalization is expected.Many authors have claimed that second-order meth-ods should be used in lieu of gradient descent for neu-ral net training. The literature abounds with recom-mendations [118] for classical second-order methods suchas the Gauss-Newton or Levenberg-Marquardt algorithms,for Quasi-Newton methods such as the Broyden-Fletcher-Goldfarb-Shanno method (BFGS), Limited-storage BFGS,or for various versions of the Conjugate Gradients (CG)method. Unfortunately, all of the above methods are un-suitable for training large neural networks on large datasets. The Gauss-Newton and Levenberg-Marquardt meth-ods require O(N3) operations per update, where N isthe number of parameters, which makes them impracti-cal for even moderate size networks. Quasi-Newton meth-ods require \only" O(N2) operations per update, but thatstill makes them impractical for large networks. Limited-Storage BFGS and Conjugate Gradient require only O(N)operations per update so they would appear appropriate.Unfortunately, their convergence speed relies on an accu-rate evaluation of successive \conjugate descent directions"which only makes sense in \batch" mode. For large datasets, the speed-up brought by these methods over regularbatch gradient descent cannot match the enormous speedup brought by the use of stochastic gradient. Several au-thors have attempted to use Conjugate Gradient with smallbatches, or batches of increasing sizes [119], [120], but thoseattempts have not yet been demonstrated to surpass a care-fully tuned stochastic gradient. Our experiments were per-formed with a stochastic method that scales the parameteraxes so as to minimize the eccentricity of the error surface.C. Stochastic Diagonal Levenberg-MarquardtOwing to the reasons given in Appendix B, we prefer toupdate the weights after each presentation of a single pat-tern in accordance with stochastic update methods. Thepatterns are presented in a constant random order, and thetraining set is typically repeated 20 times.Our update algorithm is dubbed the Stochastic DiagonalLevenberg-Marquardt method where an individual learningrate (step size) is computed for each parameter (weight)before each pass through the training set [20], [121], [34].These learning rates are computed using the diagonal termsof an estimate of the Gauss-Newton approximation to theHessian (second derivative) matrix. This algorithm is notbelieved to bring a tremendous increase in learning speedbut it converges reliably without requiring extensive ad-justments of the learning parameters. It corrects major ill-conditioning of the loss function that are due to the pecu-liarities of the network architecture and the training data.The additional cost of using this procedure over standardstochastic gradient descent is negligible.At each learning iteration a particular parameter wk is



PROC. OF THE IEEE, NOVEMBER 1998 42updated according to the following stochastic update rulewk  wk � �k @Ep@wk : (18)where Ep is the instantaneous loss function for pattern p.In Convolutional Neural Networks, because of the weightsharing, the partial derivative @Ep@wk is the sum of the partialderivatives with respect to the connections that share theparameter wk : @Ep@wk = X(i;j)2Vk @Ep@uij (19)where uij is the connection weight from unit j to unit i, Vkis the set of unit index pairs (i; j) such that the connectionbetween i and j share the parameter wk, i.e.:uij = wk 8(i; j) 2 Vk (20)As stated previously, the step sizes �k are not constant butare function of the second derivative of the loss functionalong the axis wk : �k = ��+ hkk (21)where � is a hand-picked constant and hkk is an estimateof the second derivative of the loss function E with re-spect to wk . The larger hkk, the smaller the weight update.The parameter � prevents the step size from becoming toolarge when the second derivative is small, very much likethe \model-trust" methods, and the Levenberg-Marquardtmethods in non-linear optimization [8]. The exact formulato compute hkk from the second derivatives with respectto the connection weights is:hkk = X(i;j)2Vk X(k;l)2Vk @2E@uij@ukl (22)However, we make three approximations. The �rst approx-imation is to drop the o�-diagonal terms of the Hessianwith respect to the connection weights in the above equa-tion: hkk = X(i;j)2Vk @2E@u2ij (23)Naturally, the terms @2E@u2ij are the average over the trainingset of the local second derivatives:@2E@u2ij = 1P PXp=1 @2Ep@u2ij (24)Those local second derivatives with respect to connectionweights can be computed from local second derivatives withrespect to the total input of the downstream unit:@2Ep@u2ij = @2Ep@a2i x2j (25)where xj is the state of unit j and @2Ep@a2i is the secondderivative of the instantaneous loss function with respect to

the total input to unit i (denoted ai). Interestingly, there isan e�cient algorithm to compute those second derivativeswhich is very similar to the back-propagation procedureused to compute the �rst derivatives [20], [121]:@2Ep@a2i = f 0(ai)2Xk u2ki @2Ep@a2k + f 00(ai)@Ep@xi (26)Unfortunately, using those derivatives leads to well-knownproblems associated with every Newton-like algorithm:these terms can be negative, and can cause the gradientalgorithm to move uphill instead of downhill. Therefore,our second approximation is a well-known trick, called theGauss-Newton approximation, which guarantees that thesecond derivative estimates are non-negative. The Gauss-Newton approximation essentially ignores the non-linearityof the estimated function (the Neural Network in our case),but not that of the loss function. The back-propagationequation for Gauss-Newton approximations of the secondderivatives is: @2Ep@a2i = f 0(ai)2Xk u2ki @2Ep@a2k (27)This is very similar to the formula for back-propagating the�rst derivatives, except that the sigmoid's derivative andthe weight values are squared. The right-hand side is a sumof products of non-negative terms, therefore the left-handside term is non-negative.The third approximation we make is that we do not runthe average in Equation 24 over the entire training set, butrun it on a small subset of the training set instead. Inaddition the re-estimation does not need to be done of-ten since the second order properties of the error surfacechange rather slowly. In the experiments described in thispaper, we re-estimate the hkk on 500 patterns before eachtraining pass through the training set. Since the size of thetraining set is 60,000, the additional cost of re-estimatingthe hkk is negligible. The estimates are not particularlysensitive to the particular subset of the training set used inthe averaging. This seems to suggest that the second-orderproperties of the error surface are mainly determined bythe structure of the network, rather than by the detailedstatistics of the samples. This algorithm is particularly use-ful for shared-weight networks because the weight sharingcreates ill-conditionning of the error surface. Because ofthe sharing, one single parameter in the �rst few layers canhave an enormous in
uence on the output. Consequently,the second derivative of the error with respect to this pa-rameter may be very large, while it can be quite small forother parameters elsewhere in the network. The above al-gorithm compensates for that phenomenon.Unlike most other second-order acceleration methods forback-propagation, the above method works in stochasticmode. It uses a diagonal approximation of the Hessian.Like the classical Levenberg-Marquardt algorithm, it uses a\safety" factor � to prevent the step sizes from getting toolarge if the second derivative estimates are small. Hencethe method is called the Stochastic Diagonal Levenberg-Marquardt method.
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